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ABSTRACT 
Semantic query optimization is applied to relational databases 

using the inductive learning approach. This approach 

generates an alternate query using the learning framework and 

the algorithm. The alternate query should be semantically 

equivalent to original query. The semantically equivalent 

query generated should be less expensive than the original 

query. These can be implemented in SQL using the SQL 

hints. These hints allow user to implement the desired plan for 

the query.  
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1. INTRODUCTION  
A semantic query is a query pertaining to knowledge or data 

that is expressed purely on the basis of a common business 

vocabulary, without any reference to how or where the data is 

stored. Semantic query refers to database queries that are 

based on concepts, properties and instances defined in an 

ontology and that return semantically relevant results. A 

semantic query attempts to help a user to obtain or manipulate 

data in a database without knowing its detailed syntactic 

structure. For example, the query: "list the name of all 

employees in the database" is semantically equivalent to the 

syntactic query: "list the name of all faculty, trainee and 

employee in the database", provided the database semantics 

specify that all faculty members and trainees are employees 

[8, 10 and 12]. The term Semantic Query Optimization refers 

to the process of utilizing the integrity constraints in the 

optimization process. The underlying concept of semantic 

query optimization is that by harnessing the integrity 

constraints, a user’s query can be transformed into a query 

which is syntactically different to the original but which will 

produce the same result for all states of the database, and be 

more efficient to execute than the original query [2]. Semantic 

query optimization results in the transformation of an input 

query into a “semantically equivalent query”. Two queries are 

said to be semantically equivalent if, for every state of the 

database, they produce the same result. Semantic query 

optimization in relational databases can be done by using the 

concept of inductive learning. It can be implemented in SQL 

using the SQL hints [1, 3].   

 

2. INDUCTIVE LEARNING 
Inductive learning is used to derive an alternate query which 

is semantically equivalent to the original query but is less 

expensive. In inductive learning, a query is viewed as a 

logical description of the answer. Inductive learning focuses 

on rule based learning [6]. In inductive learning the rules are 

derived from the query processed and these rules are further 

used for reference in future. Using the relevant rules, an 

alternate query that is equivalent and less expensive to 

evaluate than the original query is constructed. Once this 

query is learned, using the input query and the constructed 

query the semantic rules for future use are inferred. A learning 

framework is defined for the inductive approach as shown in 

fig 1. This learning framework consists of two components, 

an inductive learning component, and an operationalization 

component. A query is given to trigger the learning. The 

system applies an inductive learning algorithm to induce an 

alternative query equivalent to the input query with a lower 

cost. The operationalization component then takes the input 

query and the learned alternative query to derive a set of 

semantic rules. Instances (or tuples) in the database are 

labeled as positive (+) if they satisfy the input query and 

negative (-) otherwise. The learned alternative query must 

cover all positive instances but no negative instances so that it 

retrieves the same data as the input query and is equivalent to 

the input query. Given a set of data instances classified as 

positive or negative, the problem of inducing a description 

that covers all positive data instances but no negatives is 

known as supervised inductive learning in machine learning. 

Once the alternate query is learned, semantic rules are inferred 

from both the input query and the equivalent less expensive 

query. The semantic rules are stored in the rule bank for future 

reference [5].  
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Figure 1. Learning Framework for Inductive Learning Approach

 

 

An algorithm is defined to generate the alternate query that is 

semantically equivalent to the original query. The input of the 

algorithm is a user query Q and the database relations DB. 

The primary relation of a query is the relation that must be 

accessed to answer the input query. Initially, the system 

determines the primary relation of an input query and labels 

the instances in the relation as positive or negative. An 

instance is positive if it satisfies the input query; otherwise, it 

is negative [7].  

 

Algorithm –  

 

INPUT Q = input query; DB = database relations; 

BEGIN 

LET r = primary relation of Q; LET AQ= 

alternative query (initially empty); 

LET C = set of candidate constraints (initially 

empty); 

Construct candidate constraints on r and add them to 

C; 

REPEAT 

Evaluate gain/cost of candidate 

constraints in C; 

LET c = candidate constraint with the 

highest gain/cost in C; 

IF gain(c) > 0 THEN 

Merge c to AQ, and C = C - c; 

IF AQ       Q THEN RETURN 

AQ; 

IF c is a join constraint on a new 

relation r' THEN 

Construct candidate 

constraints on r' and 

add them to C; 

 

 

 

ENDIF; 

ENDIF; 

 

 

UNTIL gain(c) = 0; 

RETURN fail, because no AQ is found to be 

equivalent to Q; 

END. 

