
International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

17

Real-Time Workload Allocation on a Uni-processor

ABSTRACT

The paper presents a novel allocation algorithm to allocate

independent real time tasks on a processor in a way that

improves the processor’s throughput (Processor’s throughput is

the number of tasks the processor can accept for execution). The

proposed approach allocates tasks’ workloads (task’s workload

is the percentage of work required by the processor to execute

the task) instead of their processing powers (Processing power

assigned to a task is a percentage of the processor reserved to

execute the task such that its deadline is satisfied). To achieve

our objective a variable processing power is assigned to the task

under consideration over its deadline to satisfy its timing

requirements instead of rejecting it if a constant processing

power cannot be guaranteed as in previous CPU reservation

approaches. Simulation results revealed that the acceptance rate

of the admitted tasks to a certain processor using the new

approach is superior to that achieved using the traditional

processing power reservation approach.

Keywords
Workload allocation, Processing power, Processor utilization,

Scheduling real-time tasks.

1. INTRODUCTION

Deploying applications on multiprocessor and distributed

platforms require the mapping and allocation of the

application’s tasks to the different computing resources of the

platform such that pre-set objectives should be met. This

problem is known as scheduling problem. Various studies have

proven that finding an optimal schedule is an NP-complete

problem [17]. However, a large number of scheduling

algorithms which attempt to find a suboptimal solution have

been proposed. These algorithms can be categorized mainly into

two groups based on the type of scheduled applications. The

first category deals with non real time applications and the

second deals with real time applications. The main concern in

scheduling non real time applications is to minimize the time

required to execute all the application’s tasks (makespan).

While, the main concern in scheduling real time applications is

satisfying the timing constraints of each task. Hence, scheduling

real-time applications is more challenging. Scheduling real time

applications on multiprocessor and distributed platforms is

achieved using a two-level hierarchical scheduler: 1) A high

level scheduler (partitioning algorithm) which is concerned with

how to partition the applications and assign their tasks to the

different processors. 2) Low level scheduler (CPU reservation

algorithm) that determines the execution order of real-time

independent tasks on each processor individually. The overall

performance of the scheduler depends on the performance of its

two components.

This paper proposes a new approach for processor reservation

that improves the utilization of the processor and increases its

throughput. In the previous approach for processing power

reservation [8],[9],[13], when a task is submitted, the scheduler

accepts the task if the available processing power (PP) during

the task's deadline is sufficient to satisfy its deadline

requirements (i.e, the min. available PP is at least equals the

required PP for the task to satisfy its deadline). Otherwise the

task and hence the whole application are rejected. Our new

approach depends on allocating the workload of the task on the

processor by assigning the task a variable processing power that

guarantees its timing requirements instead of attempting reserve

a constant processing power over the time spent by the task in

the processor and rejecting the task if this PP cannot be

provided by the processor. Thereby, we increases the chance of

accepting more tasks on the processor and achieve better

processor throughput and utilization than previous approaches

[8],[9],[13].

The rest of this paper is organized as follows. Section 2 reviews

some work related to real time task scheduling. Section 3

discusses the previous approach for processing power

reservation. Section 4 discusses the proposed workload

allocation algorithm. Section 5 gives a numerical example that

illustrates our approach. In section 6, we provide a theoretical

analysis and prove the correctness of our approach. Sections

7&8 describe the simulation experiments setup and discuss the

results. Section 9 concludes the paper.

2. RELATED WORK

A great deal of research has been conducted to find solutions for

the problem of scheduling real time tasks over various

computing platforms ranges from uni-processor to

geographically dispersed computing resources connected via the

internet. Scheduling algorithms in [17],[3] address the problem

of task allocation over Grid; The algorithms in

[2],[13],[20],[22],[23],[24] address the problem of task

allocation over a cluster; The algorithms in

[10],[11],[16],[6],[[18],[20] address the problem of allocating

tasks over the processors of multiprocessor and multicore

systems; while the algorithms in [5],[14], [15],[8], [9],[4] have

been proposed to ensure an efficient and predictable scheduling

of real-time independent tasks over a uni-processor.

