
International Journal of Computer Applications (0975 Ű 8887)
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ABSTRACT
This paper deals with the problem of H∞ control for a class of lin-
ear discrete-time periodic system with delays. The obtained results
are then extended for the time-delay periodic system with Linear
Fractional Representation (LFR) uncertainty. Furthermore, linear
matrix inequality (LMI)-based sufficient conditions for H∞ control
are established. Two numerical examples are given to illustrate the
applicability of the proposed approach.
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1. INTRODUCTION
The H∞ norm as a measure of system performances has been thor-
oughly embedded in control theory [6].
During the last decade, the H∞ control theory has attracted a lot
of attention and made significant progress [5]. Recently, a great
number of research papers focused on the problem of robust H∞
control for linear systems with parameter uncertainty. The objec-
tive is to design a control law to stabilize an uncertain system while
satisfying in the same time a H∞−norm bound constraint with the
aim to insure disturbance attenuation in the presence of admissi-
ble uncertainties. The robust H∞ control design for linear uncer-
tain systems has been extensively studied. This has impulsed a
large number of research results obtained on the analysis and syn-
thesis for discrete and continuous-time uncertain system; see, e.g.
[10, 12, 3, 8, 2, 7, 9]. Many researchers have extended the obtained
results on the robust H∞ control for delayed systems.
Time delays are frequently encountered in various engineering sys-
tems, such as chemical processes and long transmission lines in
pneumatic systems [11]. Therefore, much attention has focused
on the problems of asymptotic stability and stabilization with an
H∞ norm bound of time-delay systems with parameter uncertain-
ties since time delays and parameter uncertainties are often the
causes for instability and/or perfomance degradation of the con-
sidered system. Specifically, robust H∞ control problems for time-
delayed discrete-time systems have been considered and sufficient
conditions has been derived in terms of Linear Matrix Inequalities
in [4] for instance or in terms of modified Riccati inequalities in [5].
In [4], the problem of robust H∞ state feedback control in which

both robust stability and a prescribed H∞ performance are required
to be achieved irrespective of the uncertainty and unknown time-
delay. In terms of modified Riccati inequalities for discrete-time
linear systems, a sufficient condition is presented and a state feed-
back control law is also given in [5].
The present paper investigates the H∞ control problem of discrete-
time uncertain periodic system with delays. The parameter
uncertainties are assumed to comply to a Linear Fractional
Representation. It is well known that linear matrix inequalities
(LMIs) techniques have become essential tools for analysis and
synthesis of control systems, and more specifically in the area of
robust control [7]. therefore, in the terms of matrix inequalities,
sufficient conditions for asymptotic stability as well as asymptotic
stabilization with an H∞ norm bound, using periodic state feedback
controller are obtained for the considered class of systems.

Notation: We denote by X> the transpose of matrix X, by the Her-
mitian expression Sym {·}: Sym {X} = X + X>.
Matrix inequalities are considered in the sense of Löwner i.e. “< 0”
(“≤ 0”) means negative (semi–)definite and ”> 0” (“≥ 0”) positive
(semi-)definite. I and 0 are, respectively, the identity the null matrix
of suitable dimension.
We define the set �p for p ∈ � as

�p = {k ∈ �, 0 ≤ k ≤ p − 1}

2. PRELIMINARIES
Consider the following linear uncertain p-periodic system:

x(k + 1) = (A(k) + ∆A(k)) x(k) (2)

with

∆A(k) = E(k)∆(k)N(k)
∆(k) = F(k) (I − M(k)F(k))−1 (3)

where A(k), E(k), M(k) and N(k) are real p-periodic matrices with
appropriate dimensions and F(k) is an unknown p-periodic matrix
that satisfies

F>(k)F(k) ≤ I, ∀k ∈ �p. (4)

Furthermore, we assume that

M(k) =

[
I −M(k)

−M(k)> I

]
> 0, ∀K ∈ �p. (5)
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In this part, we will study the problem of asymptotic stability of un-
certain periodic system such that in equations (2)-(4). Before pro-
ceeding too far, let us answer a question that imposes itself and
reads as Can we consider that the uncertainty matrix ∆(k) is pe-
riodic?. To answer this question, let us consider that each matrix
A(k), for k ∈ Ip is affected by a simple additive uncertainty, de-
noted ∆A(k). It comes then that from a periodic point of view, these
uncertainties can be considered as periodic as is the case for matrix
A(k) = A(k + p), k ∈ Ip.
At this step, we present some definition related to stability and ro-
bust stability.

