
International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

29

Partial Temporal Ordering in Distributed Network

Soumen Saha

Haldia Institute of Technology
Haldia, West Bengal

Utpal Roy, Ph.D
Department of Computer & System Sciences

Siksha-Bhavana, Visva-Bharati

ABSTRACT

As communication is important, it is not the entire thing rather

something more interesting as well as complicated. Closely

related is how processes cooperate and synchronize with one

another. In a distributed system an application may have

several processes that run concurrently on multiple nodes of

the system. For correct results, several such distributed

applications require that the clocks of the nodes are

synchronized with each other. For concurrency we have used

vector clock method .But there are several disadvantages. For

that we have developed a new algorithm for vector clock

method from which we can define the concurrency among

processes. In our proposed algorithm the vector of each

process’s local clock consists of (n+1) parameter where n is

the number of processes in the system. The (n+1) th parameter

is used as a flag which help to discuss the concurrency among

different processes..

General Terms

Distributed System, Vector Clock, Synchronized Clock,

Happened Before, Time-stamp, message Passing.

Keywords

Distributed system, Ordering, Vector Clock, Lamport’s

Algorithm, PVM(parallel virtual Machine), Linux..

1. INTRODUCTION
A distributed system consists of a collection of autonomous

computers, connected through a network and distribution

middleware, which enables computers to coordinate their

activities and to share the resources of the system, so that

users perceive the system as a single, integrated computing

facility. The main characteristic of these computations is that

the processes do not already share a common global memory

and that they communicate only by exchanging messages over

a communication network. Moreover, message transfer delays

are finite yet unpredictable. This computation model defines

what is known as the asynchronous distributed system model,

which includes systems that span large geographic areas and

are subject to unpredictable loads. A model distributed

execution can be exemplified as follows: suppose a distributed

program made up of n sequential local program. When these

programs are executed they are unable to communicate among

themselves and synchronize themselves by exchanging

messages among themselves. Executing a local program gives

rise to a sequential process. Let l_1, l_2,….., l_n be this

finite set of processes. We assume that, at runtime, each

ordered pair of communicating processes(l_i,l_j) is

connected by a reliable channel c_ij through l_iwhich can

send messages to l_j Executing an internal, send, or receive

statement produces an internal, send, or receive event.

 Let〖 e〗_i^x (x≥1)

be the x th event process l_i produces. The sequence

constitutes the history of〖 l〗_i . Let S be the set of events that

a distributed computation produces. This set is structured as a

partial order by famous L. Lamport’s “happened-before”

relation,[1] denoted “ →” and defined as e →f means that

event e can affect event f. Consequently, ¬(e → f) means e

cannot affect f. The partial order constitutes a formal model of

the distributed computation with which it is associated. The

states of the events in distributed system are related with

vector clock. In a distributed system the vector clock system

is a mechanism that associates timestamps with events (local

states) such that comparing two events' timestamps indicates

whether those events (local states) are causally related (and, if

they are, which one comes first). In the time-stamping system,

each process l_i has a vector of integers 〖VC〗_i {1….n}

(initialized to {0,0,….,0}) that can be maintained in proper

manner.

 The language of partial order time expresses many issues

central to many problems in asynchronous distributed system.

Traditionally we regard time as a scalar value, totally ordering

on the events in a system. However the very nature of

asynchronous distributed systems suggests that we should use

an order that is partial, not total so that we can deliberately

leave unordered two separate events that have no knowledge

of each other. In this partial order time model, both the

presence and the absence of a path between two events carry

meanings whether one event necessarily precedes the order or

they are concurrent. If we use merely a total order, we may

lose the latter information.

 We know processes in distributed system[2]

communicates with one another using several layered

protocols, request/ reply message passing (RPC), and group

communication. While communication is important, it is not

the entire story. Closely related is how processes cooperate to

each other and synchronize with one another. In a distributed

system an application may have several processes that run

concurrently on multiple nodes of the entire system. For

correct results, several such distributed applications require

that the clocks value of the nodes are synchronized with each

other. In a distributed system, synchronized clocks also enable

one to measure the duration of distributed activities that start

on one node and may be terminate on another node. The

present study is devoted towards discussion and development

of a new algorithm than can explain concurrency in the field

of partial temporal ordered system involving vector clock.

