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ABSTRACT 

The paper presents a novel allocation algorithm to allocate 

independent real time tasks on a processor in a way that 

improves the processor’s throughput (Processor’s throughput is 

the number of tasks the processor can accept for execution). The 

proposed approach allocates tasks’ workloads (task’s workload 

is the percentage of work required by the processor to execute 

the task) instead of their processing powers (Processing power 

assigned to a task is a percentage of the processor reserved to 

execute the task such that its deadline is satisfied).  To achieve 

our objective a variable processing power is assigned to the task 

under consideration over its deadline to satisfy its timing 

requirements instead of rejecting it if a constant processing 

power cannot be guaranteed as in previous CPU reservation 

approaches.  Simulation results revealed that the acceptance rate 

of the admitted tasks to a certain processor using the new 

approach is superior to that achieved using the traditional 

processing power reservation approach.   

 

Keywords 
Workload allocation, Processing power, Processor utilization, 

Scheduling real-time tasks. 

 

1. INTRODUCTION 
 

Deploying applications on multiprocessor and distributed 

platforms require the mapping and allocation of the 

application’s tasks to the different computing resources of the 

platform such that pre-set objectives should be met. This 

problem is known as scheduling problem. Various studies have 

proven that finding an optimal schedule is an NP-complete 

problem [17]. However, a large number of scheduling 

algorithms which attempt to find a suboptimal solution have 

been proposed. These algorithms can be categorized mainly into 

two groups based on the type of scheduled applications. The 

first category deals with non real time applications and the 

second deals with real time applications. The main concern in 

scheduling non real time applications is to minimize the time 

required to execute all the application’s tasks (makespan). 

While, the main concern in scheduling real time applications is 

satisfying the timing constraints of each task. Hence, scheduling 

real-time applications is more challenging. Scheduling real time 

applications on multiprocessor and distributed platforms is 

achieved using a two-level hierarchical scheduler: 1) A high 

level scheduler (partitioning algorithm) which is concerned with 

how to partition the applications and assign their tasks to the 

different processors. 2) Low level scheduler (CPU reservation 

algorithm) that determines the execution order of real-time 

independent tasks on each processor individually. The overall 

performance of the scheduler depends on the performance of its 

two components. 

This paper proposes a new approach for processor reservation 

that improves the utilization of the processor and increases its 

throughput. In the previous approach for processing power 

reservation [8],[9],[13], when a task is submitted, the scheduler 

accepts the  task if the available processing power (PP) during 

the task's deadline is  sufficient to satisfy its deadline 

requirements (i.e, the min. available PP is at least equals the 

required PP for the task to satisfy its deadline). Otherwise the 

task and hence the whole application are rejected.  Our new 

approach depends on allocating the workload of the task on the 

processor by assigning the task a variable processing power that 

guarantees its timing requirements instead of attempting reserve 

a constant processing power over the time spent by the task in 

the processor and rejecting the task if this PP cannot be 

provided by the processor. Thereby, we increases the chance of 

accepting more tasks on the processor and achieve better 

processor throughput and utilization than previous approaches 

[8],[9],[13].  

 

The rest of this paper is organized as follows. Section 2 reviews 

some work related to real time task scheduling. Section 3 

discusses the previous approach for processing power 

reservation. Section 4 discusses the proposed workload 

allocation algorithm. Section 5 gives a numerical example that 

illustrates our approach. In section 6, we provide a theoretical 

analysis and prove the correctness of our approach. Sections 

7&8 describe the simulation experiments setup and discuss the 

results. Section 9 concludes the paper.  

