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ABSTRACT
This paper presents a novel steganographic scheme based on non-
linear Preparate codes that can achieve better performance for ap-
plication in steganography than simple linear codes currently in
use. The idea of this paper is to use the Z4-linearity of Preparata
non-linear codes for the construction of a new steganographic
scheme and to show that quaternary covering functions can pro-
vide embedding capacity higher than binary ones and can maintain
good image quality as well.
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1. INTRODUCTION
Internet is a popular communication channel nowadays. Trans-
mitted data are easy to be copied or destroyed by unautho-
rized persons. Therefore, how to transmit data secretly by in-
ternet becomes an important topic. Encryption may provide a
safe way, which transforms data into a ciphertext via cipher al-
gorithms [1]. However, it makes the messages unreadable and
suspicious enough to attract eavesdroppers attention. To over-
come this problem, steganography offers different approaches to
transmitting secret messages [2]. Steganography is a technique
that imperceptibly hides secret data into cover media by alter-
ing its most insignificant components for covert communication,
such that an unauthorized user will not be aware of the existence
of secret data [3].
The most common and well-known steganographic method is
called least significant bit (LSB) substitution, which embeds se-
cret data by replacing k LSBs of a pixel with k secret bits directly
[4]. Many optimized LSB methods have been proposed to im-
prove this work [5]. The human perceptibility has a property that
it is sensitive to some changes in the pixels of the smooth areas,
while it is not sensitive to changes in the edge areas. Not all pix-
els in a cover image can tolerate equal amount of changes with-
out causing noticeable distortion. Hence, to improve the quality
of stego images, several adaptive methods have been proposed.
An interesting steganographic method is known as matrix em-
bedding, introduced by Crandall[6] and analyzed by Bierbrauer
[7] and independently discovered by van Dijk [8] and Galand [9].
Matrix encoding requires the sender and the recipient to agree in
advance on a parity check matrix H , and the secret message is
then extracted by the recipient as the syndrome (with respect to
H) of the received cover object. This method was made popular

by Westfeld [10], who incorporated a specific implementation
using Hamming codes in his F5 algorithm, which can embed t
bits of message in 2t − 1 cover symbols by changing at most,
one of them.
There are two parameters which help to evaluate the performance
of a steganographic method over a cover message ofN symbols:
the embedding rate R = t

N
, which t is the amount of bits that

can be hidden in a cover message and the embedding efficiency
E = t

ρ
, where the covering radius ρ is the largest number of pos-

sible changes. In general, for the same embedding rate a method
is better when the embedding efficiency is larger. We acknowl-
edge, though, that the number of changes is not the only impor-
tant factor influencing the security of the steganographic scheme
but the choice of the cover object and the character of modifica-
tions play an equally important role.
In this paper, a novel steganographic scheme based on the Z4-
linearity of Praparata codes is described. The experimental re-
sults show that the proposed scheme can embed large amounts
of information and can maintain good image quality as well.
The remainder of this paper is organized as follows. In Section II
we recall the relationship between information hiding and coding
theory, and we give a brief introduction to codes defined over Z4

and more especially Preparata codes. In section III, the embed-
ding and extracting algorithms of the proposed method is pre-
sented. The experimental results will be in Section IV. Finally,
conclusions are given in Section V.

2. CODING THEORY AND STEGANOGRAPHY
2.1 Notations
Throughout this paper, we will use some standard concepts and
results from Coding Theory. Let FN2 denote the vector space of
all N -bit row vectors x = (x1, · · · , xN ). A binary [N, k] code
C of block length N and dimension k is a k-dimensional vector
subspace of FN2 , where the sum of two vectors and a multipli-
cation of a vector by scalar are defined using the usual binary
arithmetics. The (N − k)×N matrix H is called a parity check
matrix of C if xHT = 0 for each x ∈ C, where HT denotes the
transpose of H . For any x ∈ FN2 , the vector s = xHT ∈ FN−k2