Definition 1. The linear p-periodic system (2) is robustly sta-
ble if and only if,

∀∆(k) ∈ ∇(k), ∃ X(k,∆(k)) = X>(k)(∆(k)) > 0,[
I

A>(k,∆(k))

]> [
−X(k + 1,∆(k + 1)) 0

0 X(k,∆(k))

] [
I

A>(k,∆(k))

]
< 0

for all k = 0, . . . , p − 1.

Definition 2. [1]The linear p-periodic system (2) is quadrati-
cally stable if and only if,

∃ X(k) = X>(k) > 0, ∀∆(k) ∈ ∇(k)[
I

A>(k,∆(k))

]> [
−X(k + 1) 0

0 X(k)

] [
I

A>(k,∆(k))

]
< 0 (6)

for all k = 0, . . . , p − 1.

Definition 3. The linear p-periodic system (2) is asymptotically
stable if condition (6) holds.

In the three definitions A(k,∆(k)) is defined by:

A(k,∆(k)) = A(k) + ∆A(k) (7)

where the uncertainty ∆A(k) is described by (3).

Lemma 4. Assume ∆A(k) = 0, k ∈ � and suppose that there
exits a symmetric positive definite p-periodic matrix P(k) such that
the condition

A>(k)P(k + 1)A(k) − P(k) < 0 (8)

holds for all k = 0, 1, . . . , p − 1, then, the p-periodic system (2) is
asymptotically stable .

3. H∞ STABILITY OF DELAYED PERIODIC
SYSTEM

Consider a class of discrete time-delay p-periodic system described
by

x(k + 1) = A(k)x(k) + Ad(k)x(k − d) + Bw(k)w(k)
z(k) = C(k)x(k) (9)

The following lemma gives the stability for system (9).

Lemma 5. The linear time-delay p-periodic system (9) is
asymptotically stable when w(k) = 0, if there exist a Lyapunov
fonction V(k), a positive scalar α and a positive p−periodic scalar
β(k) , 0 satisfying β(k + 1) ≥ β(k) for all k ∈ �, such that

(1)

0 ≤ V(x(k)) ≤ α max
−d≤i≤0

‖x(i + k)‖2

(2)

∆V(x(k)) = V(x(k + 1)) − V(x(k)) ≤ −β(k) ‖x(k)‖2

Proof:

It can be noted that

V(x(k + 1)) = ∆V(x(k)) + ∆V(x(k − 1)) + · · · + ∆V(x(1))

+∆V(x(0)) + V(x(0)) ≤ −
k∑

i=0

β(i) ‖x(i)‖2 + V(x(0)) (10)

and thus

β(k) ‖x(k)‖2 ≤
k∑

i=0

β(i) ‖x(i)‖2 ≤ V(x(0)) − V(x(k + 1)) ≤ V(x(0))

≤ α max
−d≤i≤0

‖x(i)‖2

Hence

‖x(k)‖2 ≤
α

β(k)
max
−d≤i≤0

‖x(i)‖2 (11)

which means that ‖x(k)‖2 is small enough for a small enough
max−d≤i≤0 ‖x(i)‖2. Moreover,

∑k
i=0 β(i) ‖x(i)‖2 is bounded for any k,

and hence the series β(i) ‖x(i)‖2 converges to 0. Keeping in mind
that β(i) is an increasing function, it comes that x(i) converges to 0,
which implies the asymptotic stability of the considered p-periodic
system.

Theorem 6. The p-periodic system with delays (9) is said to be
asymptotically stable with an H∞ norm bound γ if there exist sym-
metric p-periodic matrices X(k) > 0 and G(k) > 0 such that the
following matrix inequality holds for all k ∈ �p:[

Ψ11(k) Ψ>12(k)
Ψ12(k) Ψ2(k)

]
< 0 (12)

with

Ψ11(k) =

−X(k) 0 0
0 −G(k − d) 0
0 0 −γI

 ,
Ψ12(k) =

C(k)X(k) 0 0
A(k)X(k) Ad(k)G(k − d) Bw(k)

X(k) 0 0

 ,
Ψ22(k) =

−γI 0 0
0 −X(k + 1) 0
0 0 −G(k)