Algorithms for scheduling in real time systems can be classified

based on various criteria. They can be classified based on the

computing platforms as mentioned above, or based on the

characteristics of the real time applications. Another

classification to scheduling approaches could be based on

additional performance metrics along with satisfying timing

requirements such as minimizing number of processors as in

[12], reducing power consumption in processors with dynamic

Reda Ammar
Dept. of Computer Science

 and Engineering
University of Connecticut

Storrs, CT, USA

Abeer Hamdy
Dep. of Computers and systems,
Electronic Research Institute &

Faculty of ICS, British University in Egypt
 Egypt

Ahmed E. Youssef
Faculty of Engineering-Helwan
Helwan University, Cairo, Egypt
 & Dept. of Information Systems

KSU, Riyadh, KSA

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

18

voltage scaling as in [1], [18], [17], [23] or achieving effective

fault-tolerant in real time systems as in [22], [24].

3. TRADITIONAL CPU RESERVATION

ALGORITHM

The traditional approach for CPU reservation [13] is based on

the operating system Rialto [8] that was developed by Microsoft

research. Rialto can schedule real time and non-real time

independent tasks on a uni-processor. In this approach, the

processing power reservations are made for the tasks to ensure

minimum execution rate that satisfies time constraints. Each

submitted real time task Ti is characterized in terms of three

parameters {Si , Fi , PPi } where , Si : is the task start time, Fi: is

the task finish time , PPi is the required processing power for

this task. The request for reservation is of the form reserve x %

processing power out of y % available processing power for a

certain time (task deadline). Where, the available processing

power of a processor ranges from 0 to 100%. According to this

approach a task Ti is accepted if the processor can provide

available processing power not less than the task’s required

processing power over its deadline interval.

The processor maintains a data structure called a reservation

table, such that all processing power reservations can be

honored continuously. Each entry in the table has information

about a scheduled task such as {Si , Fi , PPi }. Table 1 shows a

snap shot of the reservation table of a processor between time t

= 115 and t = 211. Fig.1 shows the execution profile of these

tasks, which we will call Reservation Graph (RG). This graph

shows the reserved processing power as a function of time.

Reserved processing power at time t (i.e. ())PP tres is the

summation of all the required processing powers by the tasks Tj

allocated on the processor at t , i.e.

() ().....(1)PP t PP tres j
j
 The available processing power on

the processor at any time)(tPPava is given by:

() 1 ().....(2)PP t PP tava res 

 (4.2)

The acceptance condition for any task T j is:

()(3)PP t PPava j [,]t S Fj j 

i.e.

 min ()(4)min_ _

Fj
PP PP t PPava java j t S j

 


Ti Si Fi PPi

T1 115 135 0.2

T2 124 156 0.1

T3 143 172 0.3

T4 167 211 0.4

Algorithm1 specifies the steps to schedule tasks on a processor

using Rialto approach.

Algorithm 1: traditional approach

Input: a set of real-time tasks T },...,2,1{ nTTT

Output: RG, acceptance rate

Begin

1. acceptance_counter = 0

2. For each
jT  T

Compute:  min ()min_ _

Fj
PP PP tavaava j t S j




 If ()min_ _PP PPj ava j then

 Increment acceptance_counter;

 Update ()PP tres in the window [,]S Fj j

as follows: () ()PP t PP t PPres res j 

 3. acceptance rate = acceptanc_counter/n

End

The main disadvantage of this approach is that a task jT is

rejected if its constant required processing power cannot be

guaranteed for its deadline. This increases rejection rate of the

tasks. Consider for example the tasks in Table 1 and Figure1,

assume that a task T5 is submitted with the following

parameters: {S5=170, F5=180, PP5= 0.4}. Applying the

traditional algorithm we find that: min_ _5PP ava = 0.3. Since

PP5 > PPmin_ava-5,T5 is rejected as shown in Fig. 2 below.

Table 1. Reservation table for tasks T1, T2, T3, and T4.

Fig. 1: Reservation graph RG of the processor

time 115 124 135 143 156 167 172

211

.2

.8

.6

.4

1

Processing power

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

19

Fig. 2: T5 is rejected using the traditional approach

Our proposed algorithm modifies this algorithm by allocating

the task using its workload instead of its processing power to

boost the acceptance rate.