2. 1.1 Total order:
In mathematics[4] a total order or linear order on a set A is

any binary relation on A that is antisymmetric, transitive, and

total. This means that, if we denote the relation by R, the

following statements hold for all a, b and c in A:

if a R b and b R a then a = b (antisymmetry)

if a R b and b R c then a R c (transitivity)

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

30

a R b or b R a (totalness)

A set with a total order on it is called a totally ordered set, a

linearly ordered set, or a chain. The totalness property can be

stated thus: that any pair of elements in the chain is mutually

comparable.

1.2 Partial order:
A partial order[4] is a binary relation R over a set B which is

reflexive, antisymmetric, and transitive, i.e., for all a, b and c

in B, we have that:

a R a (reflexivity);

if a R b and b R a then a = b antisymmetry);

if a R b and b R c then a R c (transitivity).

A set with a partial order is called a partially ordered set. The

term ordered set is sometimes also used for posets, as long as

it is clear from the context that no other kinds of orders are

meant

1.3 Ordering on the basis of Logical Clock:

 We would like to order the events according in a distributed

system in such a way as to reflect their possible connections.

Certainly if an event A happens before an event B, then A

cannot have caused by B. In this situation we cannot say that

A is the directed cause of B, but we cannot exclude that A

might have influenced B. We want to characterize this

“happens before relation” on events described in the

landmark paper of L. Lamport [1]. Here only two kinds of

events have been considered, the sending of a message and

the receiving of a message.

a) If events and occur in the same system and

occurs before (there is no problem to determine this

in a single system) then happened-before written

 .
b) If event is the sending of a message and is the

receiving of that message, the happened before .
c) If and then .

The relation is → a partial order. Given events and it

is not true that either they are the same event or one happened

before the other. These events may be unrelated. Events that

are not ordered by happened before are said to be concurrent.

This characterization of happened before is un satisfactory

since, given two events, it is not immediate (think of the time

it takes to evaluate a transitive relation) to determine if one

event happened before the other or if they are concurrent. We

would like a clock C that applied to an event returns a number

so that the following holds.

 A vector timestamp assigned to an event ‘ ’ has

the property that if for some event ‘ ’ , then

event ‘ ’ is known to causality precede event b. Vector time

stamps are constructed by letting each process maintain a

vector with the following two properties-

1) is the number of events that have occurred so far at

 .

2) If then knows that events have occurred at

 .

 The rules on vector clocks in a system with computers:-

1) Each computer starts with a local clock set at

2) When on computer there is a sending event, increment

the component of the clock by 1 leaving other

components unchanged, then tag both the events and the

message with this value.

3) When on computer there is a receiving event, form a

new local clock value taking the component wise

maximum of the local clock and the time stamp on the

arriving message. Then increment by 1 the th

component. Finally tag the event with this value.

4) We consider here, clock unit is different for each

processor.

Fig1: A simple vector clock example

2. Our proposed Work

Here a new as well as different algorithm for implementing a

vector clock has been proposed. The algorithm is described

below.

 Algorithm for new vector clock method is-struct x

{

 int vector[p]; // where n is the number of //processes

and p=n+1

} number[n];

Algorithm New_Vector_Clock(n)

{

 node:=n;

 for I:=1 to n do

 {

 for j:=1 to (n+1) do

 number[i].vector[j]:=0;

 }

while (there is a sending event on i th computer) do

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

31

{

 number[i].vector[i]:=number[i].vector[i]+1;

 number[i].vector[n+1]:=1; // Flag is set

 Tag both event and message with this value;

 }

while (there is a receiving event on i th computer) do

{

 Take the component wise maximum of the local clock;

 number[i].vector[i]:=number[i].vector[i]+1;

 Tag both event and message with this value;