 .
Proof:

Now, define the following Lyapunov function

V(k) = x>(k)P(k)x(k) +

d∑
j=1

x>(k − j)Q(k − j)x(k − j) (13)

where P(k) and Q(k) are symmetric positive definite p−periodic
matrices with appropriate dimensions.
By some algebraic calculations, we get
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∆V(k) = x>(k)
(
Q(k) − P(k) + A>(k)P(k + 1)A(k)

)
x(k) +

x>(k)A>(k)P(k + 1)Ad(k)x(k − d) +

x>(k)A>(k)P(k + 1)Bw(k)w(k) +

x>(k − d)Ad
>(k)P(k + 1)A(k)x(k) +

x>(k − d)
(
A>d (k)P(k + 1)Ad(k) − Q(k − d)

)
x(k − d) +

x>(k − d)A>d (k)P(k + 1)Bw(k)w(k) +

w>(k)B>w(k)P(k + 1)A(k)x(k) +

w>(k)B>w(k)P(k + 1)Ad(k)x(k − d) +

w>(k)B>w(k)P(k + 1)Bw(k)w(k) (14)

Condition (14) can be written as

∆V(k) = ξ(k)Ψ(k)ξ(k) (15)

with

ξ(k) =
[
x>(k) x>(k − d) w>(k)

]>
(16)

and

Ψ(k) =

−P(k) 0 0
0 −Q(k − d) 0
0 0 0

 +

 A>(k)
Ad
>(k)

B>w(k)

 P(k + 1)
[
A(k) Ad(k) Bw(k)

]
(17)

In the case of null initial conditions, the H∞ performance of system
(9) is defined as

∞∑
k=0

(
z>(k)z(k) − γ2w>(k)w(k)

)
< 0, (18)

for any nonzero w(k) ∈ l2 [0,∞) which means that ‖z(·)‖2 <
γ ‖w(·)‖2 or in other words, that the system is stable with a H∞
bound γ.

Remark 3.1. In the case of non null initial conditions, the con-
dition above becomes

∞∑
k=0

(
z>(k)z(k) − γ2w>(k)w(k)

)
− V(x(0)) < 0.

In order to set a condition that implies the inequality (18), asume
that the initial conditions satisfy V(x(0)) = 0 and consider the ex-
pression
∞∑

k=0

(
z>(k)z(k) − γ2w>(k)w(k) + ∆V(x(k))

)
=

∞∑
k=0

ξ>(k)Θ(k)ξ(k)

where

Θ(k) =

−P(k) 0 0
0 −Q(k − d) 0
0 0 −γ2I

 +

A(k) Ad(k) Bw(k)
I 0 0

C(k) 0 0


>

×

P(k + 1) 0 0
0 Q(k) 0
0 0 I


A(k) Ad(k) Bw(k)

I 0 0
C(k) 0 0

 (19)

Hence, if

Θ(k) < 0 (20)

then,
∞∑

k=0

(
z>(k)z(k) − γ2w>(k)w(k) + ∆V(x(k))

)
=

∞∑
k=0

(
z>(k)z(k) − γ2w>(k)w(k)

)
+ V(x(∞)) − V(x(0)) < 0

and since V(x(0)) = 0 and V(x(∞)) ≥ 0, then we get

‖z‖22 ≤ γ
2 ‖w‖22 (21)

for any nonzero w(k) ∈ l2 [0,∞) which means that we have an H∞
norm bound less than γ.
Multiplying (20) on the left and on the right by

γ
1
2 P−1(k) 0 0

0 γ
1
2 Q−1(k − d) 0

0 0 γ−
1
2 I

 ,
we get:

−γP−1(k) 0 0
0 −γQ−1(k − d) 0
0 0 −γ−1I

 +

A(k)>
γ
−1P(k + 1) 0 0

0 γ−1Q(k) 0
0 0 γI

A(k) < 0, (22)

with

A(k) =

γA(k)P−1(k) γAd(k)Q−1(k − d) Bw(k)
γP−1(k) 0 0

γC(k)P−1(k) 0 0

 .
Replacing, respectively, γ−1P(k) and γ−1Q(k − d) by X−1(k) and
G−1(k − d) and applying a Schur complement technique, condition
(22) can be written as (12).

