
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

41

Implementing Semantic Query Optimization in Relational
Databases

Jyoti Mor

M. Tech Student, CSE Dept.
MRIU, Faridabad

Indu Kashyap
Asst. Professor, CSE Dept.

MRIU, Faridabad

R.K.Rathy
Phd, Professor, CSE

Department
MRIU, Faridabad

ABSTRACT
Semantic query optimization is applied to relational databases

using the inductive learning approach. This approach

generates an alternate query using the learning framework and

the algorithm. The alternate query should be semantically

equivalent to original query. The semantically equivalent

query generated should be less expensive than the original

query. These can be implemented in SQL using the SQL

hints. These hints allow user to implement the desired plan for

the query.

Keywords
Semantic query; semantic query optimization; SQL hints;

inductive learning; algorithm for learning; learning framework

1. INTRODUCTION
A semantic query is a query pertaining to knowledge or data

that is expressed purely on the basis of a common business

vocabulary, without any reference to how or where the data is

stored. Semantic query refers to database queries that are

based on concepts, properties and instances defined in an

ontology and that return semantically relevant results. A

semantic query attempts to help a user to obtain or manipulate

data in a database without knowing its detailed syntactic

structure. For example, the query: "list the name of all

employees in the database" is semantically equivalent to the

syntactic query: "list the name of all faculty, trainee and

employee in the database", provided the database semantics

specify that all faculty members and trainees are employees

[8, 10 and 12]. The term Semantic Query Optimization refers

to the process of utilizing the integrity constraints in the

optimization process. The underlying concept of semantic

query optimization is that by harnessing the integrity

constraints, a user’s query can be transformed into a query

which is syntactically different to the original but which will

produce the same result for all states of the database, and be

more efficient to execute than the original query [2]. Semantic

query optimization results in the transformation of an input

query into a “semantically equivalent query”. Two queries are

said to be semantically equivalent if, for every state of the

database, they produce the same result. Semantic query

optimization in relational databases can be done by using the

concept of inductive learning. It can be implemented in SQL

using the SQL hints [1, 3].

2. INDUCTIVE LEARNING
Inductive learning is used to derive an alternate query which

is semantically equivalent to the original query but is less

expensive. In inductive learning, a query is viewed as a

logical description of the answer. Inductive learning focuses

on rule based learning [6]. In inductive learning the rules are

derived from the query processed and these rules are further

used for reference in future. Using the relevant rules, an

alternate query that is equivalent and less expensive to

evaluate than the original query is constructed. Once this

query is learned, using the input query and the constructed

query the semantic rules for future use are inferred. A learning

framework is defined for the inductive approach as shown in

fig 1. This learning framework consists of two components,

an inductive learning component, and an operationalization

component. A query is given to trigger the learning. The

system applies an inductive learning algorithm to induce an

alternative query equivalent to the input query with a lower

cost. The operationalization component then takes the input

query and the learned alternative query to derive a set of

semantic rules. Instances (or tuples) in the database are

labeled as positive (+) if they satisfy the input query and

negative (-) otherwise. The learned alternative query must

cover all positive instances but no negative instances so that it

retrieves the same data as the input query and is equivalent to

the input query. Given a set of data instances classified as

positive or negative, the problem of inducing a description

that covers all positive data instances but no negatives is

known as supervised inductive learning in machine learning.

Once the alternate query is learned, semantic rules are inferred

from both the input query and the equivalent less expensive

query. The semantic rules are stored in the rule bank for future

reference [5].

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

42

Figure 1. Learning Framework for Inductive Learning Approach

An algorithm is defined to generate the alternate query that is

semantically equivalent to the original query. The input of the

algorithm is a user query Q and the database relations DB.

The primary relation of a query is the relation that must be

accessed to answer the input query. Initially, the system

determines the primary relation of an input query and labels

the instances in the relation as positive or negative. An

instance is positive if it satisfies the input query; otherwise, it

is negative [7].

Algorithm –

INPUT Q = input query; DB = database relations;

BEGIN

LET r = primary relation of Q; LET AQ=

alternative query (initially empty);

LET C = set of candidate constraints (initially

empty);

Construct candidate constraints on r and add them to

C;

REPEAT

Evaluate gain/cost of candidate

constraints in C;

LET c = candidate constraint with the

highest gain/cost in C;

IF gain(c) > 0 THEN

Merge c to AQ, and C = C - c;

IF AQ Q THEN RETURN

AQ;

IF c is a join constraint on a new

relation r' THEN

Construct candidate

constraints on r' and

add them to C;

ENDIF;

ENDIF;

UNTIL gain(c) = 0;

RETURN fail, because no AQ is found to be

equivalent to Q;

END.