is called the syndrome of x. For each syndrome s ∈ FN2 , the
set C(s) = {x ∈ FN2 |xHT = s} is called a coset. Note that
C(0) = C. Obviously, cosets associated with different syn-
dromes are disjoint. Also, from elementary linear algebra, we
know that every coset can be written as C(s) = x + C, where
x ∈ C(s) arbitrary. Thus, there are 2N−k disjoint cosets, each
consisting of 2k vectors. Any member of the coset C(s) with the
smallest Hamming weight is called a coset leader and will be de-
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noted as eL(s).
The Hamming weight ωH of a vector x is defined as the number
of ones in x (i.e., ωH(x) = x1 + · · ·+ xN ).
The distance between two vectors x and y is defined as the Ham-
ming weight of their difference dH(x, y) = ωH(x− y). For any
x ∈ C, we denote by B(x, ρ) the ball with center x and radius
ρ, B(x, ρ) = {y ∈ FN2 |dH(x, y) ≤ ρ}.
The covering radius ρ of a code C is defined as

ρ = max
x∈FN2

dH(x,C)

where dH(x,C) = minc∈C dH(x, c) is the distance between x
and the code C.

2.2 Syndrome Coding (Matrix Embedding)
We now briefly review a few relevant known facts about embed-
ding schemes and covering codes that appeared in [9] and [11]
and establish some more terminology. Let M be the set of all
messages. An embedding scheme on FN2 with a distortion bound
T is a pair of embedding and extraction functionsEmb andExt:

Emb : FN2 ×M→ FN2 and Ext : FN2 →M (1)

dH(x,Emb(x,M)) ≤ T, ∀ M ∈M, and x ∈ FN2 (2)

such that for all M ∈M and all x ∈ FN2 , Ext(Emb(x,M)) =
M . In other words, (1) means that we can embed any message
from M in any binary N -tuple and (2) states that we can do it
using at most T changes.

The matrix embedding theorem is taken from [12] and gives a
recipe on how to use an [N, k] code to communicate (N − k)
bits using at most ρ changes in a sequence of N bits.

THEOREM 1. (Matrix embedding) Let C be an [N, k] code
with a parity check matrixH and covering radius ρ. The embed-
ding scheme below can communicate N − k bits M ∈ FN−k2 in
a sequence of N bits x ∈ FN2 using at most ρ changes

Emb(x,M) = x+ eL(M − xHT ) = y

Ext(y) = yHT

where eL(M − xHT ) is a coset leader of the coset C(M −
xHT ).
Indeed, since C has a covering radius ρ, we know that
dH(x, y) = ωH(eL(M − xHT )) ≤ ρ, which shows that
the embedding scheme has (a tight) distortion bound ρ. To see
that Ext(Emb(x,M)) = M , note that Ext(Emb(x,M)) =
yHT = xHT +eL(M−xHT )HT = xHT +M−xHT =M .
The goal is to deliberately modify x to y in a way that:

Ext(y) =M

Steganography technique should generally have two important
properties : good visual/statistical imperceptibility and a suffi-
cient payload. The first is essential for the security of hidden
communication and the second ensures that a large quantity of
data can be conveyed. Two levels of protection can be done if
the message is encrypted before hiding it [13].

2.3 Quaternary Codes
Let Z4 be the ring of integers modulo 4 and Zn4 be the set of
n-tuples over Z4. By a quaternary code C of length n we shall
mean a linear block code over Z4,i.e ., an additive subgroup of
Zn4 .

DEFINITION 1. A Lee weigth ωL : Z4 → Z of an element in
Z4 is defined as

ωL(0) = 0, ωL(1) = ωL(3) = 1, ωL(2) = 2

and a Lee weight of a vector c ∈ Zn4 is naturally : ωL(c) =∑n
i=1 ωL(ci). The Lee distance is defined as dL(x, y) =

ωL(x− y).
We define an inner product on Zn4 by 〈a, b〉 = a1b1 + · · · +
anbn(mod4) where a = (a1, · · · , an) and b = (b1, · · · , bn),
and then the notions of dual code (C⊥), self-orthogonal code
(C ⊆ C⊥), and self-dual code (C = C⊥) are defined in the stan-
dard way. We say that two codes are equivalent if one can be
obtained from the other by permuting the coordinates and (if nec-
essary) changing the signs of certain coordinates. Codes differ-
ing by only a permutation of coordinates are called permutation-
equivalent.
Any quaternary code is permutation-equivalent to a code C with
generator matrix of the form

