
International Journal of Computer Applications (0975 - 8887)
Volume 53 - No. 3, September 2012

Towards Arabic Spell-Checker Based on N-Grams
Scores

Hasan Muaidi
Computer Science Department

Prince Abdullah bin Ghazi faculty of IT
Albalqa Applied University

Salt - Jordan

Rasha Al-Tarawneh
Computer Science Department

Aqaba University College
Albalqa Applied University

Aqaba - Jordan

ABSTRACT
The main purpose of this paper is to develop a simple and flexible
spell-checker for Arabic language. The proposed spell-checker is
based on N-Grams scores. For this purpose, eleven matrices are
built to present the combination between the Arabic letters word.
Each matrix concerns in the connection between a 2-grams let-
ters. Each cell in the generarated matrix is assigned an integer
value 2, 1 or 0. The cell is assigned the value 2 in the corre-
sponding matrix; if the word is ended by these two letter and
assigned 1 if there is a connection and the word is not over yet,
and is assigned 0 otherwise. On the other side searching process
for any word that is by extracting each pair of letters in the word
then it examines the value for each pair when the corresponding
value is zero then the spell checker will consider the test word
as wrong; otherwise it will check if it is assign with 1 that indi-
cates that there is a connection it will be continue until reach to
the value of 2 to determine that the word is correct. The overall
accuracy for the proposed spell-checker is reached to 98.99%.

KEYWORDS
Natural Languages Processing, Arabic Language Processing,
Spell-Checker, N-Gram

1. INTRODUCTION
Arabic is an eternal language and it is considered as one of the
oldest languages in the world. It is ranked the fifth in the widely
used these days. Despite of Arabic language is actually one of the
most widely spoken languages in the world it has been relatively
little used in speech, writing programs and in data processing.

Unlike English and the Indo-European languages, Arabic text is
oriented right to left without the use of capital letters. In addi-
tion, Arabic differs from other languages syntactically, morpho-
logically, and semantically that make it one of the most diffi-
cult languages for written and spoken language processing [11].
Arabic has been increasingly used in many information retrieval
systems and recently on the Internet. Investigation of methods
of automatic spell-checker systems for Arabic text is essential
to the growth of Arabic texts on the Internet and on other sys-
tems. The limitations of the current systems for spell-checker for
Arabic languages induced the authors to investigate a simple and
flexible approach to build a spell-checker system for Arabic lan-
guage.

This paper describes a spell-checker problem which belongs to
the area of computational linguistics. Many specialists in com-
puter science consider computational linguistics as a part of ar-
tificial intelligence (AI)[1]. Computational linguistics might be
considered as a synonym of automatic processing of natural lan-
guage, since the main task of computational linguistics is just the
construction of computer programs to process words and texts

in natural language [1]. The main objective of the spell-checker
system is to flag words in a text that may not be spelled correctly
[5]. This flagging process is done at the word level without con-
sidering the text context.

The paper starts with a brief summary of Arabic spell-checker
related work. In Section 3, some definitions are reviewed in or-
der to clarify the terms used in this paper. The proposed Arabic
spell-checker and the corresponding algorithm are presented in
Section 4. The experimental results and the causes of the errors
are discussed in Section 5. Finally, the conclusion is presented in
Section 6.

2. RELATED WORK
The importance of spelling checkers in the field of digital pro-
cessing of the natural languages is one of the matters that drew
attention of the people interested in once solutions since the early
beginnings of media. This prompted companies to work on the
production of these tools - with hidden source for the most part -
with more and more sophisticated functions that meet the needs
of computer users in the once field in particular, and overlooks
the services given by softwares’ distributors who pay millions to
get it (the price of the Arab spell-checker exceeds one million
U.S. dollars in the global market for the year 2006) [9].

In literature the most known techniques for building a spell-
checker are dictionary look up and n-gram. This section presents
an outline of how these two techniques are achieved.

