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ABSTRACT 
 

The exploration of quality clusters in complex networks is an 

important issue in many disciplines, which still remains a 

challenging task. Many graph clustering algorithms came into 

the field in the recent past but they were not giving 

satisfactory performance on the basis of robustness, 

optimality, etc. So, it is most difficult task to decide which 

one is giving more beneficial clustering results compared to 

others in case of real–world problems. In this paper, 

performance of RNSC (Restricted Neighbourhood Search 

Clustering) and MCL (Markov Clustering) algorithms are 

evaluated on a random geometric graph (RGG). RNSC uses 

stochastic local search method for clustering of a graph. 

RNSC algorithm tries to achieve optimal cost clustering by 

assigning some cost functions to the set of clusterings of a 

graph. Another standard clustering algorithm MCL is based 

on stochastic flow simulation model. RGG has conventionally 

been associated with areas such as statistical physics and 

hypothesis testing but have achieved new relevance with the 

advent of wireless ad-hoc and sensor networks. In this study,  

the performance testing of these methods is conducted on the 

basis of cost of clustering, cluster size, modularity index of 

clustering results and normalized mutual information (NMI) 

using both real and synthetic RGG. 

General Terms 

General Terms: Graph clustering, Data mining et. al. 

Keywords 

RNSC, MCL, Cost of clustering, Cluster size, NMI, RGG. 

1. INTRODUCTION 
It is always expected that a complex system will be designed 

as a network. For example, a social network identifies 

relationships among mass of people like scientific community 

[1], movie actor collaborations [2], whereas biological 

networks denote interactions of molecules or proteins, the 

WWW [3] is moulded of web pages and hyperlinks, 

transportation [4] etc. Random graphs are often taking part to 

model these complex networks. The random geometric 

network is now-a-day getting immense popularity in society 

and nature for the complex system’s modelling. 

Random geometric network models [5, 6] consist of a 

collection of entities called nodes embedded in a region of 

exclusively two or three dimensions, together with connecting 

links between pairs of nodes that exist with a probability 

related to the node locations. These models perform well in 

demonstrating numerous complex systems including Nano 

science [7], epidemiology [8, 9], forest fires [10], social 

networks [11, 12], and wireless communications [13–15]. 

 

To achieve some meaningful information about the network 

models and to visualize the details of the networks with many 

applications in a number of disciplines, clustering is necessary 

and it is more fruitful job than other ones. Graph clustering 

algorithms emphasis on clustering the nodes of a graph [16], 

[17]. It can expect from a graph clustering scenario that it 

contains a collection of sub graphs (nearly completely 

connected) and a small fraction of edges are existed between 

them for interconnection.  

Recently, spectral clustering is getting immense popularity 

because of the convention of eigenvectors applied in various 

machine learning tasks [18]. In the recent past, various other 

graph clustering algorithms came into the field like restricted 

neighbourhood search clustering (RNSC) [19], Markov 

clustering (MCL) [20], super paramagnetic clustering (SPC), 

Genetic Algorithm, Molecular Complex Detection (MCODE), 

Local Clique Merging Algorithm (LCMA), etc. 

RNSC, which is a cost based clustering method and executes 

local search iteratively to acquire optimum clustering in an 

efficient way. RNSC is a stochastic technique which uses 

restricted neighbourhood search concept. It also acts like a 

metaheuristic technique like tabu search, described in [21] and 

also can be used in various search space schematics. It is also 

known as Variable neighbourhood search [22]. The main goal 

of this algorithm is to discover the best cost clusterings (lower 

cost) from the set of clusterings of a graph by assigning some 

cost functions (Naive cost function and scaled cost function). 

The memory requirement for RNSC is O (n^2). The 

complexity of a move in the naive cost function is O (n), 

which is the size of the restricted neighbourhood of a move 

M.  

MCL iscompetent clustering method for weighted graphs, 

based on the prototype of stochastic flow simulation 

technique. In this technique, clusters (a natural grouping of 

densely flow-connected vertices) are achieved by using two 

operators: flow expansion and inflation. MCL technique 

performs well for sparse graphs. 