The algorithm initially takes an input query Q, database DB,

primary relation of input query r, an empty alternate query

AQ and an empty set of candidate constraints C. A candidate

constraint is created on r and is added to set of constraints C.

The gain/cost of candidate constraints is evaluated. The

constraint with the highest gain/cost ratio is stored in c. If the

gain of c is greater than 0, the candidate constraint is merged

with alternate query AQ and is removed from the set of

candidate constraints C. If the AQ is found equivalent to Q,

the value of AQ is returned. Next c is checked whether it is a

join constraint on a new relation r'. If it is a join constraint on

r' then candidate constraints on r' are constructed and are

added to

C. This whole process is continued till the gain value of c

becomes zero. If no AQ equivalent to Q is found, algorithm

returns fail and the algorithm ends.

3. SQL HINTS
Hints are options or strategies specified for enforcement by

the SQL Server query processor on SELECT, INSERT,

UPDATE, or DELETE statements. Hints are additions to the

SQL standard that instruct the database engine on how to

execute the query [4]. For example, a hint may tell the engine

to use as little memory as possible, or to use or not to use

an index. Hints are some additional comments that are placed

within an SQL statement aiming to directly force the

optimizer to alter the optimized execution plan. Query hints

instruct the optimizer to constrain its search space to a certain

subset of execution plans. Hints also provide a mechanism to

instruct the optimizer to choose a certain query execution plan

based on the specific criteria. Optimizer doesn’t need to

identify the optimal plan for the query on creating a query

plan for various reasons. Hints apply only to the optimization

http://en.wikipedia.org/wiki/Database_engine
http://en.wikipedia.org/wiki/Index_(database)

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

43

of the block of a statement in which they appear [11]. A

statement block is any one of the following statements or parts

of statements:

 A simple SELECT, UPDATE, or DELETE statement

 A parent statement or subquery of a complex statement

 A part of a compound query

If a compound query consisting of two component queries

combined by the UNION operator has two blocks, one for

each component query, then hints in the first component

query apply only to its optimization, not to the optimization of
the second component query.

You can use hints to specify the following:

 The optimization approach for a SQL statement

 The goal of the cost-based optimizer for a SQL statement

 The access path for a table accessed by the statement

 The join order for a join statement

 A join operation in a join statement

Hints provide a mechanism to direct the optimizer to choose a

certain query execution plan based on the following criteria:

 Join order

 Join method

 Access path

 Parallelization

4. EXPERIMENTAL RESULTS
We take a Bank database having tables placed on same

location. The Bank database has three tables –

CustomerDetail and Account. The CustomerDetail table

stores the information of the customer like the customer name,

city of customer and phone number. The Account table have

information of the account like account number, ID of account

holder, branch city where account exists and balance in the

account. These tables are shown below.

Table 1. CustomerDetail

CustNumber CustomerName City PhoneNumber

C042 Praveen Delhi 9715265327

C098 Rahul Delhi 9878767755

C127 Sam Gurgaon 9887262562

C129 Sonia Faridabad 9221832721

C176 Suman Delhi 9872211231

C179 Priya Faridabad 9732753429

C298 Riya Faridabad 9715624131

C872 Kritika Faridabad 8731653276

C873 Rohan Faridabad 9112625336

C987 Neha Gurgaon 9741327772

Table 2. Account

We query the database to retrieve the account number,

customer name and balance of those accounts which have

CustNumber < ‘C200’ and the BranchCity of Account is same

as City of Customer from the CustomerDetail and Account

table. The SQL query for this would be –

Query 1: Select the account number, customer name and

balance in account where the owner ID of Account table is

same as customer number, customer number is less than C200

and the BranchCity of Account is same as City of Customer

from the Account table and CustomerDetail table.

SQL Query –

Select AccountNumber, CustomerName, Balance

From Account as A, CustomerDetail as CD

Where A.OwnerID=CD.CustNumber and

CustNumber<'C200' and BranchCity=City

The query can be executed in different ways. In centralized

database, the join technique used for joining the tables plays

the most important role as the join method can reduce or

increase the size of the plan and the query cost. So we

implement different join methods and see the difference

between each. The joins are implemented using SQL hints.

Plan 1 –

Using inner loop join on CustomerDetail and Account tables.

The SQL hint used for this is ‘inner loop join’. The query

looks like –

Select AccountNumber, CustomerName, Balance

From Account as A inner loop join CustomerDetail as CD on

A.OwnerID=CD.CustNumber

Where CustNumber<'C200' and BranchCity=City

The query execution plan for plan 1 is shown below in figure

2.

