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ABSTRACT 

The paper presents numerical investigation of effects of 

pressure gradient and temperature gradient on demixing of 

a binary mixture of thermally and electrically conducting 

incompressible viscous fluids set in motion due to the 

rotation of a heated sphere in presence of a uniform 

magnetic field applied in a direction parallel to the axis of 

rotation. The boundary layer equations governing the 

motion, temperature and concentration distribution are 

solved numerically with MATLAB’s built – in solver 

bvp4c. The numerical data is represented graphically and 

the effects of various parameters on demixing of the binary 

fluid mixture are discussed.  

Keywords: pressure gradient, temperature gradient, 

magnetic field, binary fluid mixture. 

 

2. INTRODUCTION 
 

Researchers in engineering and scientific field have shown 

great interest in the study of demixing of binary fluid 

mixtures due to its importance in industrial processes. 

Much interest has been attached to the process of demixing 

wherein one of the components of a binary mixture of 

viscous incompressible fluids is present in extremely small 

proportion. The demixing of isotopes in its naturally 

occurring mixture is one such example. Another example 

is the process of demixing of gases in the air by the 

pressure and temperature gradient present in the 

atmosphere. If one of the components is present in a small 

quantity then the density and the velocity of the mixture 

will be independent of the distribution of the components. 

The flow of a binary mixture is then identical to that of a 

single fluid but the density and the velocity are understood 

as the mass average density and velocity respectively i.e., 

 

                             ,                                               (1)                                                                                                  

                  ⃗  (     ⃗⃗⃗⃗⃗      ⃗⃗⃗⃗⃗)    ,                                  (2)      

                                                                                   

where subscripts 1 and 2 respectively denote the rarer and 

more abundant components of the mixture. It is assumed 

that the first component of the binary fluid mixture is 

lighter than the second one. The composition of binary 

mixture is described by the concentration    , defined as 

the ratio of mass of rarer and lighter component to the total 

mass of the mixture in a given volume. The concentration 

   of heavier and abundant component is given by    =1 –

  . A binary mixture subject to the temperature gradient 

can generate thermal diffusion i.e. the temperature 

gradients cause solute fluxes. This phenomenon is known 

as Soret effect. The diffusion flux  ⃗ is given by 

 ⃗      [             ] ,                                    (3)                                                                           

where D is the diffusion coefficient,     is the 

barodiffusion coefficient and     is the thermal diffusion 

coefficient. 

 

Howarth [1], Nigam [2] and Banks [3] have discussed the 

flow of an incompressible viscous fluid due to the rotation 

of a solid sphere. Singh [4] and Banks [5] have solved the 

problem of heat transfer in the flow of an incompressible 

viscous fluid due to steady rotation of a uniformly heated 

sphere. Kalita [6] has discussed this problem under the 

effect of a magnetic field and has integrated the equation 

by Kărmăn Polhausen method. Liu [7] has discussed the 

flow of a binary mixture of gases of unequal molecular 

weights over the surface of a heated wall and has shown 

that the demixing of two components of the mixture takes 

place due to the temperature gradient existing in the 

thermal boundary layer along the surface of the wall. 

Sharma and Singh [8, 9, 10], Sharma and Nath [11] and 

Sharma et al. [12, 13] have studied the effect of magnetic 

field on demixing of a binary fluid mixture. Sharma and 

Singh [14, 15] have studied the effect of temperature 

gradient on demixing of species in hydromagnetic flow of 

a binary mixture of incompressible viscous fluids between 

two parallel plates, first taking the plates horizontal and 

second by taking the plates vertical. They found that the 

effect of temperature gradient is to separate the 

components of the binary mixture and the magnetic field 

increases the effect of species demixing 

 

In this piece of work  the mass transfer in a binary mixture 

of thermally and electrically conducting incompressible 

viscous fluids set in steady laminar motion due to the 

uniform rotation of a sphere about a diameter is studied 

numerically considering that the fluid at infinity is at rest. 

The solutions of the boundary layer equations have been 

obtained by expanding the functions in ascending powers 

of     , where   is the angle made at the centre of the 

sphere by the position vector of a point with the direction 

of the axis of rotation. 

 

3. FORMULATION OF THE 

PROBLEM 

Consider the phenomenon of species demixing due to 

pressure gradient and temperature gradient in a 

hydromagnetic flow of a binary mixture of an electrically 

conducting incompressible Newtonian fluids due to the 

rotation of a  sphere r = a rotating with a constant angular 

velocity    about one of its diameters. The surface of the 

sphere is maintained at a constant temperature Tw which is 

higher than T∞, the temperature of the ambient fluid 

mixture at a large distance from the surface of the sphere. 
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Let(          )  be the components of velocity  ⃗ in 

spherical polar co-ordinate system (       ). A weak 

magnetic field of strength    is applied in a direction 

parallel to the axis of rotation. Since the motion is 

axisymmetric, all the physical quantities will be 

independent of  . Let T and p denote the temperature and 

the pressure respectively at any point in the fluid mixture. 