2.1 DICTIONARY LOOKUP TECHNIQUE
Dictionary lookup is one of the most important structures in
computer science, it is represented as a set of data arranged in
rows and columns. To search for one item; every value should be
checked in the dictionary sequentially and stop when the value
is found.

Dictionary lookup technique is easy to implement but the cost of
searching in a large dictionary is often too high, farther more it
is difficult to extract and store all the words of a given language
in it [7].

2.2 N-GRAM TECHNIQUE
N-gram is n-letter subsequences of n-adjacent letters in a word,
if n = 1, 2, 3 reference is made to a unigram, bigram, or trigram,
respectively. N-gram analysis is used in spell-checker after com-
piled a table of n-gram binary values or frequency counts from
large corpora, for comparative purposes to check if each n-gram
in an input string is likely to be valid in the language [8][10][3].

12

International Journal of Computer Applications (0975 - 8887)
Volume 53 - No. 3, September 2012

2.3 MOST KNOWN SPELL-CHECKERS FOR
ARABIC

2.3.1 Zerrouki-Balla Spell-Checker. Zerrouki and Balla de-
veloped a spell-checker for Arabic language [12]. They main-
tained Aspell and Hunspell spell-checkers. They tried to add in-
fixes and support circumfixes with ignoring diacritics to the open
source of Aspell and Hunspell [12].

2.3.2 Shaalan Spell-Checker. Shaalan et. al [6] attempt to de-
velop a spell-checker program to recognize common spelling er-
rors for standard Arabic and Egyptian dialects. They have imple-
mented their checker using SICStus Prolog language. The inter-
face is built using Microsoft Visual Basic. The first step in this
checker is to detect an error. According to Shaalan et. al [6] there
are two possibilities for causing errors:

(1) The misspelled word is an isolated word (Non-word).
(2) The misspelled word is a valid word. (As writing [ÈA

	
K] in-

stead of [ÈAÓ]).

2.3.3 Haddad-Yaseen Spell Checker. Haddad and Yaseen [2]
proposed a hybrid model for spell-checking and correcting of
Arabic words, based on semi-isolated word recognition. In their
work, the error of Arabic word is classified into three types; ty-
pographic, cognitive and phonetic errors. Each one of these error
types is categorized into single error or multi error.

3. DEFINITIONS
In this section some of concepts are defined to clarify the
methodology of this research.

Matrix Definition
The matrix is a set of columns N and rows M defined by N×M.
A rectangular collection of cells is organized by the intersection
of each N and M. Each cell contains exactly one value. The cells
in any matrix are addressed by a pairs of letter or integer number
depending on how and where they will be used. The first (left)
index in the pair specifies the column; while the second (right)
index specifies the row.

Tokenizing Process
The main aim of this process is to split the entered text to a set
of tokens (words).

Cleaning Process
The cleaning process is executed after tokenizing stage, it con-
cerned with cleaning the input text from not useful data such as
punctuation marks and numbers.

4. THE PROPOSED ARABIC SPELL-CHECKER
4.1 ARABIC CORPUS
The corpus which is used in this paper is adapted from Muaidi
Phd thesis1. This corpus (hereafter refer to as Muaidi Corpus)
is implemented and compiled by the first author at De Mont-
fort University in UK [4]. The corpus consists of 101,987 word-
types. These words are used to training and testing the proposed
spell-checker.

4.2 BUILDING THE MATRICES
In literature, we found that Muaidi [4] has determined the longest
valid word in Arabic language has 12 letters. For this reason an
eleven matrices (number of matrices = longest word - 1) are built,
the dimension of each matrix is 28 × 28 2. The first matrix (M1)

1Dr. Hasan Muaidi, AL-Balqa’ Applied University.
2The Arabic language has 28 letters

for the combination of the first and the second letters in a word.
The second matrix (M2) for the combination of the second and
the third letters in a word. While the eleventh matrix (M11) for
the combination of the eleventh and the twelfth letters in a word.
All the matrices are initialized by zeros.