G =

[
Ik1 A B
0 2Ik2 2C

]
where A and C are Z2-matrices and B is a Z4-matrix. The code
is then an elementary abelian group of type 4k12k2 , containing
22kl+k2 codewords. We shall indicate this by saying that C has
type 4k12k2 , or simply that |C| = 4k12k2 .
If C has generator matrix G, the dual code C⊥ has generator ma-
trix

H =

[
−BT − CTAT CT In−k1−k2

2AT 2Ik2 0

]
and type 4n−k1−k22k2

2.4 Gray Map
The vehicle by which binary codes are obtained from linear
codes over Z4 is the Gray map φ : Z4 → F2

2 defined by
φ(0) = 00, φ(1) = 01, φ(2) = 11, and φ(3) = 10.
Formally, we define three maps from Z4 to F2 by:

c α(c) β(c) γ(c)
0 0 0 0
1 1 0 1
2 0 1 1
3 1 1 0

The Gray map is then extended componentwise to a map, also
denoted φ, from Zn4 to F2n

2 . The 2-adic expansion of c ∈ Z4 is

c = α(c) + 2β(c) (3)

We construct binary codes from Z4-linear codes using the Gray
map φ : Zn4 → F2n

2 given by

φ(c) = (β(c), γ(c)) , c ∈ Zn4 .

LEMME 1. The Gray map φ : (Zn4 , dL) → (Fn2 , dH) is
an isometry of metric spaces, that is, φ is a bijection and
dH(φ(x), φ(y)) = dL(x, y) for all x, y ∈ Zn4 .

If u and v are in Zn4 , then

φ(u) + φ(v) = φ(u+ v + 2(u ∗ v))

Therefore if u and v are in Zn4 , then

φ(u+ v) = φ(u) + φ(v) + φ(2α(u) ∗ α(v))

where u ∗ v is the componentwise product of the two vectors u
and v in Zn4 .
Knowing that all the digital files are binary, we simply use the
inverse gray map for working on the support quaternary.

2.5 Preparata Codes
The binary Preparata codes are nonlinear codes that are distance
invariant of length 2m+1 and minimal distance 6. It is known
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that the Preparata code contains more codewords than any linear
code with the same minimal distance [14].
We refer the reader to [15] for information concerning Galois
rings and their use in the construction of codes over Z4.
Let R be a Galois ring of characteristic 4 with 4m elements.
The multiplicative group of units in R contains a unique cyclic
subgroup of order (2m−1). Let ξ be a generator of this subgroup
and let T = {0, 1, ξ, · · · , ξ2m−2}. Let µ : Z4 → F2 denote the
modulo 2 reduction map.
Our Preparata code is thus defined as P = φ(P), where P is the
quaternary codes with parity-check matrix given by:

H =

[
1 1 1 1 · · · 1
0 1 ξ ξ2 · · · ξ2m−2

]
where the entries in the second row are to be replaced by the
corresponding m-tuples (b0j , b1j , · · · , bm−1,j)T . Then H is a
matrix of m+ 1 rows and 2m columns over Z4.
Then for odd m ≥ 3 the binary image P = φ(P) of P under
the Gray map is a nonlinear code of length N = 2m+1, with
2N−2m−2 codewords and minimal distance 6.

3. THE PROPOSED STEGANOGRAPHIC
SCHEME

Now taking a non-linear Preparata codes as example, it is shown
that the performance of binary steganographic method can be im-
proved by applying a non-linear codes on our information hiding
method.
First a complete decoding algorithm for the Z4-linear Preparata
code of length 2m is presented.