In this work, the performance of RNSC and MCL is verified 

on both real and synthetic benchmark random geometric 

graphs. Widespread experimental results on several real and 

synthetic datasets convey the detailedbehaviour of both the 

algorithms. The characteristics of both the algorithm are 

measured in terms of cost of clustering, cluster size, 

modularity index of clustering results and NMI value. 

 

2.GRAPH CLUSTERING ALGORITHMS 

AND RANDOM GEOMETRIC GRAPH 

Here we discuss about the graph clustering algorithms RNSC 

and MCL which are mentioned in the abovesection and the 
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RGG graph datasets, used in the performance analysis of these 

algorithms. 

2.1 RNSC (Restricted Neighbourhood 

search clustering) 

A.D. King introduced RNSC [19]as a local search meta-

heuristic technique which is used to minimize the cost of 

clustering in the solution space. According to Stijn van 

Dongen, the vertex-wise performance criteria for clustering of 

unweighted graphs as the sum of the coverage measure taken 

on each vertex. Here, a simple integer-valued cost function 

(called the naive cost function) is taken as a pre-processor to 

generate initial clustering results on a graph and after that to 

estimate the low-cost clustering results, a  more sensitive (but 

less effective) real-valued cost function (called the scaled cost 

function) is applied. The scaled function attempts to optimize 

the output from naive function and reach to the global optimal 

solution.  

For a clustering C on a graph G (V, E) in which |V| = n, the 

coverage measure for Naïve cost function is stated as 

 
1 0( , , ) ( , , )

( , , ) 1
1

out inG C v G C v
Cov G C v

n

 
 

 (1)

 

Where 
1 ( , , )out G C v and

0 ( , , )in G C v  are indicated 

respectively as a number of cross edges incident to v and 

number of vertices in Cv that are not adjacent to v and for a 

good clustering, these mentioned  parameters should be small. 

Naive cost function is in the following expression. 

1 01
( , ) ( ( , , ) ( , , ))

2
n out in

v V

C G C G C v G C v


  
 

(2) 
The more sensitive scaled coverage measure is in the   

following expressionwhere, N (v) is the open neighbourhood 

of v. 
1 0( , , ) ( , , )

( , , ) 1
( )

out in

v

G C v G C v
Cov G C v

N v C

 
   

                                                                                               (3) 

Now, the scaled cost function, built on scaled coverage 

measure is expressed as ineq (4), shown below. 

1 01 1
( , ) ( ( , , ) ( , , ))

3 | ( ) |
s out in

v V v

n
C G C G C v G C v

N v C


   




                                                           (4)  

 

2.2 MCL (Markov clustering) 
 

To provide a very fast clustering technique, Stijn van Dongen, 

proposesMarkov Clustering algorithm which produces a 

natural group of clusterings for weighted graph [23]. This 

algorithm is established on the prototype of stochastic flow 

simulation technique using random walk. Two operators, flow 

expansion and inflation are used to generate a natural 

grouping of densely flow-connected vertices, which are called 

clusters. These two operators are constructed from the input 

graph and they are used to change the probability of the 

random walk as the Markov chain like way to another. 

Mainly, the inflation is used for strengthening the flow where 

it is strong and also weakening the flow where it is already 

weak and the flow expansion is used for propagating the flow 

within the graph. MCL Algorithm is explained step by step 

below. 

 

Step1: Input weighted directed or undirected graph; 

Step2: Create the adjacency matrix from the graph; 

Step3: Add self-loop to each vertex; 

Step4: Normalize the matrix
k lR 

; 

Step5: Expand the matrix with eth power i.e. ( )e

klR  

Step6: Inflate the matrix by taking inflation of the resulting 

matrix with parameter r; 

Step7: Repeat step 5 and 6 until a steady state is achieved; 

Step8: Interpret resulting matrix to discover clusters. 

The inflation operator is denoted as with power coefficient 

r, a real nonnegative number. The matrix is denoted as M

, M 0.The matrix resulting from rescaling each of the 

columns of M with power coefficient r is denoted as 

i.e. 