4. THE PROPOSED WORKLOAD

ALLOCATION APPROACH

In this approach, a variable processing power is assigned to the

allocated task jT to satisfy its deadline instead of rejecting it if

its constant required processing power cannot be guaranteed

over its deadline. A task T j is accepted if its required workload

is not greater than the available workload _WLava j in the

window [,S Fj j].

The workload WLj of a task Tj can be computed using equation

5:

.....(5)WL PP dj j j 

Where dj = Fj-Sj is the task deadline.

To calculate the available workload, the task window [,S Fj j]

is segmented into m j segments. Each segment ,g jk with time

length equal to ,lk j and is characterized by a constant available

processing power (_ ,PPava k j). Algorithm 2 describes this

procedure in detail.

Algorithm 2: workload distribution (WL) approach

Input: a set of real-time tasks T { , , ..., }1 2T T Tn

Output: RG, Acceptance rate

Begin

1. acceptance_counter = 0

2. For each jT T

 Compute jdjPPjW L 

(*)__ , ,1

mj
WL PP lavaava j k j k jk




 If ()_WL WLava j j then

 Increment acceptance_counter

 Call Algorithm 3 to update RG

 with workload of T j

 3. acceptance rate = acceptanc_counter/n

End

If a task T j is accepted; jW L is distributed over T j ’s window

by assigning T j a new variable processing power (jPP (t);

jFtjS ) enough to satisfy jW L . To distribute jW L , the

available processing power of each segment in the window [

jFjS ,] is calculated using the Reservation Graph (RG). If

_ ,PPava k j is greater than or equal to jPP , then a processing

power equal to jPP is reserved for T j over this segment,

otherwise, a processing power equal to
_ ,PPava k j

 is reserved

for T j and accumulate the remaining workload,

)_ _ , ,WL (PP - PP * lrem j j ava k j k j  . The accumulated

remaining workload is then distributed over the segments that

have available processing power. This procedure is described in

detail in algorithm 3.

Algorithm 3: update RG (allocate accepted task on RG)

Input: a real-time task, T j

Output: updated RG

Begin

1. Initialize 0_WLrem j 

2. For (1, ,)k k m kj   

 If (, _PP PPjk j ava ) then

 _ _, ,PP PP PPres res jk j k j 

 Else

 1 _ , _ , _ ,PP PP PPres k j res k j ava k j  

jk* ljkava - PPj (PP jrem W L jremWL ,),___ 

3. 1k 

4. While (0_WLrem j )

 If (1)_ ,PPres k j 

 Compute the unused load:

 _ , _ , ,WL PP * lunused k j ava k j k j

 If (__ ,WL WLrem junused k j ) then

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

20

 1 _ ,PP res k j 

 _ _ _ ,WL WL - WL j rem j rem uused k j

 1k k  

 Else

_

_ , _ ,
,

WLrem j
PP PP res k j res k j

lk j

 

 0_WL rem j 

 Else

 1k k  

End

5. A NUMERICAL EXAMPLE

Consider the reservation table1 again, as we have seen task 5T

has been rejected using the traditional approach, but when

applying our approach:

 The required workload:

 5WL = 0.4 * (180-170) = 4

 The available workload

180

_5
170

WLava
t

 = (172-170) * 0.3 + (180-172) * 0.6 = 5.4

 Since _5WLava > 5WL then 5T is accepted

 The new ()5PP t in the window]5,5[FS

 is calculated as follows:

 The window]5,5[FS is partitioned into two segments:

 1,5g (170< t <172) & 2,5g (172< t <200)

 1. Segment 1,5g (170< t <172)

 Since _1,5PPava = 0.3 < 5PP , then

 _1,5PPres = 1

_5WLrem = (0.4 - 0.3) * (172-170) = 0.2

 2. Segment 2,5g (172< t <200)

 Since 2,5_PP av = 0.6 > 5PP , then

 _2,5PPres = 5_2,5PP PPres  = 0.8

Now, the remaining workload 5_remWL will be distributed

over the period (172<t<180). The new processing power will

be:

)172180(

2.0

5,2_5,2_


 resPPresPP

 = 0.8+0.025=0.825

Figures (3a-d) illustrate the steps of our algorithm and figure 4

shows the RG after accepting and allocating T5 on the

processor.