4. H∞ CONTROL OF DELAYED PERIODIC
SYSTEM

Consider the following p-periodic system with delays

x(k + 1) = A(k)x(k) + Ad(k)x(k − d) + B(k)u(k) + Bw(k)w(k),
z(k) = C(k)x(k) + D(k)u(k). (23)

In the remainder of this part, we will establish a stabilization condi-
tion with an H∞ norm bound for the closed loop p-periodic system
with delays (23). Our aim is to design a p-periodic state feedback
controller

u(k) = K(k)x(k); K(k + p) = K(k) for all k ∈ � (24)

such that for a given scalar γ > 0, for all nonzero w(k) ∈ l2 [0,+∞)
and null initial conditions, we have

‖z‖2 ≤ γ ‖w‖2 . (25)

In this situation, the p-periodic system (23) with the controller (24)
is said to achieve an H∞ norm bound less than γ.

Theorem 7. The p-periodic system with delays (23) with the
controller (24) is said to be asymptotically stabilizable with an
H∞ norm bound γ if there exist symmetric p-periodic matrices
X(k) > 0, G(k) > 0 and Y(k) such that the following matrix in-
equality holds for all k = 0, 1, . . . , p − 1:
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−X(k) 0 0 Γ>41(k) Γ>51(k) X(k)
0 −G(k − d) 0 0 Γ>52(k) 0
0 0 −γI 0 B>w(k) 0

Γ41(k) 0 0 −γI 0 0
Γ51(k) Γ52(k) Bw(k) 0 −X(k + 1) 0
X(k) 0 0 0 0 −G(k)


< 0, (26)

where

Γ41(k) = (C(k)X(k) + D(k)Y(k)) ,

Γ51(k) = (A(k)X(k) + B(k)Y(k)) ,

Γ52(k) = Ad(k)G(k − d).

Furthermore, if the matrix inequality (30) has a feasible solution
X(k), G(k) and Y(k), then the state feedback control law is given
by:

u(k) = Y(k)X−1(k)x(k). (27)

Proof: the proof is omitted because it can be carried out by fol-
lowing a similar line as in the proof of theorem 6.

5. ROBUST CONTROLLER DESIGN
Consider the following uncertain p-periodic system with delays

x(k + 1) = (A(k) + ∆A(k)) x(k) + (Ad(k) + ∆Ad(k)) x(k − d) +

(B(k) + ∆B(k)) u(k) + Bw(k)w(k),
z(k) = C(k)x(k) + D(k)u(k), (28)

with[
∆A(k) ∆Ad(k) ∆B(k)

]
= E(k)∆(k)

[
N(k) NAd (k) L(k)

]
,

∆(k) = F(k) (I − M(k)F(k))−1 , (29)

where A(k), Ad(k), E(k), B(k) , M(k), N(k), NAd (k) and L(k) are
real p-periodic matrices with appropriate dimensions and Fk is an
unknown matrix that satisfies:

F>(k)F(k) ≤ I. (4)

Furthermore, we assume that

M(k) =

[
I −M(k)

−M(k)> I

]
> 0. (5)

In this section, we are concerned with the problem of robust p-
periodic state feedback control for the uncertain p-periodic system
(28)-(4) for all admissible uncertainties. Our aim is to design a p-
periodic state feedback controller (24) such that for a given scalar
γ > 0, for all nonzero w(k) ∈ l2 [0,+∞) and for all parameter un-
certainties satisfying (29) and (4),

‖z‖2 ≤ γ ‖w‖2 . (30)

In this situation, the p-periodic system (28) with the controller (24)
is said to achieve a robust H∞ performance (30).

Definition 8. Let a constant γ be given. The uncertain p-
periodic system (28)-(4) is said to be stabilizable with an H∞ norm
bound γ if there exists a p-periodic state feedback control law (24),
such that for any admissible parameter uncertainty ∆A(k), ∆Ad(k)
and ∆B(k) the following conditions are satisfied.

(1) The closed-loop p-periodic delayed system is asymptotically
stable when w(k) = 0,

(2) Subject to the assumption of the zero initial condition, the con-
trolled output z(k) satisfies (30).