(5)

 

2.3 Random Geometric graph (RGG) 
 

A random geometric graph [24] is denoted as G (n, r) where n 

is the number of nodes. The graph is constructed by inserting 

n points uniformly in terms of distribution at random on the 

unit square (or on the unit disk) and connecting two points if 

their Euclidean distance is at most the radius r (n). Generally, 

the set of vertices, represented as a set of random points which 

are generated by assigning n points uniformly at random in 

the unit square.In this random geometric graph the 

connection between two points is determined by using the 

distance parameter r which is the radius of the unitsquare 

orunit disk. 

 

Now-a-days, this class of random graphs has gained 

importance as a natural model for wireless ad-hoc and sensor 

networks. Exploring properties of these random graphs can 

extract properties of the real-life systems they model and 

permit for the design of efficient algorithms. A pictorial 

representation of RGG is shownin fig1 with 500 nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Few Parametric Concepts 
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Fig 1: RGG with 500 Nodes 
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3.1 Modularity Index 
A topology-based modularity measure, basically proposed by 

Newman and Girvan [25], is used in this exploration to test 

the performance. This is a square symmetric matrix of clusters 

where each element dijdenotes the fraction of edges that link 

nodes between clusters i and j and each diisignifies the 

fraction of edges linking nodes within cluster i. The 

modularity measure is given by eq. (6). 

 
2( ( ) )ii ij

i j

M d d  
(6)

 

3.2 Normalized Mutual Information (NMI) 
 

NMI measures the quality of clusters, which is the mutual 

information, shared between clusterings. This is mainly 

proposed by Alexander Strehl and JoydeepGhosh [26]. Let, 

there are set of groupings of clusterings as 

which is indicated by ^. Let be the number of objects in 

cluster  according to and  be the number of objects 

in cluster  according to . Let denotes the number of 

objects that are in  according to and in cluster  

according to .The symbol is indicated as the 

assessment of NMI. 
( ) ( )
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3.3 Cluster Size 
Cluster size can define the quality of clusters produced in 

clustering by any algorithm. It is also evaluate as the number 

of clusters, generated from the clustering results.  

 

3.4 Graph size 
It is obtained by computing the total number of nodes of the 

input graph. It is a basic parameter used in testing the 

behaviour of algorithms with different approach. 

 

4. Experimental Results and Discussions  
The efficiency and robustness of the RNSC and MCL 

algorithm are to be tested on few benchmark power-law 

graphs. To carry out the experiments, it needs real and 

synthetic data set as input of the algorithm. The performance 

of the algorithms will be verified by comparing the clustering 

results.  

All the experiments are carried out with the following initial 

configuration for RNSC and MCL. For RNSC, d 

(diversification Length) =10; D (shuffling Frequency) =40; t 

(tabu-length) =250 and e (number of experiments) =1000 and 

for MCL, the inflation value is 4; reweight loops c=0. 25; pre-

inflation value p=0. 8 and preset resource scheme=5. 

 

4.1 Evaluation on Synthetic RGG Graphs  

Synthetic benchmark RGG graphs with increasing graph size 

are used for the performance evaluation of these graph 

clustering algorithms. 

4.1.1 Cost of Clustering vsIncreasing Graph Size 

for RNSC and MCL 

 
This table contains the evaluated cost of clustering results, 

produced by RNSC and MCL. All the testing processes are 

conducted on RGG with increasing graph size. 

 

Table1.Cost of Clustering with increasing Graph Size of 

RGG 

 

Networks Cost of 

Clustering 

(RNSC) 

Cost of Clustering 

(MCL) 

Geo500 32379.87 82929.31 

Geo700 68444.88 162994.2 

Geo900 107079.1 

 

269100 

 

Geo1100 158786.8 

 

402413 

 

Geo1500 295870.6 748134 

Geo2000 533175.1 1332000 

 

 

 
 

Fig 2: Cost of Clustering with Increasing Graph Size 

 

Discussion: It is observed from figure 2 that the cost of 

clustering of MCL is much higher than RNSC’s clustering 

results. The cost is measured for both the algorithms varying 

with increasing graph size of random geometric graph (RGG). 