AccountNumber OwnerID BranchCity Balance

A321 C042 Delhi 50000

A512 C873 Gurgaon 40000

A543 C098 Gurgaon 35000

A632 C129 Faridabad 80000

A634 C179 Faridabad 45000

A675 C298 Faridabad 25000

A7162 C098 Delhi 72000

A721 C987 Gurgaon 20000

A723 C176 Gurgaon 25000

A761 C298 Faridabad 35000

A932 C129 Gurgaon 40000

A981 C872 Faridabad 25000

A986 C127 Gurgaon 70000

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

44

Figure 2. Query plan 1 for Query 1

Plan 2 –

Using merge on CustomerDetail and Account tables. The

SQL hint used for this is ‘inner merge join’. The query looks

like –

Select AccountNumber, CustomerName, Balance

From Account as A inner merge join CustomerDetail as CD

on A.OwnerID=CD.CustNumber

Where CustNumber<'C200' and BranchCity=City

The query execution plan for plan 2 is shown below in figure

3.

Figure 3.Query plan 2 for Query 1

Plan 3 –

Using right outer hash join on CustomerDetail and Account

tables. The SQL hint used for this is ‘right outer hash join’.

The query looks like –

Select AccountNumber, CustomerName, Balance

From Account as A right outer hash join CustomerDetail as

CD on A.OwnerID=CD.CustNumber

Where CustNumber<'C200' and BranchCity=City

The query execution plan for plan 3 is shown below in figure

4.

Figure 4. Query plan 3 for Query 1

Plan 4 –

Using left outer hash join on CustomerDetail and Account

tables. The SQL hint used for this is ‘left outer hash join’. The

query looks like –

Select AccountNumber, CustomerName, Balance

From Account as A left outer hash join CustomerDetail as CD

on A.OwnerID=CD.CustNumber

Where CustNumber<'C200' and BranchCity=City

The query execution plan for plan 4 is shown below in figure

5.

Figure 5. Query plan 4 for Query 1

We now compare these plans for Query 1. The comparison is

done on basis of three criteria – cached plan size, relative

query cost and estimated query cost.

Table 3. Comparison of query plans for Query 1

Plan

number

Cached

Plan Size

(in Bytes)

Relative

Query Cost

(in %)

Estimated

Query Cost

(in sec)

1 13 9 0.0075697

2 21 31 0.0254061

3 35 30 0.02464324

4 35 30 0.02464324

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

45

As it is shown in table 3 that the plan 1 not only has less cost

as compared to other plans but it also had less cached plan

size. So plan 1 is found to be most optimum execution plan

for Query 1. Thus, plan 1 will be used to process Query 1.

Now we use the rule induction algorithm and find the

alternate query for query 1. Let this query be Query 2.

Query 2: Select the account number, customer name and

balance in account where the owner ID of Account table is

same as customer number and balance in account is greater

than 40000 from the Account table and CustomerDetail table.

SQL Query –

Select AccountNumber, CustomerName, Balance

From Account as A,CustomerDetail as CD

Where A.OwnerID=CD.CustNumber and Balance>40000

Different execution plans for query 2 are defined as follows.

Plan 1 –

Using inner loop join on CustomerDetail and Account tables.

The query looks like –

Select AccountNumber, CustomerName, Balance

From Account as A inner loop join CustomerDetail as CD on

A.OwnerID=CD.CustNumber

Where Balance>40000

The query execution plan for plan 1 is shown below in figure

6.

Figure 6. Query plan 1 for Query 2

Plan 2 –

Using merge on CustomerDetail and Account tables. The

query looks like –

Select AccountNumber, CustomerName, Balance

From Account as A inner merge join CustomerDetail as CD

on A.OwnerID=CD.CustNumber

Where Balance>40000

The query execution plan for plan 2 is shown below in figure

7.

Figure 7. Query plan 2 for Query 2

Plan 3 –

Using right outer hash join on CustomerDetail and Account

tables. The query looks like –

Select AccountNumber, CustomerName, Balance

From Account as A right outer hash join CustomerDetail as

CD on A.OwnerID=CD.CustNumber

Where Balance>40000

The query execution plan for plan 3 is shown below in figure

8.

Figure 8. Query plan 3 for Query 2

Plan 4 –

Using left outer hash join on CustomerDetail and Account

tables. The query looks like –

Select AccountNumber, CustomerName, Balance

From Account as A left outer hash join CustomerDetail as CD

on A.OwnerID=CD.CustNumber

Where Balance>40000

The query execution plan for plan 4 is shown below in figure

9.

Figure 9. Query plan 4 for Query 2

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

46

We now compare these plans for Query 2. The comparison is

done on basis of three criteria – cached plan size, relative

query cost and estimated query cost.