Under boundary layer approximations, the equation of 

continuity is 

   
   

  
 

 

 
  

    

  
 

  

 
                                                 (4)                                                                                                                                                               

and the equations of motion in directions of         

respectively can be written as: 
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where     is the coefficient of kinematic viscosity and σ is 

the electrical conductivity of the medium. 

The equation governing the temperature is 
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where     is the specific heat at constant volume and k is 

the coefficient of thermal conductivity of the binary 

mixture. 

The equation for the concentration ratio c1 in spherical 

polar co-ordinates with boundary layer approximations is 

given by 
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The coefficients      and     may be determined from the 

thermodynamic properties alone. Landau and Lifshitz [16] 

have given the explicit expression for the barodiffusion 

ratio    as 

   (     ) [
  

  
 

  

  
]

    

  
  ,                                  (10)  

since     = 1-    and if    is assumed to be very small so 

that   
  may be neglected then (10) becomes                 

   (     )
    

  
                                               (11)                                                                                      

                                  

where A = 
(     )

    
 .                                                       (12)                                                                                                           

The expression for    has been suggested by Hurle and 

Jakeman [17] as 

                                                                            (13)                                                                                                                         

for small  value of      (13) becomes 

        . 

The boundary conditions of the problem are 

                                 

  (
   

  
    

  

  
     

  

  
)                

                                                                        at r =a   (14)                       

where β is the electrical characteristic of the conducting 

medium and is assumed to be constant here. 

And 

                   (  )         as     (15)                                                

where  (  )  be the fixed value of the concentration for 

the rarer and lighter species in its undisturbed  state  at  

infinity.      

 

4. SOLUTION OF THE PROBLEM 
 

For the flow problem                        are expanded 

in powers of       as 
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where                    (i=0,1,2,3,...) are functions of the 

independent non-dimensional variable   given by 

  √
 

 
(   ) .                                                     (22)  

With the above assumptions the equation of continuity (4) 

is satisfied identically. 

On substituting the expansions (16) to (21) in the equations 

(5) to (9) and equating the like powers of       

and          on both sides of the equations the following 

non-linear coupled ordinary differential equations are 

obtained:  
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 where   
   

 

(  )
  is the  hydro-magnetic interaction 

parameter,    
    

 
  is the  Prandtl number,    

 

 
  is the  

Schmidt number,    (     √
 

 
) is the  barodiffusion 

number  and     
      

  
 is the  thermal diffusion number. 

The boundary conditions (14) and (15) become 
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                                                as                   (35) 

where     
    

  (     )
 is the Eckert number  and     

      

  (  ) 
  is the electric parameter. 

 

Since the solutions of non-linear coupled ordinary 

differential equations (23) to (33) under the boundary 

conditions (34)-(35) cannot be obtained in closed form 

therefore these equations are solved numerically with 

MATLAB’s built- in solver bvp4c. From the process of 

numerical computation, the local skin friction, the Nusselt 

number and the   Sherwood number, which are 

respectively proportional to   
  ( )   

  ( )   
 ( )   

 ( )    

  
 ( )   

 ( )       
 ( )   

 ( ) are also worked out and 

their numerical values are presented in a tabular form. 

5. RESULTS AND DICUSSION 

Numerical calculations have been carried out for various 

values of the parameters N,                and L*, and 

these numerical results for concentration of the lighter 

component of the binary fluid mixture are plotted against   

for various values of above mentioned parameters and are 

displayed in Figures 1-7. It is observed from the figures 

that the concentration of the lighter component of the 

binary mixture is more at the plate and decreases 

exponentially as   increases to 4.5. Thereafter in the region  

      no variation in    is observed. The concentration 

of the lighter and rarer component of the binary mixture 

increases sharply near the plate with decrease in the values 

of all the parameters namely N,                and L*.  

 

Thus we conclude that the separation of the binary mixture 

can be enhanced by decreasing (i) the strength of the 

applied magnetic field, (ii) electrical conductivity of the 

medium, and by increasing the rate of rotation of the 

sphere. The effect of demixing is confined in a boundary 

layer region near the surface of the sphere. The lighter 

component of the binary fluid mixture gets collected near 

the surface of the sphere whereas the heavier one is thrown 

away from it. 

 

Taking into account the conclusion derived in this paper, 

gas separating instruments can be installed in big cities 

where harmful gases are present in very small quantities 

that can be sucked after separating them and thus 

pollutants can be removed. 

                 

      In the present investigation the effect of weak magnetic 

field on separation has been studied. There is scope for the 

study of the effect of strong magnetic field on separation of 

binary fluid mixture. 

Figure.1. The graph of    against η   = 1.1,    
           ,   =0.001,         and L*=4  for  

various values of N.                                                        
 

 

                             

   Figure.2. The graph of    against η   N= 0.01, 

                 ,   =0.001,         and L*=4  

for  various values of    .                                                                                                                
        

    Figure.3. The graph of    against η     = 1.1, 

                 ,   =0.001,         and L*=4  

for  various values of    .      
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  Figure.4. The graph of    against η   N= 0.01, 

             ,   =0.001,         and L*=4  for  

various values of    .                      