 

2. RELATED WORK 
 

A great deal of research has been conducted to find solutions for 

the problem of scheduling real time tasks over various 

computing platforms ranges from uni-processor to 

geographically dispersed computing resources connected via the 

internet. Scheduling algorithms in [17],[3] address the problem 

of task allocation over  Grid; The algorithms in   

[2],[13],[20],[22],[23],[24]  address the problem of task 

allocation over a cluster; The algorithms in  

[10],[11],[16],[6],[[18],[20] address the problem of allocating 

tasks over the processors of  multiprocessor and multicore 

systems; while the algorithms in [5],[14], [15],[8], [9],[4] have 

been proposed to ensure an efficient and predictable scheduling 

of real-time  independent tasks over a uni-processor.   

 

Algorithms for scheduling in real time systems can be classified 

based on various criteria. They can be classified based on the 

computing platforms as mentioned above, or based on the 

characteristics of the real time applications.  Another 

classification to scheduling approaches could be based on 

additional performance metrics along with satisfying timing 

requirements such as minimizing number of processors as in 

[12], reducing power consumption in processors with dynamic 
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voltage scaling as  in [1], [18], [17], [23]  or  achieving effective  

fault-tolerant in real time systems as in [22], [24].  

 

3. TRADITIONAL CPU RESERVATION 

ALGORITHM 
 

The traditional approach for CPU reservation [13] is based on 

the operating system Rialto [8] that was developed by Microsoft 

research. Rialto can schedule real time and non-real time 

independent tasks on a uni-processor. In this approach, the 

processing power reservations are made for the tasks to ensure 

minimum execution rate that satisfies time constraints.  Each 

submitted real time task Ti is characterized in terms of three 

parameters {Si , Fi , PPi }  where , Si : is the task start time, Fi: is 

the task finish time , PPi is the required processing power for 

this task. The request for reservation is of the form reserve x % 

processing power out of y % available processing power for a 

certain time (task deadline). Where, the available processing 

power of a processor ranges from 0 to 100%. According to this 

approach a task Ti is accepted if the processor can provide 

available processing power not less than the task’s required 

processing power over its deadline interval.  

 

The processor maintains a data structure called a reservation 

table, such that all processing power reservations can be 

honored continuously. Each entry in the table has information 

about a scheduled task such as {Si , Fi , PPi }.   Table 1 shows a 

snap shot of the reservation table of a processor between time t  

= 115 and t  = 211. Fig.1 shows the execution profile of these 

tasks, which we will call Reservation Graph (RG).  This graph 

shows the reserved processing power as a function of time. 

Reserved processing power at time t  (i.e. ( ))PP tres is the 

summation of all the required processing powers by the tasks Tj 

allocated on the processor at t , i.e. 

 

( ) ( ).....(1)PP t PP tres j
j
 The available processing power on 

the processor at any time )(tPPava  is given by: 

( ) 1 ( ).....(2)PP t PP tava res   

 (4.2) 

The acceptance condition for any task T j  is:  

 

( ) .....(3)PP t PPava j  [ , ]t S Fj j   

i.e. 

 min ( ) .....(4)min_ _

Fj
PP PP t PPava java j t S j

 


 
 

 

   

 

Ti Si Fi PPi 

T1 115 135 0.2 

T2 124 156 0.1 

T3 143 172 0.3 

T4 167 211 0.4 

 

 

 

 

 

                      
     

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm1 specifies the steps to schedule tasks on a processor 

using Rialto approach. 

 

Algorithm 1: traditional approach  

Input: a set of real-time tasks T },...,2,1{ nTTT  

Output: RG, acceptance rate 

Begin  

1. acceptance_counter = 0 

2. For each 
jT    T  

Compute:  min ( )min_ _

Fj
PP PP tavaava j t S j




 

  If ( )min_ _PP PPj ava j  then   

         Increment acceptance_counter; 

         Update ( )PP tres in the window [ , ]S Fj j  

as follows: ( ) ( )PP t PP t PPres res j   

       3. acceptance rate = acceptanc_counter/n 

End 

 

The main disadvantage of this approach is that a task jT  is 

rejected if its constant required processing power cannot be 

guaranteed for its deadline. This increases rejection rate of the 

tasks. Consider for example the tasks in Table 1 and Figure1, 

assume that a task T5 is submitted with the following 

parameters: {S5=170, F5=180, PP5= 0.4}. Applying the 

traditional algorithm we find that: min_ _5PP ava  = 0.3. Since 

PP5 > PPmin_ava-5,T5 is rejected as shown in Fig. 2 below. 