To store a given Arabic word in the corresponding matrices, the
2-Gram set (S) for the word is extracted. Each item in (S) consists
of two letters and the item will assign the value 1 or 2 according
to the following rules:

- If the item is the last one in (S), then the value 2 is stored in the
corresponding matrix and it indicates that this word is ended
by these two letters.

- If the item is not the last one in (S), then the value 1 is stored
in the corresponding matrix and it indicates that this word is
not ended by these two letters.

The following example clearly shows how to build the matrices
from the following tiny corpus:

EXAMPLE 1.

Assume a tiny corpus has 22 Arabic words. The distribution of
these words according to their lengths as follows:

- Length=2 : 	áÓ , Õç
�
' , Ð

@ , p

@ , H.

@

- Length=3 :Qm.
k ,Q

�
�Ó ,

�
I

	
k

@ , H. AK. , h. A

�
K

- Length=4 : QÔg

@ , YÔg

@ , QÓA

�
K XAêk. , lk

.
A
	
K

- Length=5 : 	á�

�
J

	
k

@ , H. ñ�Ag , I. �

�
KQ

�
K , ø

YÔg

@

- Length=6 : 	
àñJ.�@P ,

	
àñmk

.
A
	
K ,

	á�
ÖÞ
�AK

The longest word in the above tiny corpus has 6 letters; so 5
matrices should be generated to represent all the words in the
corpus.

- For the word:[XAêk.]

- The 2-Gram set is S = {X@ , Aë , �êk. }.
- M1[h.][�ë]=1, M2[�ë][@]=1, M3[@][X]=2.

- For the word:[lk
.
A
	
K]

- The 2-Gram set is S = { lk
.

, h. @ , A
	
K}.

- M1[
à][@]=1, M2[@][h.]=1, M3[h.][h]=2.

As example, Figure 1 shows a snapshot for the matrix M1 for the
1st and the 2nd Letters.

4.3 THE ALGORITHM FOR THE PROPOSED
SPELL-CHECKER

The main menu of the proposed spell-checker based on the ma-
trix approach is shown in Figure 2. This interface offers sets of
buttons for executing the different implemented algorithms.

The mechanism of the proposed spell-checking of a given Arabic
text is as follows:

- The user entered the tested text.
- The spell-checker starts the tokenizing processing.
- The cleaning process is executed after tokenizing stage.
- Matrix method deals with each word within the text sepa-

rately and extracts the 2-Gram set for it. Then it examines
the value for each item in the 2-Gram set. When the corre-
sponding value for the item is zero then the spell-checker
will consider the tested word as wrong word and colors it by
red and then starts checking the next word.

13

International Journal of Computer Applications (0975 - 8887)
Volume 53 - No. 3, September 2012

Fig. 1. Matrix M1 for the 1st and the 2nd Letters

Fig. 2. Spell-Checker by Matrix Approach

The following algorithm clears the above procedure.

Algorithm 1 Matrix Approach Algorithm
1: procedure CHECKMATRIX(Word,Matrix(i)) .
2: Flag ← True
3: i← 1
4: while Flag = True and i ≤ n− 1 do .
5: if Mi[Li, Li+1] = 0 then
6: Flag ← Fail
7: return Flag
8: else
9: i← i+ 1

10: end if
11: end while
12: if Mn−1[Ln−1, Ln] = 2 then
13: return Flag
14: else
15: return Fail
16: end if
17: end procedure

The drawback for this approach is that it may be failed to detect
the misspelling word as shown in the following example:

EXAMPLE 2.

Assume the following two words[ÐCg

@] and [

à@ 	Qk

@] are already

stored in their corresponding matrices. The indexing values for
each two letters of them are as follows:

(1) M1[h][

@]=1

(2) M2[h][È]=1

(3) M3[È][@]=1

(4) M4[@][Ð]=2

(5) M4[@][
à]=2

- Now, assume the tested word is [
àCg

@], which is incorrect in

the Arabic language.

- The 2-Gram set for this word is S= { 	
à@ , B , Ég , h

@ }.