The cost is increasing exponentially for both the case. But 

RNSC is giving less cost compared to MCL for RGG.  

 

4.1.2 Modularity of Clustering Resultsvs 

Increasing Graph Size for RNSC and MCL 

 
Table 2 gives the information about the entire computed 

modularity index of clustering results, produced by RNSC and 

MCL. All the testings are done on RGG with increasing graph 

size. 

( ){ | {1,.., }}q q r 

( )a

hn

hc ( )a ( )b

ln

lc ( )b
,h ln

hc ( )a lc
( )b ( )NMI
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Table2. Modularity of Clustering with increasing Graph 

Size of RGG 

 

Network Modularity 

Index (RNSC) 

Modularity 

Index (MCL) 

Geo500 -4.9518 -3.06336 

Geo700 -15.6877 -2.8893 

Geo900 -5.808 -4.22473 

Geo1100 2.799 -7.9948 

Geo1500 4.6029 -13.935 

Geo2000 -4.3124 -15.2027 

 

 
Fig 3: Modularity with Increasing Graph Size 

 

Discussion: Modularity Index is an important measurement 

technique to check the performance or accuracy of the 

clustering results of different graph clustering methods. It is 

shown in fig 3 that the modularity of RNSC’s clustering 

results is reaching to positive but it also decrease for some test 

cases. Modularity of MCL’s clustering shows that modularity 

is always decreasing to negative for all the test cases of RGG. 

So, RNSC is giving better clusterings compared to MCL. 

 

4.1.3 Cluster Size vsIncreasing Graph Size for 

RNSC and MCL 
It is observed from table 3 that the evaluated cluster size from 

clustering process of RNSC and MCL are shown. These 

testing processes are conducted on RGG with increasing 

graph size. 

 

 

 

 

 

 

 

 

 

 

 

 

Table3. Cluster size with increasing Graph Size of RGG 

 
Network Cluster Size 

(RNSC) 

Cluster Size (MCL) 

Geo500 166 375 

Geo700 228 563 

Geo900 293 714 

Geo1100 350 843 

Geo1500 478 1100 

Geo2000 644 1565 

 

 

 
Fig 4: Cluster Size with Increasing Graph Size 

 

Discussion:It is observed from figure 4 that the cluster size of 

MCL is increasing exponentially compare to RNSC’s cluster 

size for all the test cases. RNSC’s cluster size evaluation is 

getting significant position compared to MCL. RNSC is 

producing more accurate clusters compared to MCL. So, 

RNSC is giving more optimal and meaningful clusters 

compare to MCL. 

 

4.1.4 NMI ValuevsNumber of Experiments for 

RNSC and MCL 
 

 
Fig 5: NMI value on Real RGG Data (bork2455) 
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Discussion:The NMI value plays an important role in 

checking the optimal nature of clusterings of different 

methods. It evaluates the algorithm’s behaviour in information 

passing through different clustering results. Fig 5 shows that 

the NMI value is high in case of RNSC compare to MCL. So 

the quality of the clusters of RNSC is better compared to 

MCL. After 300,500,700 runs with using real RGG graph 

(bork2455 [27]), the NMI value is obtained in case of RNSC 

and in case of MCL; experiments are performed by varying 

inflation value as I= {2.5, 3.5, 4.5}. The mutual information 

sharing between clusterings is more effective for RNSC 

whereas MCL can’t provide good quality clusters due to the 

less NMI value compare to RNSC. For all the three 

experiments, the NMI value of RNSC’s clustering is stable 

and in a much high position compared to the MCL’s NMI 

value of clustering results on real RGG.MCL is not giving 

accuracy in producing optimal clusters compared to RNSC.It 

can be concluded that RNSC is producing meaningful clusters 

compared to MCL’s produced clusters. So, RNSC is more 

optimal than MCL. 