 

Table 1.  Reservation table for tasks T1, T2, T3, and T4. 

Fig. 1: Reservation graph RG of the processor 
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Fig. 2: T5 is rejected using the traditional approach 

 
 

Our proposed algorithm modifies this algorithm by allocating 

the task using its workload instead of its processing power to 

boost the acceptance rate.  

 

4. THE PROPOSED WORKLOAD 

ALLOCATION APPROACH 
 

In this approach, a variable processing power is assigned to the 

allocated task jT  to satisfy its deadline instead of rejecting it if 

its constant required processing power cannot be guaranteed 

over its deadline. A task T j  is accepted if its required workload 

is not greater than the available workload _WLava j  in the 

window [ ,S Fj j ].  

The workload WLj of a task Tj can be computed using equation 

5: 

.....(5)WL PP dj j j 
 

Where dj = Fj-Sj is the task deadline.
 

 

To calculate the available workload, the task window [ ,S Fj j ] 

is segmented into m j segments. Each segment ,g jk  with time 

length equal to ,lk j  and is characterized by a constant available 

processing power ( _ ,PPava k j ).  Algorithm 2 describes this 

procedure in detail. 

 

 

 

Algorithm 2: workload distribution (WL) approach  

Input: a set of real-time tasks T { , , ..., }1 2T T Tn  

Output:   RG, Acceptance rate 

Begin  

1. acceptance_counter = 0 

2. For each jT  T 

              Compute  jdjPPjW L   

( * )__ , ,1

mj
WL PP lavaava j k j k jk




 

  If ( )_WL WLava j j  then   

        Increment acceptance_counter  

       Call Algorithm 3 to update RG   

   with workload of  T j  

       3. acceptance rate = acceptanc_counter/n 

End  

 

If a task T j  is accepted; jW L  is distributed over T j ’s window 

by assigning T j   a new variable processing power ( jPP (t); 

jFtjS  ) enough to satisfy jW L . To distribute jW L , the 

available processing power of each segment in the window [

jFjS , ] is calculated using the Reservation Graph ( RG ). If  

_ ,PPava k j  is greater than or equal to jPP , then a processing 

power equal to jPP  is reserved for T j  over this segment,  

otherwise, a processing power equal to 
_ ,PPava k j

 is reserved 

for T j  and accumulate the remaining workload,

)_ _ , ,WL (PP  - PP  * lrem j j ava k j k j  . The accumulated 

remaining workload is then distributed over the segments that 

have available processing power. This procedure is described in 

detail in algorithm 3.  

 

Algorithm 3: update RG (allocate accepted task on RG) 

Input: a real-time task, T j   

Output: updated RG  

Begin  

1. Initialize 0_WLrem j   

2. For ( 1, , )k k m kj     

  If ( , _PP PPjk j ava  ) then  

             _ _, ,PP PP PPres res jk j k j   

  Else  

  1 _ , _ , _ ,PP   PP PPres k j res k j ava k j     

    

jk* ljkava - PPj (PP jrem W L jremWL ,),___ 

  

3. 1k   

4. While ( 0_WLrem j  )  

   If ( 1)_ ,PPres k j   

               Compute the unused load:  

       _ , _ , ,WL   PP  * lunused k j ava k j k j   

        If ( __ ,WL WLrem junused k j  ) then  
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             1 _ ,PP  res k j 
 

                     _ _ _ ,WL   WL  - WL  j rem j rem uused k j   

       1k k     

 

          Else 

       
_

_ , _ ,
,

WLrem j
PP  PP   res k j res k j

lk j

    