Fig. 3a: Step 1, computing required workload for T5

Fig. 3b: Step 2, computing available workload

Fig. 3c: Step 3, computing remaining workload

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

21

Fig. 3d: Step 4, distributing remaining workload

6. THEORETICAL ANALYSIS OF OUR

APPROACH

In this section we prove that our approach (WL approach)

outperforms the traditional approach or in the worst case equals

it by providing the following two theories:

Theorem 1: If a task is accepted on a processor using the

traditional approach, then it will be accepted using the WL

approach.

Proof: Suppose that T j is a task of parameters (, ,)S F PPj j j .

If T j is accepted using Algorithm 1 then according to

inequality 4, for all segments ,gk j in [,]S Fj j , we have

_ ,PP PPjava k j  as shown in Fig. 5. From this graph we can

write formulas for _WLava j and WL j as follows:

(*)_ , ,1

mj
WL PP lava j ava_k j k jk




…… (6)

(*),1

mj
WL PP lj j k jk




….. (7)

Since
_ ,PP PPjava k j 

,gk j within [,]S Fj j , from

equations (6 and 7), we conclude that: _WL WLava j j which

means that the task is also accepted using Algorithm 2.

Theorem 4.2: If T j is rejected using the traditional approach, it

can be accepted by WL, it may be accepted by WL approach.

Proof: If task T j is rejected by Algorithm 4.1 this means that

the condition _ ,PP PPj ava k j is not satisfied for at least one

segment
,gk j

 within [,]S Fj j as shown in Fig. 6. From this

graph we can write WL j and _WLava j as follows:

__WL WL WLj rem jadd j  …… (8)

_ _ _WL WL WLava j jadd j unused  …… (9)

Fig 6: A task rejected using the traditional approach

.80

7

200

.2

.6

.4

1

115 124 135 143 156 167 172 211

Processing power

Fig. 4: RG after accepting T5

Fig. 5: A task accepted using traditional approach

is also accepted using WL approach

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

22

We can distinguish between two cases:

Case 1: _ _WL WLrem j unused j  _WL WLj ava j

  T j is rejected by WL approach as well.

Case 2: _ _WL WLrem j junused  _WL WLj ava j

 T j is accepted by WL approach while it is rejected by the

traditional approach.

Thus, task T j , although it is rejected using the traditional

approach, it can be accepted using the new WL approach. □

The second situation is represented in Fig. 7 below.

Fig 7: The same task accepted using our workload approach

7. SIMULATION AND EXPERIMENTS

7.1 Experiments Setup

A simulation study that consists of a set of four experiments

have been conducted to show the performance of our proposed

approach relative to the traditional one. These experiments

aimed to illustrate the behavior of the two approaches, in terms

of the acceptance rate, for different values of arrival rates (λ)

and departure rates (μ) of tasks. In each experiment a set of

10000 tasks are generated randomly as follows:

1. A uniform distribution is used for the generation of the

execution times of the tasks. The mean execution time

(1/μ) is set to a fixed value during each experiment, which

are {10, 15, 20, 25} for the four experiments respectively.

2. Exponential probability distribution is used to generate the

inter-arrival time between consecutive tasks. For each

value of (1/λ), a set of 10000 tasks is generated. The values

of mean inter-arrival time (1/λ) are {10, 20, ..,120} sec

during each experiment. Small values of λ means that the

tasks arrive far apart while large values mean that the

release times of the tasks are very close and the processor

is loaded.

3. The ratio (λ/μ) is called traffic intensity (it expresses

processor utilization) and cannot exceed one since λ is

always smaller than μ. If this ratio is close to one it means

that tasks have relatively large λ (fast arrival).

Consequently, their scheduling on the processor will be

more difficult than if the ratio is close to zero (relatively

small λ or slow arrival).

7.2 Simulation Results

Figures 8, 9 and 10 show the acceptance rate vs. traffic intensity

for each case of the average execution time. In all experiments,

results show that the new approach outperforms the traditional

one. Results also show that both algorithms rejects more tasks

when tasks arrive faster (large values of λ/μ) than the processor

can handle but the new approach is superior to the traditional

one. In converse, both algorithms perform competitively well

for small values of (λ/μ) where the tasks arrive far apart from

each other.