 }

 for i:=1 to n do

 for j:=1 to n do

 {

 if (number[i].vector[n+1]==1 &&

number[j].vector[n+1]==1) then

 Return Process i and Process j as concurrent;

 }

} // End of new vector clock algorithm

Fig2- Example for proposed vector clock method

3. Complexity Analysis

Let n be the number of processes. Each process has its own

local vector clock. The number of parameter in each vector is

(n+1). Let m be the total number of events occurred in the

system. Whenever there is a sending event on i th computer

the i th component and the flag i.e, (n+1)th component of

vector are updated. So total number of component updated is

2. On the other hand whenever there is a receiving event on i

th computer only the i th component is updated. Hence total

number of component updating is 1. Hence we can say that

the maximum number of updating for message sending or

message receiving event is 2.

Whenever the component updating is done, any 2 arbitrary

components from (n+1) component can be updated. For each

event total number of updating is (n+1)C2 .Now there are m

maximum events that are maximum m times the updating can

be done.

 So for m events the total number of updating is

 =m *^((n+1)) C_2

 =m*(n(n+1))/2

 =(m*n^2+m*n)*0.5

Hence the worst case complexity is O(mn^2)

4. Testing
The proposed algorithm has been executed and tested in the

PVM (Parallel Virtual Machine[5]). PVM(Parallel Virtual

Machine) is compatible in LINUX environment.

PVM is an integrated set of software tools and libraries that

emulates a general-purpose, flexible, heterogeneous

concurrent computing network on interconnected computers

of varied architecture. The overall objective of the PVM

system is to enable such a collection of computers to be used

cooperatively for concurrent or parallel computation.

 The PVM simulating software is based on the notion that

an application consists of several tasks. Each task is

responsible for a parts of the application's computational

workload. Sometimes an application is parallelized within its

functions; that is, each task performs a different function, for

example, input, problem, setup, solution, output, and display.

This process is often called functional parallelism. A more

common method of parallelizing an application is called data

parallelism.

 The PVM system is consists of two parts. The first part is

a daemon, named pvmd3 and sometimes calls pvmd that

resides on all the computers making up the virtual machine.

pvmd3 is designed so any user with a valid login can install

this daemon on a machine. When a user wishes to run a PVM

application, he first creates a virtual machine by starting

PVM. The PVM application can then be started from a UNIX

prompt on any of the hosts. Multiple users can configure

overlapping virtual machines, and each user can execute

several PVM applications simultaneously. The second part of

the system is PVM interface routines. It contains a

functionally complete repertoire of primitives that are needed

for cooperation between tasks of an application. This library

contains user-callable routines for message passing, spawning

processes, coordinating tasks, and modifying the virtual

machine.

 PVM applications can be written in using C , Java and

other languages. To program in C using PVM, the we add

PVM function calls to the code. The compiled code is then

linked with libraries which handle the PVM calls. PVM

provides a very flexible environment for message passing. It

supports MIMD (Multiple Instruction stream over Multiple

Data stream) style parallel computation, though most

programs are written in the SIMD (Single Instruction over

Multiple Data stream) style.[5]

Simple C Code myprog.c

#include "pvm3.h"

#define TASKS 5

main()

{

 int id, i; /* enroll in PVM sw*/

 id = pvm_mytid();

 /* Possibly do some work here */

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

32

 printf("Hi from task no%d", id);

 /* exit from PVM sw*/

 i = pvm_exit();

 exit();

}

Compiling in C

 Compile the code using the GNU C compiler, letting it

know the location of the include files, and linking with the

PVM libraries:

cc -o prog prog.c -PVM_ROOT/include -

L$PVM_ROOT/lib/LINUX -lpvm3 –lnsl

pvm> spawn -3 -> prog

[1]

3 successful

t40004

t40005

t40006

[1:t40005] Hi from task no262149

[1:t40005] EOF

[1:t40006] Hi from task no262150

[1:t40006] EOF

[1:t40004] Hi from task no262148

[1:t40004] EOF

[1] finished

All PVM tasks are identified by an integer task identifier

(TID). Messages are sent to and received from ids. Since ids

must be unique across the entire virtual machine, they are

supplied by the local pvmd and are not user chosen. Although

PVM encodes information into each TID the user is expected

to treat the ids as opaque integer identifiers. PVM contains

several routines that return TID values so that the user

application can identify other tasks in the system. There are

applications where it is natural to think of a group of tasks.

