
International Journal of Computer Applications (0975 – 8887)

Volume 53– No.18, September 2012

38

Different Approaches to Modeling the Trees Data in
Relational Database

Abdelali Elloub
Computer science

Faculty of Science Dhar El
Mahraz,

University Sidi Mohammed
Ben Abdellah, Fez, Morocco

Ouçamah Mohammed
Cherkaoui Malki
Computer science

Faculty of Science Dhar El
Mahraz,

University Sidi Mohammed
Ben Abdellah, Fez, Morocco

Sanae Mazouz
Computer science

Faculty of Science Dhar El
Mahraz,

University Sidi Mohammed
Ben Abdellah, Fez, Morocco

ABSTRACT

This paper presents a detailed study of the work to modeling

the hierarchies and data trees in relational database area.

Hierarchical structures are used in diverse domains, in

engineering and in research. We give a comparison between

the various models cited in literature. This study allowed us

to synthesize the most interesting of these models to

represents the data trees.

General Terms

Relational database, tree data.

Keywords

Trees data, hierarchies, SQL, relational database & models

1. INTRODUCTION
The hierarchical model database is the first to appear, the

main problem of this system is the lack of independence of

the programs with respect to data storage. However, the

relational model [1] remains more used.

The relational databases (RDB) provide an excellent support

for the representation and storage of the data within

information systems. This model is based to relational

Algebra.

The hierarchies and trees data usually used in different

domains for example: healthcare area. The tree structures

facilitate the modeling of the System of information. They

reduce complexity of connections between the entities.

The managing of the data in the information systems is a

convivial functionality. This function is complex for the

managing the graphs data. There are several SQL techniques

to query tree structures [2][3] [4][5] [6]. They can be

classified into two major categories: tree modeling approach

and SQL recursive approach.

This article is organized as follows. Firstly in section

introduction, we present the paramount role of the relational

model to managing the data, and the advantage the hierarchies

for modeling the complex systems. Then in section 2, we

describe a variety of approach to modeling the relational

database. Finally we conclude by a comparison between the

various models study in section 2.

Fig 1: An abstract data tree

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.18, September 2012

39

2. Models to representation the trees data
In this section, we give a study a different approach to storing

and retrieving of the trees data into relational database.

2.1 Trees Modeling Approaches
This category is very efficiency to launch finding queries in

database. However, the updating queries Requires a lot time.

2.1.1 Adjacency List Model
The Adjacency List Model is a simplest representation of

efficiently managing hierarchical data in a relational database.

it consists in creating the doublets (key of the node, key of the

parent). Table I is a representation of the abstract model noted

in Figure 1.

We appreciate using integer data types rather than of string,

so the creating query handling the trees table is as follows,

either the table AdjacencyTree representing this model (see

Table 1):

CREATE TABLE AdjacencyTree (

Node INT NOT NULL,

Parent INT, -- null is root

PRIMARY KEY (Node, Parent)

);

 The field “Node”: the child node is the reference

value to the node stored in the table data.

 The field “Parent”: the parent node is the reference

value to the node parent stored in the table data.

Table 1. Adjacency List Model

Node Parent

N1 NULL

N2 N1

N3 N1

N4 N1

N5 N2

N6 N3

N7 N3

N8 N4

N9 N4

N10 N4

N11 N4

N12 N4

N13 N6

N14 N7

This representation constitutes the tree data stored in the

database. For a better use of this model it is necessary to

separate the data of the metadata from the structure to be

stored. The self joins is an efficiency method for doing a tree

traversal, but is limited to a known depth of traversal, which is

not always possible.

This model is having problems [2][5]:

1. This model requires complex constraints to

maintain any data integrity.

2. This model needs to traverse through all nodes for

any query.

In add this problems, this model is to be proscribed when:

 The tree is deep (more than 5 levels).

 The tree is broad (more than 100 elements on the

same level).

 The tree contains many values (from 200 to 300

elements).

2.1.2 Nested Set Model
The nested set model is an easy representation of efficiently

managing hierarchical data in a relational database. In this

model each nodes is indexed by two information (left bound

and right bound). Either the table NestedTree representing this

model (see Table 2):

Table 2. Nested Set Model

Node LeftBound RightBound

1 1 28

2 2 5

3 6 15

4 16 27

5 3 4

6 7 10

7 11 14

8 17 18

9 19 20

10 21 22

11 23 24

12 25 26

13 8 9

14 12 13

CREATE TABLE NestedTree (

Node INT NOT NULL PRIMARY KEY,

LeftBound INT NOT NULL, -- left bound

RightBound INT NOT NULL -- right bound

);

 The field “Node”: Is the reference value to the node

stored in the table data.

 The field “LeftBound”: is the left bound value of

the node.

 The field “RightBound”: is the right bound value of

the node.

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.18, September 2012

40

The assignment of the keys to the tree nodes is carried out by

traversing the tree of the nodes on the left towards the nodes

on the right [4][5].

The majority of research operations in this model require only

one simple request of SQL.

For a leaf, one always has: bound right - bound left = 1.

For a node, one always has: bound right - bound left > 1.

Those which easy make it possible to recover a subtree with

only one SQL query, see an example in Figure 2.

Either the subtree N3= {N3, N6, N7, N13 and N14}.

 The set {N3, N6, N7} are Nodes.

 The set {N13, N14}: are leafs.

SQL code for the selection the subtree N3: “Select Node from

NestedTree where Leftbound >= 6 and RightBound<= 15”.

The Nested Set Model, updating queries are expansive.