4.2 Evaluation on Real RGG Graphs 
For this evaluation ‘bork2455’, 2002, high confidence yeast 

protein interactions by von Mering et al, is taken and the 

performance of these algorithms is tested on that graph. It is 

shown in the following table 1. The evaluated results shows 

that the cost of clustering produced by RNSC is lower 

compared to MCL. The computed modularity of clustering 

results of both the algorithm is produced and RNSC is gaining 

positive index whereas MCL is at negative index. RNSC’s 

cluster size evaluation is better compared to MCL. It is 

observed from the results, shown in table 1 that RNSC 

produces optimal clusters with lowering cost compared to 

MCL.  

Table1. Clustering results of these algorithms on real 

RGG 
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55 

 

121607. 

5318 

 

324408. 

6402 

 

13. 

4137 

 

-32. 

4219 

 

393 

 

337 

 

 

4.3 Visualization of Clustering of Real RGG 

Bork and Synthetic Graphs 

 
It is observed from figure7 and figure 8 that the clusters, 

evaluated by RNSC are more accurate and clearly visible 

compared to MCL’s evaluation. RNSC always produces 

meaningful clusters compared to MCL. Fig 7 and fig8 show 

the evaluated clustering of RNSC and MCL respectively on 

bork2455 graph. For the real test graph, RNSC is performing 

better in producing clusters compared to MCL. It is obvious 

that RNSC is more optimal compared to MCL. Fig 6 shows 

the visual representation of real RGG bork2455.It is observed 

from this figure 6 that it is a complex network model with 

high protein interaction rate. Fig 9 shows the complex RGG 

network model with 1500 nodes. The nodes are randomly 

coordinated to form this complex network. Fig 10 and fig 11 

show the size distribution graphs of clustering results, 

produced by RNSC and MCL respectively. The modularity is 

basically used to shrink the clustering result of these methods 

by similarity measures i.e. depend on various properties of a 

complex network. The figures show that RNSC is responding 

better in shrinking clustering results compared to MCL’s 

response to modularity. It can be concluded that the shrinking 

is done for RNSC better compared to MCL. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 7: Visualization of RNSC’s clustering Results on 

bork2455 

Fig 6: Visualization of   RGG bork2455 
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Fig 8: Visualization of MCL’s clustering Results on 

bork2455

 Fig 9:  Synthetic RGG with1500 Nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.  CONCLUSIONS 
 

This paper presents a comparative study between RNSC and 

MCL algorithm on RGG. Robustness and optimality of 

evaluated clustering results of RNSC and MCL algorithms are 

computed in terms of cost of clustering, modularity index of 

clustering results, cluster size and quality of clusters on the 

basis of NMI value. RNSC is getting better NMI value 

compared to MCL using real RGG. The quality of the clusters 

found in RNSC is better compared to MCL whereas MCL can 

find more number of clusters compared to RNSC. From the 

results, it is obvious that RNSC is more accurate than MCL. 

The cost curve shows that RNSC is producing lower-cost 

clustering results compared to MCL. The cluster size curve of 

MCL is increasing exponentially with increasing of graph size 

whereas RNSC is producing meaningful clusters for all the 

test graphs. It can be concluded that for both the case of real 

and synthetic benchmark RGG, RNSC is performing better 

compared to MCL in producing quality clusters with lowering 

cost. From the visualization, one’s attention can be attracted 

certainly on RNSC’s clustering results compared to MCL’s 

clustering on the real RGG graph. The time complexity of 

RNSC is O (n^3).The time complexity of MCL is O (n.k^2) 

where n is the number of nodes and k is the number of 

resources allocated per node. RNSC can be further extended 

by implementing it for weighted and directed graph where the 

weight can be added to the cost functions (naive and scaled 

cost), which will change and will give better results. Also, it 

can be further extended by a parallel move method which will 

give better results in the case of run-time or average cost. 

MCL can be further extended to produce good quality 

clusters. 
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Fig 11:  Modularity controlled clusters marking in MCL’s 

clustering on bork2455 

 

 

Fig 10:  Modularity controlled clusters marking in RNSC’s 

clustering on bork2455 
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