3.1 Decoding the Quaternary Preparata Code in the
Z4 Domain

There is a very simple decoding algorithm for the Preparata code
P , obtained by working in the Z4 domain. This is an optimal
syndrome decoder: it corrects all error patterns of Lee weight
at most 2, detects all errors of Lee weight 3, and detects some
errors of Lee weight 4. We use the parity check matrix H given
in (section 2.5), and assume m is odd and ≥ 3.
Let v = (v0, v1, · · · , vn−1) ∈ Zn4 be the received vector. The
syndrome HvT has two components, which we write as

t =

n−1∑
j=1

vj + v0,

A+ 2B =

n−1∑
j=1

vjξ
j

where A, B in T .
It follows that the covering radius of P is at most 4 ([16], The-
orem 21 of ch. 6), i.e., the Lee distance dL(v,P) from a vector
v ∈ Zn4 to P satisfies dL(v,P) ≤ 4. Note that t = ±1 if and
only if dL(v,P) = 1 or 3.
Single errors of Lee weight 1 or 2: If t = 1 and B = 0, or if
t = −1 and A = B, we decide that there is a single error of Lee
weight 1 in column (1, A). If t = 1 and B 6= 0, or if t = −1
and A 6= B, then dL(v,P) = 3. If t = 2 and A = 0, we decide
that there is a single error of Lee weight 2 in column (1, B)T .
Double errors of Lee weight 2: We begin by supposing that t = 0
and

A+ 2B = X − Y

where X,Y in T and X 6= Y . Note that A 6= 0 since X − Y is
invertible. We have

A = X + Y + 2X2m−1Y 2m−1 ,

B ≡ Y +X2m−1Y 2m−1(mod 2).

Let x, y, a, b, respectively, be the images of X , Y , A, B in
GF (2m) after reduction mod 2 using the map µ. Then

a = x+ y, b = y + x2
m−1

y2
m−1

,

which we rewrite as

a = x+ y, (b+ y)2 = xy.

The unique solution to these equations is y = b2/a, x = a +
b2/a. Note that when b = 0 or b = a, the double error involves
the first column of H . Next we suppose that t = 2 and that

A+ 2B = X + Y

where X , Y ∈ T , X 6= Y , A 6= 0. Proceeding as above we find

a = x+ y, b2 = xy

and so x and y are distinct roots of the equation

u2 + au+ b2 = 0.

A necessary and sufficient condition for this equation to have
distinct roots is that

tr(b2/a2) = tr(b/a) = 0

Finally we suppose that t = 2 and

A+ 2B = −X − Y

where X , Y ∈ T , X 6= Y , A 6= 0. We now find that

a = x+ y, (b+ a)2 = xy,

and so x and y are distinct roots of the equation

u2 + au+ (a2 + b2) = 0.

A necessary and sufficient condition for this equation to have
distinct roots is that

tr(
a2 + b2

a2
) = tr(1 +

b

a
) = 1 + tr(

b

a
) = 0.

3.2 Embedding Process
Our proposed data hiding method is based on Preparata codes
P = φ(P) of length 2m+1, where m is odd and ≥ 3.
The embedding process consists of the following steps:

Algorithm 1 The Proposed Embedding Process

Inputs Let x = (x1, · · · , x2m+1) in F2m+1

2 be a block of
cover data,
M = (M1, · · · ,M2m+2) in F2m+2

2 the message to hide.

Outputs y = (y1, · · · , y2m+1) in F2m+1

2 , stego-data such
that: dH(x, y) ≤ ρ.
(1) We compute a = φ−1(x) andM = φ−1(M)
(2) Compute the syndrome: S =M− aHT over Z4

(3) If S = 0, then e = 0
else we look for an e such that eHT = S and ωL(e) ≤ ρ
by using the decoding algorithm (in section 3.1) ;

(4) Put: b = (a+ e)mod 4
(5) [Embedding modifications] y is the stego object

y = Emb(M,x) = φ(b) = x+ φ(e) + φ(2α(a) ∗ α(e))
(6) if we are at the end of the cover object, Stop; otherwise, go

to 1.