Definition 9. Let a constant γ be given. The uncertain p-
periodic delayed system (28)-(29) is said to be quadratically stabi-
lizable with an H∞ norm bound γ if there exists a linear p-periodic
state feedback law (24) and real symmetric positive definite p-
periodic matrices P(k) and Q(k) such that the inequality

Γ11(k) Γ>12(k) Γ>13(k)
Γ12(k) Γ22(k) Γ>23(k)
Γ13(k) Γ23(k) Γ33(k)

 < 0 (31)

with

Γ11(k) = Ac>(k,∆k)P(k + 1)Ac(k,∆k) − P(k) + Q(k) + Cc>(k)Cc(k)
Γ12(k) = A>d (k,∆(k))P(k + 1)Ac(k,∆(k))
Γ13(k) = B>w(k)P(k + 1)Ac(k,∆k)
Γ22(k) = A>d (k,∆(k))P(k + 1)Ad(k,∆(k)) − Q(k − d)
Γ23(k) = B>w(k)P(k + 1)Ad(k,∆k)

Γ33(k) = B>w(k)P(k + 1)Bw(k) − γ2I

holds for any admissible uncertainty ∆A(k), ∆Ad(k) and ∆B(k),
where Ac(k,∆(k)) = A(k,∆(k))+ B(k,∆(k))K(k) and Cc(k) = C(k)+
D(k)K(k)

Initially, we will show that quadratic stabilization with an H∞ norm
bound γ > 0 implies stabilization with the same H∞ norm bound γ.

Lemma 10. If the uncertain p-periodic system (28)-(29) with the
uncertainty satisfying (4) and (5) is quadratically stabilizable with
an H∞ norm bound γ > 0, then it is also stabilizable with the same
H∞ norm bound γ.

Proof:
By following similar arguments as in the proof of theorem 6, we
obtain, for any admissible uncertainty ∆A(k), ∆Ad(k) and ∆B(k) that
(31) holds
which implies that
‖z‖2 ≤ γ ‖w‖2 for any nonzero w(k) ∈ l2 [0,∞).

Theorem 11. The uncertain p-periodic system (28)-(29) is said
to be asymptotically stabilizable by the p-periodic state feedback
controller (24) with an H∞ norm bound γ if there exist symmetric
p-periodic matrices X(k) > 0 and G(k) > 0 and a p-periodic scalar
ε(k) > 0 such that the following matrix inequality holds:[

Φ11(k) Φ12(k)
Φ>12(k) Φ22(k)

]
< 0, (32)

with

Φ11(k) =


−X(k) 0 0 Λ>1 (k)

0 −G(k − d) 0 0
0 0 −γI 0

Λ1(k) 0 0 −γI

 ,

Φ12(k) =


Λ>2 (k) X(k) Λ>3 (k) 0

G(k − d)A>d (k) 0 G(k − d)N>Ad
(k) 0

B>w(k) 0 0 0
0 0 0 0

 ,

Φ22(k) =


−X(k + 1) 0 0 ε(k)E(k)

0 −G(k) 0 0
0 0 −ε(k)I ε(k)M(k)

ε(k)E>k 0 ε(k)M>(k) −ε(k)I

 ,
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where

Λ1(k) = (C(k)X(k) + D(k)Y(k)) ,
Λ2(k) = (A(k)X(k) + B(k)Y(k)) ,
Λ3(k) = (N(k)X(k) + L(k)Y(k)) .

Proof:
Using the same approach as in the proof of theorem 6, the uncertain
p-periodic system is asymptotically stabilizable with an H∞ norm
bound γ if there exist symmetric p-periodic matrices X(k) > 0 and
G(k) > 0 such that

[
Γ11(k) Γ>12(k)
Γ12(k) Γ22(k)

]
< 0 (33)

with

Γ11(k) =

−X(k) 0 0
0 −G(k − d) 0
0 0 −γI

 ,

Γ12(k) =

 Cc(k)X(k) 0 0
Ac(k,∆(k))X(k) Ad(k,∆(k))G(k − d) Bw(k)

X(k) 0 0

 ,

Γ22(k) =

−γI 0 0
0 −X(k + 1) 0
0 0 −G(k)

 .
which is in fact condition (12) rewritten for the uncertain closed-
loop system, i.e., A(k) is replaced by

Ac(k,∆k) = A(k) + E(k)∆(k)N(k) + (B(k) + E(k)∆(k)L(k)) K(k)
= (A(k) + B(k)K(k))︸                ︷︷                ︸

Ac(k)

+E(k)∆(k) (N(k) + L(k)K(k))︸                 ︷︷                 ︸
Nc(k)

= Ac(k) + E(k)∆(k)Nc(k). (34)

where ∆(k) = F(k) (I − M(k)F(k))−1.