(1) M1[h][

@]=1

(2) M2[h][È]=1

(3) M3[È][@]=1

(4) M4[@][
à]=2

- Since no index has zero value, the spell-checker is consider
this word as a correct one. The previous Figure 2 shows a
snapshot for the above example.

5. EXPERIMENTAL RESULTS
Two stages are presented to test the results and measure the pro-
posed spell-checker performance.

5.1 The Training Stage
As mentioned, the size of Muaidi corpus consists of 101,987
words. These words are considered as a dataset to train and to
test the performance of the proposed spell-checker. This dataset
is divided into two unequal parts, bulk part (70%) which is used
as a training dataset for the training stage and the remaining part
(30%) is taken as a testing dataset for the testing stage.

The training dataset consists of 71,390 Arabic words. While the
testing dataset consists of 30,597 Arabic words. The evaluation
process is done on an Intel core 2 dual processor with a speed
1.80 GHz. The RAM capacity is 1,016 GB and the operating
system is WINDOWS XP.

The methodology of evaluation the current research study is or-
ganized as follows:

- The training dataset is used to build the matrices.
- To assure the ability of learning, the training dataset is used

to test the matrix approach approach.
- Testing dataset (which is unseen data) is used to check the

performance of the spell-checker.
- The words which are considered as incorrect words from the

previous step are reentered to the system.
- The performance of the spell-checker is recomputed again.
- The implemented evaluation methodology for the proposed

spell-checker is based on the ability of it to successfully
spelling the correct Arabic words.

The proposed matrix approach is correctly spelled 99.79% of the
words. Table 1 summarizes the evaluation of the results in the
training dataset. While Figure 3 demonstrates these results in a
column format chart. The Testing Stage
In testing stage a hidden dataset (testing dataset) is used to in-
dicate the accuracy of the proposed spell-checker system. As
mentioned before the testing dataset consists of 30,597 Arabic
words. To test the performance of the proposed system, the ac-
curacy is calculated using the success rate measure SR. This

14

International Journal of Computer Applications (0975 - 8887)
Volume 53 - No. 3, September 2012

Table 1. The Evaluation Results in the Training
Dataset

Number of tested words 71,390
Number of words that are spelled correctly 71,240
Number of colored words 150
Success rate 99.79%

Fig. 3. The Evaluation of the Training Dataset

measure compatible for the proposed spell-checker with check-
ing the error words and colored them. Success rate measure is
calculated as shown in Equation 1.

SR =
CW

N
100% (1)

Where:

- SR = The success rate.
- CW = The of words that are spelled correctly.
- N = The size of the testing dataset.

The experiment is performed on the proposed spell-checker sys-
tem using the testing dataset and the success rate is obtained
40.40%. Table 2 summarize the evaluation of the results in the
testing dataset. Figure 4 illustrate these results in a column for-
mat.

Table 2. The Evaluation of Results in the Testing
Dataset

Number of tested words 30,597
Number of words that are spelled correctly 12,362
Number of colored words 18,235
Success rate 40.40%

Fig. 4. The Evaluation of Results in Testing Dataset

5.2 Causes of the Errors
The difference for accuracy between the two stages (training and
testing) is back to the number of words in the each dataset. When
the size of the dataset is increased the accuracy will increased
spontaneously; and the system has the ability to recognize a great
number of words and automatically the error rate is decreased.

5.3 Discussion of the results
The proposed spell-checker system accuracy reached 99.7% us-
ing the training dataset. While the accuracy of the proposed sys-
tem reached to 40.4% using the testing dataset. This difference
back to the variant between build data and test data; which means
that the testing data is unseen from the system, so if we use the
testing dataset in rebuilding the system and retest them again us-
ing this dataset, the accuracy will jump tremendously. It jumps
from 40.4% to 97.12%. Table 3 clear this while Figure 5 illus-
trate these results in a column format.