And there are cases where a user would like to identify his

tasks by the numbers 0-(q-1)where q is the number of tasks..

5. Result
For the purpose of simulation we have used the PVM and it

yields reasonably justified results. The simulation result is

obtained as follows.

The master program is compiled first then the worker program

is compiled. The master program is spawned 3 times and the

result is shown below. Further, the master program can be run

independently. The result is shown below and the elastration

of result also is shown at figure 3

Fig3: Program out put snap shot

Fig4- Elastration of program output

[1:t4005]

[1:t4004]

Worker 1

Worker 3

[1:t4008]

Worker 2

(1 0 0 0 0 0)

(2 0 0 0 0 1)

(1 0 0 0 1 1)

(1 1 0 0 0 1)

(1 0 1 0 0 1)

(1 0 0 1 0 1)

[1:t4006]

[1:t4007]
[1:t4007]

[1:t4006]

[1:t4008]

(2 0 0 0 0 1)

(2 0 0 0 0 1)

master 1

master 3

master 2

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

33

6. CONCLUSION

The main drawback of a vector clock system is its inability

to face the scalability problems. To capture the causality

relation among the events that a distributed computation’s

processes produce, a vector clock system requires vectors of

size is the number of processes in the system. To

overcome the problem the concept of bounded vector clock

has been proposed[6-8]. Further the idea of approximate

vector clock is also available in literature.

 Here the study has been concentrated on the drawback of

the conventional vector clock method that cannot detect the

concurrency among different processes.

The present article is a modest approach towards the

proposal of a different vector clock which is able to show the

concurrency among processes. Here a unique vector clock

approach have been proposed which indicate a flag that

signifies the concurrency among processes. Further the

proposed approach is system independent and can reasonably

shows the concurrency among different processes in the

system at definite time. In the result it has been shown that, if

in a system when more than one process is present then it can

easily be detected that which processes are concurrent to

which processes.

Hence this approach can be applied to any distributed system,

such as banking, cloud computing, reservation system,

Parallel processing system etc

7. REFERENCES
[1] L. Lamport, “Time, Clocks and the ordering of Events in

a Distributed System,” Comm. ACM. Vol 21, No.7 , July

1978, pp 558-565.

[2] A. S. Tanenbaum and M. V. Steen Distributed System

: Principles and Paradigms (2nd Edition)

[3] V. Kanakaris, D. Ndzi and D. Azzi, Ad-hoc Networks

Energy Consumption: A review of the Ad-Hoc Routing

Protocols Journal of Engineering Science and

Technology Review 3 (1) (2010) 162-167

[4] S W Smith and J D Tygar, “Signed Vector Timestamps

A Secure Protocol for Partial Order Time”, Carnegie

Mellon Computer Science Technical Report CMU-CS-

93-116(1993) .

[5] PVM (Parallel Virtual Machine)A Users’ Guide and

Tutorial for Networked Parallel Computing;

http://www.netlib.org/pvm3/book/pvm-book.html.

[6] L Lamport, P M Melliar-Smith , Byzantine Clock

Synchronization: Proceedings of the third annual ACM

symposium on Principles of distributed computing

PODC 84 (1984).

[7] F.J. Torres-Rojas and M. Ahamad, “ Plausible Clocks:

Constant Size Logical Clocks for Distributed System,”

Proc. 10th Int’l Workshop Distributed Algorithms,

Springer Verlag, New York, 1996, pp71-88.

[8] R. Baldoni and G. Melideo, Tradeoffs in Message

overhead versus Detection Tim in Causality Tracking,

tech, report 06-01, Dipartimento di Informaticae

Sistemistica, Univ. of Rome, 2000.