Therefore, condition (33) can be displayed as follows

[
Φ11(k) Φ>12(k)
Φ12(k) Φ22(k)

]
+

Sym





0
0
0
0
Ek
0


F(k) (I − M(k)F(k))−1



X(k)Nc(k)>

G(k − d)N>Ad
(k)

0
0
0
0



>
< 0. (35)

with

Φ11(k) =

−X(k) 0 0
0 −G(k − d) 0
0 0 −γI

 ,
Φ12(k) =

C
c(k)X(k) 0 0

Ac(k)X(k) Ad(k)G(k − d) Bw(k)
X(k) 0 0

 ,
Φ22(k) =

−γI 0 0
0 −X(k + 1) 0
0 0 −G(k)

 . (36)

Using [8, Lemma 2.6], we can state that there exists an ε > 0 such
that condition (35) above is equivalent for all admissible uncertain-
ties F(k) to [

Φ11(k) Φ>12(k)
Φ12(k) Φ22(k)

]
+Z(k)M−1

k Z
>(k) < 0, (37)

with

Z(k) =



ε−
1
2 (k)X(k)Nc

k
> 0

ε−
1
2 (k)G(k − d)N>Ad

(k) 0
0 0
0 0
0 ε

1
2 (k)Ek

0 0


,

andMk given by (5).
At this step, we notice that performing a Schur complement opera-
tion shows that condition (37) is in fact equivalent to[

Γ11(k) Γ12(k)
Γ>12(k) Γ22(k)

]
< 0, (38)

with

Γ11(k) =


−X(k) 0 0 X(k)Cc>(k)

0 −G(k − d) 0 0
0 0 −γI 0

Cc(k)X(k) 0 0 −γI

 ,

Γ12(k) =


X(k)Ac>(k) X(k) X(k)Nc

k
> 0

G(k − d)A>d (k) 0 X(k − d)N>Ad
(k) 0

B>w(k) 0 0 0
0 0 0 0

 ,

Γ22(k) =


−X(k + 1) 0 0 ε(k)Ek

0 −G(k) 0 0
0 0 −ε(k)I ε(k)M(k)

ε(k)E>k 0 ε(k)M>(k) −ε(k)I

 ,
where, in addition, we have multiplied both sides of the obtained
condition by the diagonal matrix diag{I, I, I, I, I, I, ε

1
2 (k)I, ε

1
2 (k)I}.

Hence, condition (32) is then recovered easily from above.
Example1:
Consider the problem of H∞ control of the discrete-time 2-periodic
system (23) with[

A(0) Ad(0) C(0) B(0)
A(1) Ad(1) C(1) B(1)

]
=

1.3 −0.6
0.2 0.2

∣∣∣∣∣ 0.2 −0.2
0.4 0.3

∣∣∣∣∣ 0.3 0.25
0.12 0.2

∣∣∣∣∣ 1.2
0.3

1.2 −0.2
0.2 0.3

∣∣∣∣∣ 0.3 −0.15
0.1 0.3

∣∣∣∣∣ 0.4 0.15
0.1 0.3

∣∣∣∣∣ 1.1
0.4

 ;

[
Bw(0) D(0) Bw(1) D(1)

]
=[

0.3 0.2
0.15 0.2

∣∣∣∣∣ 0.2
0.25

∣∣∣∣∣ 0.1 0.2
0.22 0.3

∣∣∣∣∣ 0.12
0.3

]
;

Using theorem 7, we obtain the following matrices:
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Fig. 1. Variation of the ratio

k∑
i=0

z>i zi

k∑
i=0

w>i wi

.