2.1.3 Nested Interval Model
Vadim Tropashko has stated that Nested Intervals generalize

Nested Sets and they are immune to hierarchy reorganization

problem [7] [8] [9] [10]. He proved that it is possible to use

rational numbers. The problem in this model is calculating the

each values of split. We invited to find the Greatest Common

Divisor (GCD) to keep the numerators and denominators as

small as possible [8] [4].

2.1.4 Materialized Path
Materialized path is a encoding where each tree node is

labeled with the path from the node to the root [11].

Materialized Path could be represented a character string

separate by any separator for example “/”. Querying trees with

Materialized Path technique necessity to parsing data field

string. In this section we present the Path enumeration Model.

This model is very efficiently, was first published by Stefan

Gustafsson on a site of SQL Server, then Tom Moreau and

Itzak Ben-Gan developed have in their book [3][4][5][6].

This model saves the path from the root to each node as a

string (see Figure 3). Either the table PathTree representing

this model (see the Table 3):

CREATE TABLE PathTree (

Node INT NOT NULL PRIMARY KEY,

Path VARCHAR (MAX) NOT NULL

);

 The field “Node”: Is the reference of the node

stored in the table data.

 The field “Path”: Is the path from the root to node,

the information stored in the column PATH is a

sequence of alphabet separated by a separator such

as for example: “/”.

 MAX: is the maximum of character contained in

field Path.

The Path Enumeration Model is has an improvement of the

Adjacency List Model. However, is sensitive of the updating

queries.

 Fig 2: The subtree N3 with the Nested Set Model

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.18, September 2012

41

Table 3. Path Enumeration Model

Node The Path field

1 /a

2 /a/b

3 /a/c

4 /a/d

5 /a/b/e

6 /a/c/f

7 /a/c/g

8 /a/d/h

9 /a/d/i

10 /a/d/j

11 /a/d/k

12 /a/d/l

13 /a/c/f/m

14 /a/c/g/n

2.2 SQL Recursive
They can be classified into two Subcategories: SQL standard

and derived SQL.

2.2.1 SQL Standard (Recursive with CTE)
In the third version of standard SQL named SQL3 or SQL99

is added the Common Table Expression (CTE). It is also a

query expression that is given a name, just like a derived

table. In this approach, we must use the recursive Common

Table Expression [11]. A recursive definition of a set has two

parts: The fixed point, and by applying a rule to the previous

step results. The syntax for this construct includes a UNION

[ALL]:

<cte select statement>::=

WITH RECURSIVE <fixed point cte element>

UNION [ALL]

<step cte element>

<select statement>;

Fig 3: Path Enumeration Model

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.18, September 2012

42

2.2.2 Recursive with derived SQL (T-SQL,

PL/SQL)
This approach is based on the models already cited, for

example: Nested Set Model and Adjacency List Model. The

SQL used depends on database management systems

(DBMS).

To managing the hierarchies in SQL Server, in Sybase [12],

we used the T-SQL, LEFT JOINT, and we have the choice

between all models:

 Adjacency List Model

 Nested Set Model

 Nested interval model

 Other model

3. CONCLUSION AND FUTURE WORK
This work presents a study of the approach to handling the

hierarchies and trees data in relational database. We have

given an advantage and disadvantage of those models. This

paper allowed us to synthesize the most interesting of these

models to modeling the data trees. All this approaches are

sensitive of the updating queries.

Hence the necessity in future works:

 To improve of approaches that is not sensitive to

updating queries.

 To generalize these representations in object

databases and semi-structured, especially to parsing

the XML files.

4. REFERENCES
[1] E. F. Codd. A relational model of data for large shared

data banks. Communications of the ACM, 13(6):377–

387, 1970.

[2] Celko, J., 1999. SQL for Smarties: Advanced SQL

Programming. Morgan Kaufmann Publishers, San

Francisco, CA, 576pp.

[3] Celko, J., 2008. Thinking in Auxiliary Sets, Temporal,

and Virtual Tables in SQL. Morgan Kaufmann

Publishers, Burlington, MA 01803-4255.

[4] Celko, J., 2004. Trees & Hierarchy in SQL for Smarties.

Morgan Kaufmann Publishers, San Francisco, CA 94111.

[5] Celko.J., 2005. SQL for Smarties: Advanced SQL

Programming third edition. Morgan Kaufmann

Publishers, San Francisco, continuation 400, CA 94111.

[6] Celko.J., 2011. SQL for Smarties: Advanced SQL

Programming fourth edition. Morgan Kaufmann

Publishers, Burlington, MA 01803,

[7] V. Tropashko. June 2005. Nested Intervals Tree

Encoding in SQL, SIGMOD.

[8] V. Tropashko. Nested Intervals Tree Encoding with

Continued Fraction. http://arxiv.org/pdf/cs.DB/0402051

[9] V. Tropashko. 2003. Trees in SQL: Nested Sets and

Materialized Path

[10] V. Tropashko, 2004. Nested Intervals with Farey

Fractions. http://arxiv.org/html/cs.DB/0401014

[11] J. Roy. 2003. Using the Node Data Type to Solve

Problems with Hierarchies in DB2 Universal Database

http://www.ibm.com/developerworks/data/library/techart

icle/0302roy/0302roy.html

[12] Mohammad G. Ali, December 2011. Evolution of

Database Emerging to Sybase Adaptive Server

Enterprise and Ensuring Better Server Performance

Tuning and Query Optimization. International Journal of

Computer Applications

http://arxiv.org/pdf/cs.DB/0402051
http://arxiv.org/html/cs.DB/0401014
http://www.ibm.com/developerworks/data/library/techarticle/0302roy/0302roy.html
http://www.ibm.com/developerworks/data/library/techarticle/0302roy/0302roy.html