In fact, this embedding process works because :

dH(x, y) = dH(φ(a), φ(b)) = dL(a, b) = ωL(a−b) = ωL(e) ≤ ρ
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3.3 Extracting Process
The message embedded is retrieved from the stego-data by ap-
plying the proposed extracting function given as follows:

M = Ext(y) = φ(ϕ(y).HT )

M is the secret information which the receiver extract from the
cover.

In fact:

φ(ϕ(y).HT ) = φ(b.HT ) = φ((a+ e).HT )

= φ(a.HT + e.HT ) = φ(a.HT +M− a.HT )

= φ(M) = φ(ϕ(M)) =M

3.4 Evaluation of image quality
For comparing stego-image with cover results requires a measure
of image quality, commonly used measures are Mean-Squared
Error, Peak Signal-to-Noise Ratio[17].

3.4.1 Mean-Squared Error. The mean-squared error (MSE)
between two images I1(i, j) and I2(i, j) is

MSE =

∑m
i=1

∑n
j=1(I1(i, j)− I2(i, j))2

m× n

m and n are the number of rows and columns in the input images,
respectively.

3.4.2 Peak Signal-to-Noise Ratio. Peak Signal-to-Noise Ratio
(PSNR) avoids this problem by scaling the MSE according to the
image range:

PSNR = 10log10

(
I2max
MSE

)
where Imax is the intensity value of each pixel which is equal to
255 for 8 bit gray-scale images, PSNR is measured in decibels
(dB). PSNR is a good measure for comparing restoration results
for the same image, but between image comparisons of PSNR
are meaningless. Generally speaking, if the value of PSNR is
more than 30dB, then people have difficulty to notice the differ-
ence between the cover image and the stego image.

3.4.3 Histogram. The histogram is a function that counts the
number of observations that fall into each of the disjoint cat-
egories (known as bins). The height of the bins represents the
number of values that fall within each range. An image histogram
is a chart that shows the distribution of intensities in an indexed
or intensity image.

4. EXPERIMENTAL RESULTS
For concreteness, we assume that the cover object used for com-
munication is a gray-scale digital image whose pixels are inte-
gers between 0 and 255, then we assign 8 bits to each pixel value.
Our steganographic scheme features two essential components.
First, is the selection of places within the cover that might be
modified and that used to hide the secret message. The second
component is the steganographic protocol.
The best widely known steganography algorithm to embed secret
information in Spatial and Transform domain of images is based
on modifying the least significant bit layer of images, hence
known as the LSB technique. This technique makes use of the
fact that the least significant bits in an image could be thought of
random noise and changes to them would not have any effect on
the image.
For example for m = 3, let P3 be a Z4-linear Preparata code of
length 23 and (correcting capacity 2), and witch has the parity-

check matrix described below:

H =

 1 1 1 1 1 1 1 1
0 1 0 0 1 2 3 1
0 0 1 0 3 3 3 2
0 0 0 1 2 3 1 1


By applying the non-linear Preparata code P3 = φ(P3), we can
hide 8 bits in a sequence of 16 bits by changing at most 4 bits.
Thus, for our method we embed the message (M1, · · · ,M8)
in the LSBs 24 pixel gray values (p1, · · · , p16) by at most 4
changes in the following manner

(M1, · · · ,M8) = (x1, · · · , x16).HT

where xi denotes the LSB of pi.

4.1 Design Details
The proposed scheme are implemented to visualize the data-
hiding effect. In the following we describe the steps of our em-
bedding algorithm implemented under Matlab:

(1) Read the host gray-scaling imageA, which is to be modified
and to embed data.

(2) The host image is partitioned into groups of 16 pixels.
(3) The size of the image and the number of bits to be embedded

in each group of 16 pixels together determine the capacity
of embedding.

(4) If the message size fits to the estimated capacity, the em-
bedding proceeds (go to step 5), otherwise an error message
showing the maximal possible length is displayed.

(5) The text message to be embedded is divided into segments
of 8 bits that are embedded into a groups of 16 pixels along
the embedding process.