[
X(0) G(0)
X(1) G(1)

]
=

0.4102 0.0570
0.0570 0.3204

∣∣∣∣∣ 0.9995 −0.1869
−0.1869 0.8498

0.2666 0.0634
0.0634 0.2893

∣∣∣∣∣ 0.3453 −0.0720
−0.0720 0.9370


Then, the state feedback gain matrices are given by:

[
Y(0) K(0)
Y(1) K(1)

]
=

[
−0.4053 0.0619

∣∣∣ −1.0407 0.3786
−0.2475 −0.0884

∣∣∣ −0.9026 −0.1078

]
;

Hence, we check that the statements of definition 8 are verified with
a norm bound γ = 0.7.
In order illustrate the obtained result, we will take the disturbance
signal w(k) = w0r−αk with r > 1.
Figure 1 shows that the 2-periodic system (23) with the controller
(24) achieves a H∞ norm bound less than γ = 0.7 complying with
the performance index (30).
Example2:
Consider the problem of robust H∞ control of the discrete-time 2-
periodic system (28)-(4) with:[

A(0) B(0) C(0)
A(1) B(1) C(1)

]
=

1.4 −0.4
0.4 0.6

∣∣∣∣∣ 1.4 0.22
0.35 0.12

∣∣∣∣∣ −0.2 0.1
0.2 0.1

1.2 −0.5
0.5 0.6

∣∣∣∣∣ 1.6 1
0.8 0.21

∣∣∣∣∣ −0.1 0.2
0.25 0.2

 ;

[
D(0) E(0) M(0)
D(1) E(1) M(1)

]
=

0.15 0.2
0.12 0.2

∣∣∣∣∣ 0.02 0.015
0.02 0.02

∣∣∣∣∣ 0.05 0.02
0.03 0.04

0.16 0.15
0.1 0.18

∣∣∣∣∣ 0.02 0.03
0.02 0.03

∣∣∣∣∣ 0.02 0.03
0.02 0.03

 ;
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Fig. 2. The variation of

k∑
i=0

z>i zi

k∑
i=0

w>i wi

for some values of ∆k satisfying (4).

[
N(0) L(0) Bw(0)
N(1) L(1) Bw(1)

]
=

0.3 0.4
0.2 0.45

∣∣∣∣∣ 0.2 0.3
0.12 0.22

∣∣∣∣∣ 0.03 0.02
0.01 0.03

0.3 0.5
0.22 0.3

∣∣∣∣∣ 0.1 0.2
0.2 0.2

∣∣∣∣∣ 0.02 0.01
0.02 0.02

 ;

[
Ad(0) NAd (0)
Ad(1) NAd (1)

]
=

0.4 −0.5
0.3 −0.4

∣∣∣∣∣ 0.04 0.02
0.03 0.02

0.5 −0.4
0.2 −0.3

∣∣∣∣∣ 0.03 0.04
0.02 0.03

 ;

Let γ = 0.8.
Using theorem 11, we obtain the following matrices:

[
X(0) G(0) Y(0)
X(1) G(1) Y(1)

]
=

0.0085 0.0070
0.0070 0.0100

∣∣∣∣∣ 0.0424 0.0428
0.0428 0.0523

∣∣∣∣∣ 0.0058 0.0129
−0.0738 −0.1024

0.0985 0.0639
0.0639 0.0512

∣∣∣∣∣ 6.0283 4.4847
4.4847 3.3742

∣∣∣∣∣ −0.1500 −0.1122
0.1532 0.1280


and the scalars ε(0) = 6.9667 and ε(1) = 0.4428.
Then, the state feedback gain matrices are given by:[

K(0) K(1)
]

=

[
−0.8899 1.9106
−0.6507 −9.7866

∣∣∣∣∣ −0.5339 −1.5254
−0.3469 2.9338

]
;

Hence, we noticed that the statements of definition 8 are verified for
any admissible parameter uncertainty ∆A(k), ∆Ad(k) and ∆B(k).
For the simulation purposes, we’ll take the disturbance signal in the
form wk = w0rk with r < 1.
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Figure 2 shows the evolution of

k∑
i=0

z>i zi

k∑
i=0

w>i wi

for some values of ∆k sat-

isfying (4). The figure shows explicitly that the closed-loop uncer-
tain 2-periodic system exhibits a H∞ norm bound less than γ = 0.8.

6. CONCLUSION
In this paper, a sufficient condition for H∞ control problem of
discrete-time periodic system with delays has been presented in
terms of Linear Matrix Inequality (LMI). The obtained results are
then extended for the uncertain time-delay periodic system. The un-
certainties are of the form of Linear Fractional Representation type
which includes the case of norm bounded uncertainties as a spe-
cial case. numerical examples are given to illustrate the proposed
results.
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