                     0_WL    rem j   

 

           Else 

               1k k     

End 

 

 

                                    

5. A NUMERICAL EXAMPLE 
 

Consider the reservation table1 again, as we have seen task 5T  

has been rejected using the traditional approach, but when 

applying our approach:  

         The required workload:  

     5WL = 0.4 * (180-170) = 4  

      The available workload  

180

_5
170

WLava
t

  

      = (172-170) * 0.3 + (180-172) * 0.6 = 5.4 

      Since _5WLava > 5WL  then 5T   is accepted 

      The new ( )5PP t  in the window ]5,5[ FS  

       is calculated as follows: 

       The window ]5,5[ FS is partitioned into two segments: 

         1,5g  (170< t <172) & 2,5g  (172< t <200) 

         1. Segment 1,5g  (170< t <172) 

             Since _1,5PPava = 0.3 < 5PP  , then  

                       _1,5PPres = 1  

_5WLrem = (0.4 - 0.3) * (172-170) = 0.2 

          2. Segment 2,5g  (172< t <200) 

              Since 2,5_PP av = 0.6 > 5PP  , then  

        _2,5PPres = 5_2,5PP PPres   = 0.8  

Now, the remaining workload 5_remWL  will be distributed 

over the period (172<t<180). The new processing power will 

be: 

)172180(

2.0

5,2_5,2_


 resPPresPP       

   = 0.8+0.025=0.825 

Figures (3a-d) illustrate the steps of our algorithm and figure 4 

shows the RG after accepting and allocating T5 on the 

processor. 

 

 
Fig. 3a: Step 1, computing required workload for T5 

 
Fig. 3b: Step 2, computing available workload  

 

Fig. 3c: Step 3, computing remaining workload 
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Fig. 3d: Step 4, distributing remaining workload 

 

 
 

 

6.  THEORETICAL ANALYSIS OF OUR 

APPROACH 
 
In this section we prove that our approach (WL approach) 

outperforms the traditional approach or in the worst case equals 

it by providing the following two theories: 

 

Theorem 1: If a task is accepted on a processor using the 

traditional approach, then it will be accepted using the WL 

approach. 

Proof: Suppose that T j  is a task of parameters ( , , )S F PPj j j . 

If T j  is accepted using Algorithm 1 then according to 

inequality 4, for all segments ,gk j in [ , ]S Fj j , we have 

_ ,PP PPjava k j   as shown in Fig. 5. From this graph we can 

write formulas for _WLava j and WL j as follows: 

( * )_ , ,1

mj
WL PP lava j ava_k j k jk




…… (6) 

( * ),1

mj
WL PP lj j k jk




….. (7) 

Since
_ ,PP PPjava k j 

 
,gk j within [ , ]S Fj j , from 

equations (6 and 7), we conclude that: _WL WLava j j  which 

means that the task is also accepted using Algorithm 2. 

 

 
 

 

 

Theorem 4.2: If T j  is rejected using the traditional approach, it 

can be accepted by WL, it may be accepted by WL approach. 

Proof: If task T j  is rejected by Algorithm 4.1 this means that 

the condition _ ,PP PPj ava k j is not satisfied for at least one 

segment 
,gk j

 within [ , ]S Fj j  as shown in Fig. 6. From this 

graph we can write WL j and _WLava j as follows: 

__WL WL WLj rem jadd j  …… (8) 

_ _ _WL WL WLava j jadd j unused  …… (9) 

 

 

 
Fig 6: A task rejected using the traditional approach 
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Fig. 4:  RG after accepting T5  

Fig. 5: A task accepted using traditional approach  

is also accepted using WL approach 
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We can distinguish between two cases: 

Case 1: _ _WL WLrem j unused j   _WL WLj ava j  

   T j  is rejected  by WL approach as well. 