Table 3. The Evaluation of Results in Testing
Dataset

Number of tested words 30,597
Number of words that are spelled correctly 29,715
Number of colored words 879
Success rate 97.12%

Fig. 5. The Difference Between the Results Before and After
Adding Unseen Data

The above discussion is clarified that the accuracy is mainly de-
pend on the number of words in the corpus, so to increase the ac-
curacy of the proposed spell-checker the number of words should
be increased. The overall accuracy of reached to 98.99%. Table 4
summarize all these results.

Table 4. The Overall Evaluation of the Results
Training Testing Testing All

Data Before After Data
Rebuild Rebuild

Number of tested words 71,390 30,597 30,597 101,987
Number of words that are 71,240 12,362 29,715 100,955
spelled correctly
Number of colored words 150 18,235 879 1029
Success rate 99.79% 40.40% 97.12% 98.99%

15

International Journal of Computer Applications (0975 - 8887)
Volume 53 - No. 3, September 2012

6. CONCLUSION
This paper addresses the problem of spell-checking for Arabic
language. The proposed spell-checker which is presented in this
paper is based on N-Grams scores. For this purpose, eleven ma-
trices are built to present the combination between the Arabic
letters word. The proposed spell-checker is trained and tested
using a dataset extracted from Muaidi Corpus. The accuracy is
calculated of the proposed spell-checker. The overall accuracy is
reached to 98.99%. The results of these experiments are promis-
ing, and represent a good starting point for future research Some
of problems faced the spell-checker like it may recognize many
of incorrect words and consider them as correct.

7. REFERENCES

[1] Feldman A. Computational linguistics: Models, resources,
applications. Computational Linguistics, 32(3):443–444,
2006.

[2] Haddad B. and Yaseen M. Detection and correction of non-
words in arabic: A hybrid approach. International Journal
of Computer Processing of Oriental Languages, 30, 2007.

[3] P. Brown, P. deSouza, R. Mercer, V. Pietra, and J. Lai.
Class-based n-gram models of natural language. Compu-
tational Linguistics, 18:467–479, 1992.

[4] Muaidi H. Extraction Of Arabic Word Roots: An Ap-
proach Based on Computational Model and Multi-

Backpropagation Neural Networks. PhD thesis, De Mont-
fort University - UK, 2008.

[5] Satori H., Harti M., and Chenfour N. Arabic speech recog-
nition system using cmu-sphinx4. CoRR 0704.2201, 2007.

[6] Shaalan K., Allam A., and Gomah A. Towards automatic
spell checking for arabic. In Language Engineering, 2003.

[7] Kukich Karen. Technique for automatically correcting
words in text. ACM Computing Surveys (CSUR), 24:377–
439, 1992.

[8] Karttunen. Applications of finite-state transducers in nat-
ural language processing. In CIAA: International Con-
ference on Implementation and Application of Automata,
LNCS, 2000.

[9] Kabbani M. The arabic spell-checker dictionary from
ayaspell project. Technical report, Prix special des
troisiemes rencontres africaines du Logiciel Libre, 2008.

[10] Suleiman H. Mustafa and Qasem A. Al-Radaideh. Using
n-grams for arabic text searching. JASIST, 55(11):1002–
1007, 2004.

[11] Alqrainy S., Ayesh A., and Muaidi H. Automated tagging
system and tagset design for arabic text. International Jour-
nal of Computational Linguistics Research, 1:55–62, 2010.

[12] Zerrouki T. and Balla A. Implementation of infixes and cir-
cumfixes in the spellcheckers. In Proceedings of the Second
International Conference on Arabic Language Resources
and Tools, 2009.

16

	Introduction
	RELATED WORK
	Dictionary Lookup Technique
	N-gram Technique
	Most Known Spell-Checkers for Arabic
	Zerrouki-Balla Spell-Checker
	Shaalan Spell-Checker
	Haddad-Yaseen Spell Checker

	DEFINITIONS
	The Proposed Arabic Spell-Checker
	Arabic Corpus
	Building The Matrices
	The Algorithm for the Proposed Spell-Checker

	Experimental Results
	The Training Stage
	Causes of the Errors
	Discussion of the results

	Conclusion
	REFERENCES