 

    
  Figure.5. The graph of    against η   

    = 1.1,                  ,   =4,    

          and L*=4  for  various values of    .      

 

 

  Figure.6. The graph of    against η  N= 0.01, 

             ,   =0.001,          and L*=4  for  

various values of    . 

                  

      Figure.7. The graph of    against η                                                                               

        = 1.1,                  ,   =4,                                                                     

             and   =0.001 for  various values of     .                                        

 

 

Finally, the effects of the local skin friction, the Nusselt 

number and the Sherwood number are shown in Table1. 

The behaviour of these parameters is self – evident from 

the Table 1 and hence any further discussion about them 

seems to be redundant. 
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Table1. Numerical values of       
     

                                          

  
     

         
       

       
       

       
              

      
     
 

   

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  =1.1,          

     ,   =0.001,         and 

L*=4   

N=0.01,         

     ,   =0.001,         and 

L*=4   

   =1.1,            

     ,   =0.001,         and L*=4   

                  N       

0.01 0.03 0.05 0.78 0.85 1.1 3 4 5 

   0 0 0 0 0 0 0 0 0 

  
  0 0 0 0 0 0 0 0 0 

  
   0.5206 0.4986 0.4950 0.5206 0.5119 0.5069 0.5206 0.5054 0.5071 

   0 0 0 0 0 0 0 0 0 

  
  0 0 0 0 0 0 0 0 0 

  
   0.1264 0.0878 0.1143 0.1264 0.1133 0.1163 0.1264 0.1005 0.1179 

   1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

  
  -0.5732 -0.6210 -0.6389 -0.5732 -0.6020 -0.6207 -0.5732 -0.6099 -0.6205 

   0 0 0 0 0 0 0 0 0 

  
  0.1312 0.1164 0.1359 0.1312 0.1411 0.1366 0.1312 0.1308 0.1433 

   100 100 100 100 100 100 100 100 100 

  
  -40.7245 -39.5389 -40.5560 -32.1537 -33.6062 -41.4797 -40.7245 -39.8488 -41.4977 

   0 0 0 0 0 0 0 0 0 

  
  6.5153 18.1229 8.1763 4.6503 10.5570 6.8934 6.5153 12.2907 8.5236 

   0.9710 0.9666 0.9648 0.9768 0.9723 0.9643 0.9706 0.9669 0.9661 

  
  0.0319 0.0382 0.0391 0.0254 0.0323 0.0400 0.0319 0.0385 0.0401 

   8.0588 0.0505 -0.1071 5.5812 0.2719 -0.1037 8.4553 0.0149 -0.1048 

  
  3.9941 3.9815 3.9911 3.9955 3.9888 3.9924 3.9941 3.9871 3.9908 

N= 0.01,           

   ,   =0.001,       

     and L*=4                                      

      = 1.1,             

     ,   =4,         and 

L*=4   

N= 0.01,           

   ,   =0.001,          and 

L*=4   

    = 1.1,             
     ,   =4,                                                                     
        and   =0.001 

                              L 

0.001 0.003 0.006 0.001 0.006 0.009 0.010 0.012 0.013 5 5.2 5.4 

   0 0 0 0 0 0 0 0 0 0 0 0 

  
  0 0 0 0 0 0 0 0 0 0 0 0 

  
   0.520 0.505 0.507 0.520 0.505 0.507 0.520 0.505 0.507 0.520 0.505 0.507 

   0 0 0 0 0 0 0 0 0 0 0 0 

  
  0 0 0 0 0 0 0 0 0 0 0 0 

  
   0.126 0.100 0.117 0.126 0.100 0.117 0.126 0.100 0.117 0.126 0.100 0.117 

   1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  
  -0.573 -0.609 -0.620 -0.573 -0.609 -0.620 -0.573 -0.609 -0.620 -0.573 -0.609 -0.620 

   0 0 0 0 0 0 0 0 0 0 0 0 

  
  0.131 0.130 0.143 0.131 0.130 0.143 0.131 0.130 0.143 0.131 0.130 0.143 

   100 100 100 100 100 100 100 100 100 100 100 100 

  
  -40.72 -39.84 -41.49 -40.72 -39.84 -41.49 -40.72 -39.84 -41.49 -40.72 -39.84 -41.49 

   0 0 0 0 0 0 0 0 0 0 0 0 

  
  6.515 12.290 8.523 6.515 12.371 8.522 6.515 12.29 8.523 6.515 12.351 8.522 

   0.9710 1.000 1.049 0.971 0.966 0.964 0.971 0.966 0.964 0.971 0.966 0.964 

  
  0.031 0.039 0.043 0.031 0.038 0.040 0.031 0.038 0.040 0.031 0.038 0.040 

   8.058 0.010 -0.106 7.381 0.012 -0.104 8.058 0.011 -0.105 7.549 0.012 -0.104 

  
  3.994 3.986 3.990 3.994 3.987 3.990 3.994 3.987 3.990 3.994 3.987 3.990 
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