(6) For each group of 16 pixels, do the following:
—Extract the cover-data x = (x1, · · · , x16) of 16 bits from

the group by concatenation the LSB of each pixel value;
—Hide the secret message M = (M1, · · · ,M8) of 8 bits

into the cover-data using the proposed method.
(7) Store the resulting image as Stego Image (S).

In this present implementation Lena grayscale image of 512 ×
512 pixels and Baboon grayscale image of 298×298 pixels, has
been taken as cover images as shown in Figures 1(a) and 2(a).
For each image, we applied our method and we present a com-
parative study in Figures 1 and 2 of the proposed method with
the syndrome coding based on the extended Hamming codes
[16]and [18] with the same length.

4.2 Embedding Capacity of the proposed scheme
In the proposed scheme the bit numbers of the secret messages
that carried in sequence of length N bits by using the Z4-
linearity of Preparata codes is up to

log2

[(
N
0

)
+
(

N
1

)
+ · · ·+

(
N
4

)]
In our example, using extended Hamming code of the same
length 2m+1 = 16 to carry secret messages in 512× 512 pixels
of Lena grayscale image, its rate of the embedding capacity is

log2

[(
16
0

)
+
(

16
1

)
+
(

16
2

)]
16

=
7.0980

16
= 0.4436

The rate of the embedding capacity using the proposed method
with m = 3 is

log2

[(
16
0

)
+ · · ·+

(
16
4

)]
16

=
11.2975

16
= 0.7061
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(a) original host image

(b) After embedding 6920

bytes by the proposed scheme
(PSNR=44, 55)

(c) After embedding 3460
bytes by the Hamming method
(PSNR=44, 55)

Fig. 1: Embedding effect on Lena image

Therefore, about 131K bits of secret messages can be embed-
ded into the 512 × 512 image applying the proposed method
compared to 81K bits applying the syndrome coding based on
the extended Hamming code.

The proposed scheme has the following features:

—Applying the proposed method much amount of data could be
embedded in the image. Therefore, a part of the image remains
unused resulting in a distortion less image.

—The amount of data embedded using the proposed scheme
leads indeed to a good results compared to the scheme based
on extended Hamming code for embedding the secret data into
a cover image, see Table 1.

—The effectiveness of the embedding process has been studied
by calculating PSNR for the two digital images using the pro-
posed method and the syndrome coding based on extended
Hamming code as given in Table 2.

By comparing the histograms (See Figures 3, 4, 5 and 6) of the
Lena image before and after the embedding, higher security per-
formance was inferred applying our method. This improves the
imperceptibility and enhances the embedding capacity.

(a) original host image

(b) After embedding 3460

bytes by the proposed
scheme (PSNR=58, 79)

(c) After embedding 2957

bytes by the Hamming
method (PSNR=58, 79)

Fig. 2: Embedding effect on Baboon image

Host Image
Amount of embedded data applying (in bytes)

The proposed scheme Extended Hamming code

Lena 16.384 10.240

Baboon 5.550 3.468

Table 1. : Comparaison of amount of embedded data between the pro-
posed method and the Extended Hamming syndrome coding

Host image
PSNR (dB)

The proposed scheme Extended Hamming code

Lena 44,5580 44,5590
Baboon 58,7865 58,7048

Table 2. : Comparaison on PSNR values between the proposed method
and the Extended Hamming syndrome coding method after embedding
3.460 bytes

Fig. 3: Histogram of Lena for Our proposed method
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Fig. 4: Histogram of Lena for Extended Hamming method

Fig. 5: Histogram of Baboon for Our proposed method

Fig. 6: Histogram of Baboon for Extended Hamming method

5. CONCLUSION
In this paper, we have presented a novel and adaptive method
to embed the secret data in the cover image with a good im-
perceptibility and a high embedding capacity. The receiver does
not need the original image to extract the information. Our test-
ing results have shown that the proposed method based on Z4-
linearity of Preparata codes leads indeed to good results com-

pared to the syndrome coding method based on the Extended
Hamming codes, and can maintain a good image quality which
is seen in the PSNR value.
This paper has presented a novel steganography scheme capable
of concealing a large amount of data in a binary image when
compared to the Extended Hamming syndrome coding method.
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