Case 2: _ _WL WLrem j junused   _WL WLj ava j   

  T j  is accepted by WL approach while it is rejected by the 

traditional approach. 

Thus, task T j , although it is rejected using the traditional 

approach, it can be accepted using the new WL approach. □ 

 

The second situation is represented in Fig. 7 below. 

 

 

Fig 7: The same task accepted using our workload approach 

 

7. SIMULATION AND EXPERIMENTS  

 

7.1 Experiments Setup 

 

A simulation study that consists of a set of four experiments 

have been conducted to show the performance of our proposed 

approach relative to the traditional one. These experiments 

aimed to illustrate the behavior of the two approaches, in terms 

of the acceptance rate, for different values of arrival rates (λ) 

and departure rates (μ) of tasks. In each experiment a set of 

10000 tasks are generated randomly as follows: 

1. A uniform distribution is used for the generation of the 

execution times of the tasks. The mean execution time 

(1/μ) is set to a fixed value during each experiment, which 

are {10, 15, 20, 25} for the four experiments respectively.  

2. Exponential probability distribution is used to generate the 

inter-arrival time between consecutive tasks. For each 

value of (1/λ), a set of 10000 tasks is generated. The values 

of mean inter-arrival time (1/λ) are {10, 20, ..,120} sec 

during each experiment. Small values of λ means that the 

tasks arrive far apart while large values mean that the 

release times of the tasks are very close and the processor 

is loaded. 

3. The ratio (λ/μ) is called traffic intensity (it expresses 

processor utilization) and cannot exceed one since λ is 

always smaller than μ.  If this ratio is close to one it means 

that tasks have relatively large λ (fast arrival). 

Consequently, their scheduling on the processor will be 

more difficult than if the ratio is close to zero (relatively 

small λ or slow arrival).  

7.2 Simulation Results  

 
Figures 8, 9 and 10 show the acceptance rate vs. traffic intensity 

for each case of the average execution time. In all experiments, 

results show that the new approach outperforms the traditional 

one. Results also show that both algorithms rejects more tasks 

when tasks arrive faster (large values of λ/μ) than the processor 

can handle but the new approach is superior to the traditional 

one. In converse, both algorithms perform competitively well 

for small values of (λ/μ) where the tasks arrive far apart from 

each other. 

 

Figure 12 shows the improvement percentage in the acceptance 

rate achieved by the new approach over the traditional one in 

each experiment.  As shown in the graph the improvement 

diminished as the inter-arrival time increases.  This is due to the 

fact that both approaches perform very well for large values of 

inter-arrival time (slow arrivals).  The graph also shows that we 

achieve higher amount of improvement for lower values of the 

inter-arrival time (fast arrivals). Hence, we conclude that the 

proposed approach has a major improvement when tasks arrive 

at high rate. In this later case, tasks are likely to be rejected if 

the traditional approach is used. Finally, results also show that 

the proposed approach tends to achieve better improvement for 

large values of mean execution time (longer tasks). This is 

because it is more difficult to have a constant available 

processing power during the task's deadline.   

 

8. CONCLUSIONS 
 

This paper presented an improved processing power reservation 

algorithm that allocates the workloads of independent real time 

tasks , instead of allocating their processing powers, on a 

processor. The proposed algorithm improves the processor 

throughput (i.e. boosts the acceptance rate of the admitted 

tasks). Simulation results showed that the new algorithm is 

superior to the traditional one.  In this paper, we applied the 

algorithm to a stream of tasks submitted to a single processor. 

Our algorithm is also beneficial in scheduling real-time 

applications represented by task graphs in a multiprocessor 

environment such as cluster environment. Since rejecting a task 

of an application leads to rejecting the whole application, it is 

obvious that the new algorithm will overcome this problem and 

hence will produce a better performance in scheduling real-time 

task graphs on a cluster of computers.  
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  Fig 11: Acceptance rate at mean execution time (1/μ) = 25 

and different traffic intensity 
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