Table 4. Comparison of query plan for Query 2

Plan

number

Cached

Plan Size

(in Bytes)

Relative

Query Cost

(in %)

Estimated

Query Cost

(in sec)

1 10 9 0.0072389

2 14 31 0.0250769

3 27 30 0.0245428

4 26 30 0.0245427

As it is shown in table 4 that the plan 1 not only has less cost

as compared to other plans but it also had less cached plan

size. So plan 1 is found to be most optimum execution plan

for Query 2. Thus, plan 1 will be used to process Query 2.

Now we compare the optimized plans of query 1 and query 2.

By comparing the optimized plans of both queries we get the

best query to be used for processing the query for the same

result.

Table 5. Comparison of optimized plans of query 1 and

Query 2

Query Cached

Plan Size

(in Bytes)

Relative

Query Cost

(in %)

Estimated

Query Cost

(in sec)

1 13 51 0.0075697

2 10 49 0.0072389

Table 5 shows that the query 2 is more efficient than query 1.

Query 2 have less cached plan size and relative and estimated

cost. Thus the query 2 can be used instead of query 1 so that

the cost and size for query is reduced.

5. CONCLUSION
The semantically equivalent query generated using the

inductive learning method is more efficient than the original

query fired by the user. This is clear from the table 5. Table 5

clearly shows that even the best plan for the original query is

less efficient than the best plan of the semantically equivalent

query. The inductive learning method not only reduces the

cost of execution of query but also reduces the size of plan

used while executing the query. The concept of semantic

query optimization proves to be beneficial in optimizing the

queries.

The semantic query optimization can further be extended to

the distributed databases. In distributed databases not only

optimization is difficult but also the query processing is

complicated as compared to the relational databases. The

semantic query optimization will be more difficult to be

implemented in distributed databases as the databases are

stored at different locations. So the generation of alternate

query will not be an easy process. A very different and strong

algorithm will be required for generation of alternate

semantically equivalent query in distributed databases. The

algorithm should be able to take data from the different site

and generate an alternate query for the original query fired.

The alternate query should be semantically equivalent and less

expensive.

6. REFERENCES
[1] Bruno Nicolas, Chaudhuri Surajit and Ravishankar

Ramamurthy, “Power Hints for Query Optimization”;

In Proceedings of the International Conference on Data

Engineering (ICDE), IEEE, 2009.

[2] Cardiff J, “The Use of Integrity Constraints to Perform

Query Transformations in Relational Databases”; Proc.

PARBASG 90, IEEE Computer Society Press, 1990.

[3] Cardiff J. and M. Orlowska, “A Geometric Approach to

Semantic Query Optimisation in Relational Databases”;

Proc. of the Fifth Int. Symposium on Methodologies for

Intelligent Systems, Elsevier Publishing Co., 1990.

[4] Carlos Ordonez, “Optimization of Linear Recursive

Queries in SQL”; IEEE Transactions on Knowledge and

Data Engineering, Vol. 22, No. 2, page(s): 264-277,

February 2010.

[5] Hsu C. and C. A. Knoblock, “Rule induction for

semantic query optimization”; In Proc. 11th International

Conference on Machine Learning, pages 112–120,

Morgan Kaufmann, 1994.

[6] Hsu C. and C. A. Knoblock, “Semantic query

optimization for query plans of heterogeneous

multidatabase systems”; Knowledge and Data

Engineering, 12(6):959–978, 2000.

[7] Hsu C. and C. A. Knoblock, “Using inductive learning to

generate rules for semantic query optimization”; In

Advances in Knowledge Discovery and Data Mining,

pages 425–445. 1996.

[8] Kumar P. Mohan and J. Vaideeswaran, “Semantic based

Efficient Cache Mechanism for Database Query

Optimization”; International Journal of Computer

Applications Volume 43– No.23, page(s): 14-18, April

2012.

[9] Panus Jan and Josef Pirkl, “Testing of Oracle database

utilization”; International Journal of Applied

Mathematics and Informatics, Issue 3, Vol. 4, page(s):

58-65, 2010.

[10] Saini Mayank, Sharma Dharmendar and P. K. Gupta,

“Enhancing Information Retrieval Efficiency Using

Semantic-based-Combined-Similarity-Measure”;

International Conference on Image Information

Processing (ICIIP 2011), IEEE Computer Society, 2011.

[11] Taniar D., Khaw H.Y., Tjioe H.C. and J.W. Rahayu,

“The use of hints in object-relational query

optimization”; International Journal of Computer

Systems Science and Engineering 19(6), page(s): 337-

346, 2004.

[12] Wang Xiaoyun and Jiayin Liu, “A query optimization

based on semantic user focus”; First International

Workshop on Database Technology and Applications,

IEEE Computer Society, 2009.

http://research.microsoft.com/apps/pubs/default.aspx?id=74117