Figure 12 shows the improvement percentage in the acceptance

rate achieved by the new approach over the traditional one in

each experiment. As shown in the graph the improvement

diminished as the inter-arrival time increases. This is due to the

fact that both approaches perform very well for large values of

inter-arrival time (slow arrivals). The graph also shows that we

achieve higher amount of improvement for lower values of the

inter-arrival time (fast arrivals). Hence, we conclude that the

proposed approach has a major improvement when tasks arrive

at high rate. In this later case, tasks are likely to be rejected if

the traditional approach is used. Finally, results also show that

the proposed approach tends to achieve better improvement for

large values of mean execution time (longer tasks). This is

because it is more difficult to have a constant available

processing power during the task's deadline.

8. CONCLUSIONS

This paper presented an improved processing power reservation

algorithm that allocates the workloads of independent real time

tasks , instead of allocating their processing powers, on a

processor. The proposed algorithm improves the processor

throughput (i.e. boosts the acceptance rate of the admitted

tasks). Simulation results showed that the new algorithm is

superior to the traditional one. In this paper, we applied the

algorithm to a stream of tasks submitted to a single processor.

Our algorithm is also beneficial in scheduling real-time

applications represented by task graphs in a multiprocessor

environment such as cluster environment. Since rejecting a task

of an application leads to rejecting the whole application, it is

obvious that the new algorithm will overcome this problem and

hence will produce a better performance in scheduling real-time

task graphs on a cluster of computers.

50

60

70

80

90

100

1 0.5 0.33 0.25 0.2 0.17 0.14 0.13 0.11 0.1

%
 A

c
c
e
p
ta

n
c
e
 R

a
te

Traffic Intensity

Mean Execution Time =10

traditional

WL

Fig 8: Acceptance rate at mean execution time (1/μ) = 10

and different traffic intensity

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

23

 Fig 11: Acceptance rate at mean execution time (1/μ) = 25

and different traffic intensity

9. REFERENCES
[1] Aydin, H., Melhem, R., Mosse, D. and Meja-Alvarez, P.,

2001, Dynamic and Aggressive Scheduling techniques for

power-aware real-time systems, In Proceedings of the 22nd

IEEE Real-Time systems Symposium.

[2] Birkenheuer, G. and Brinkmann, A., 2011, Reservation

based overbooking for HPC clusters, In Proceedings of

IEEE International Conference on Cluster computing.

[3] Caniou, Y., Charrier, G., Desprez F., 2010 ,Analysis of

tasks reallocation in a dedicated grid environment, In

Proceedings of IEEE international conference on cluster

computing.

[4] Deng, Z., Liu, J.W.-s and Sun, S., 1996, Dynamic

scheduling of hard real-time applications in open system

environment, Technical Report, University of Illinois,

USA.

[5] Ford, B. and Susarla, S., 1996, CPU inheritance

scheduling, operating systems review.

[6] Gioiosa, R., McKee, S. A., Valero, M., 2010, Designing

OS for HPC Applications: Scheduling, In Proceedings of

IEEE International conference on cluster computing.

[7] H. Heidari and A. Chalechale, “Scheduling in

Multiprocessor System using Genetic Algorithm”,

International Journal of Advanced Science and

Technology, june 2012.

[8] Jones, M.B., Roşu, D., Roşu, M., 1997, CPU Reservations

and Time Constraints: Efficient, Predictable Scheduling of

Independent Activities, In Proceedings of the 16th ACM

Symposium on Operating System Principles.

[9] Jones, M.B. 2001, Two case studies in predictable

application scheduling using Rialto/NT , In Proceedings of

7th Real-Time Technology and Applications Symposium.

[10] M. Lombardi, M. Milano, L. Benini, “Robust Scheduling

of Task Graphs under Execution Time Uncertainty”, IEEE

transactions on computers, 2011.

[11] Niemeier, M., Wiese, A., Baruah, S., 2011, Partitioned

real-time scheduling on heterogeneous shared-memory

multiprocessors, In Proceedings of the 23rd Euromicro

Conference on Real-Time Systems.

50

60

70

80

90

100

1 0.75 0.5 0.38 0.3 0.25 0.21 0.19 0.17 0.15

%
 A

c
c
e
p
ta

n
c
e
 R

a
te

Traffic Intensity

Mean Execution Time = 15

traditional
WL

50

60

70

80

90

100

1 0.67 0.5 0.4 0.33 0.29 0.25 0.22 0.2

%
 A

c
c
e
p
ta

n
c
e
 R

a
te

Traffic Intensity

Mean Execution Time = 20

traditional

WL

50

60

70

80

90

100

1 0.83 0.63 0.5 0.42 0.36 0.31 0.28 0.25

%
 A

c
c
e
p
ta

n
c
e
 R

a
te

Traffic Intensity

Mean Execution Time = 25

traditional

WL

0

10

20

30

30 40 50 60 70 80 90 100

%
 I
m

p
ro

v
e
m

e
n
t

Mean Interarrival Time

Improvement

1/µ = 10
1/µ = 15
1/µ = 20
1/µ = 25

Fig 12: The improvement rate of the proposed approach

over the traditional at different values of mean inter-

arrival and execution times.

Fig 10: Acceptance rate at mean execution time (1/μ) =

20 and different traffic intensity

Fig 9: Acceptance rate at mean execution time (1/μ) = 15

and different traffic intensity

http://citeseerx.ist.psu.edu/viewdoc/summary?cid=1639154
http://citeseerx.ist.psu.edu/viewdoc/summary?cid=1639154

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.12, September 2012

24

[12] O. Jaewon and W. Chisu, “Genetic Algorithm Based Real

Time Task Scheduling with Multiple Goals”, Journal of

systems and software, 2004.

[13] R. Ammar, A. Alhamdan, “Scheduling real-time fork-join

structures in cluster computing”, Int. Journal of High

Performance Computing and Networking , Vol.3, No.4,

2005, pp.262 – 271.

[14] Regehr, J., J. and Stankovic, J.A., 2001, Augmented CPU

reservations: Towards predictable execution on general-

purpose operating systems, In Proceedings of the IEEE

Real-Time Technology and Applications.

[15] Stoica, I., Abdelwahab, H., Effay, K., Baruah, S.K.,

Gehrke, J.E. and Plaxton, C.G., 1996, A proportional share

resource allocation algorithm for real-time, time-shared

systems, In Proceedings of 17th IEEE real-time systems

symposium.

[16] Satish, N. R., Ravindran, K., Keutzer, K., 2008, Scheduling

task dependence graphs with variable task execution times

onto heterogeneous multiprocessors, In Proceedings of the

8th ACM international conference on Embedded software.

[17] S.Baskaran, P. Thambidurai, “Energy efficient real-time

scheduling in distributed systems”, IJCSI International

journal of computer science issues, 2010.

[18] S. Jin, G. Schiavone · D. Turgut, “A performance study of

multiprocessor task scheduling algorithms”, Journal of

Supercomputer, 2008.

[19] W. Y. Lee, “Energy-Efficient Scheduling of Periodic Real-

Time Taks on Lightly Loaded Multicore Processors”, IEEE

Transactions on Parallel and Distributed Systems, 2012.

[20] W.Y. Lee, S.J. Hong, J. Kim, “On-line scheduling of

scalable real-time tasks on multiprocessor systems”,

Journal of Parallel and Distributed Computing, 2003.

[21] X. Lin, A. Mamat, Y. Lu, J. Deogun, S. Goddard , “Real-

time scheduling of divisible loads in cluster computing

environments”, International Journal of Parallel and

Distributed Computing, Elsevier, 2010.

[22] X. Zhu, X. Qin, M. Qiu, “QoS- Aware fault-Tolerant

Scheduling for Real Time Tasks on Heterogeneous

clusters” IEEE transactions on Computers, 2011.

[23] X. Zhu, C. He, K. Li, X. Kin, “Adaptive energy-efficient

scheduling for real-time tasks on DVS-enabled

heterogeneous clusters” , Journal of parallel and distributed

computing, 2012.

[24] Zhu, X., Zhu, J., Ma, M., Qiu, D., 2010 ,SAQA: A self

adaptive QoS-aware Scheduling Algorithms for Real Time

Tasks on Heterogeneous Clusters, In Proceedings of the

10th IEEE/ACM International Conference on Cluster,

Cloud and Grid Computing.

http://www.inderscience.com/jhome.php?jcode=ijhpcn
http://www.inderscience.com/jhome.php?jcode=ijhpcn
http://www.inderscience.com/info/inarticletoc.php?jcode=ijhpcn&year=2005&vol=3&issue=4