 

The algorithm initially takes an input query Q, database DB, 

primary relation of input query r, an empty alternate query 

AQ and an empty set of candidate constraints C. A candidate 

constraint is created on r and is added to set of constraints C. 

The gain/cost of candidate constraints is evaluated. The 

constraint with the highest gain/cost ratio is stored in c. If the 

gain of c is greater than 0, the candidate constraint is merged 

with alternate query AQ and is removed from the set of 

candidate constraints C. If the AQ is found equivalent to Q, 

the value of AQ is returned. Next c is checked whether it is a 

join constraint on a new relation r'. If it is a join constraint on 

r' then candidate constraints on r' are constructed and are 

added to  

C. This whole process is continued till the gain value of c 

becomes zero. If no AQ equivalent to Q is found, algorithm 

returns fail and the algorithm ends. 

 

3. SQL HINTS 
Hints are options or strategies specified for enforcement by 

the SQL Server query processor on SELECT, INSERT, 

UPDATE, or DELETE statements. Hints are additions to the 

SQL standard that instruct the database engine on how to 

execute the query [4]. For example, a hint may tell the engine 

to use as little memory as possible, or to use or not to use 

an index. Hints are some additional comments that are placed 

within an SQL statement aiming to directly force the 

optimizer to alter the optimized execution plan. Query hints 

instruct the optimizer to constrain its search space to a certain 

subset of execution plans. Hints also provide a mechanism to 

instruct the optimizer to choose a certain query execution plan 

based on the specific criteria. Optimizer doesn’t need to 

identify the optimal plan for the query on creating a query 

plan for various reasons.  Hints apply only to the optimization 

http://en.wikipedia.org/wiki/Database_engine
http://en.wikipedia.org/wiki/Index_(database)
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of the block of a statement in which they appear [11]. A 

statement block is any one of the following statements or parts 

of statements: 

 A simple SELECT, UPDATE, or DELETE statement 

 A parent statement or subquery of a complex statement 

 A part of a compound query 

If a compound query consisting of two component queries 

combined by the UNION operator has two blocks, one for 

each component query, then  hints in the first component 

query apply only to its optimization, not to the optimization of 
the second component query. 

You can use hints to specify the following: 

 The optimization approach for a SQL statement 

 The goal of the cost-based optimizer for a SQL statement 

 The access path for a table accessed by the statement 

 The join order for a join statement 

 A join operation in a join statement 

 

Hints provide a mechanism to direct the optimizer to choose a 

certain query execution plan based on the following criteria: 

 Join order 

 Join method 

 Access path 

 Parallelization 

 

4. EXPERIMENTAL RESULTS 
We take a Bank database having tables placed on same 

location. The Bank database has three tables – 

CustomerDetail and Account. The CustomerDetail table 

stores the information of the customer like the customer name, 

city of customer and phone number. The Account table have 

information of the account like account number, ID of account 

holder, branch city where account exists and balance in the 

account. These tables are shown below. 

 

Table 1. CustomerDetail 

CustNumber CustomerName City PhoneNumber 

C042 Praveen Delhi 9715265327 

C098 Rahul Delhi 9878767755 

C127 Sam Gurgaon 9887262562 

C129 Sonia Faridabad 9221832721 

C176 Suman Delhi 9872211231 

C179 Priya Faridabad 9732753429 

C298 Riya Faridabad 9715624131 

C872 Kritika Faridabad 8731653276 

C873 Rohan Faridabad 9112625336 

C987 Neha Gurgaon 9741327772 

Table 2. Account 

 

We query the database to retrieve the account number, 

customer name and balance of those accounts which have 

CustNumber < ‘C200’ and the BranchCity of Account is same 

as City of Customer from the CustomerDetail and Account 

table. The SQL query for this would be –  

 

Query 1: Select the account number, customer name and 

balance in account where the owner ID of Account table is 

same as customer number, customer number is less than C200 

and the BranchCity of Account is same as City of Customer 

from the Account table and CustomerDetail table. 

SQL Query –  

Select AccountNumber, CustomerName, Balance  

From Account as A, CustomerDetail as CD  

Where A.OwnerID=CD.CustNumber and 

CustNumber<'C200' and BranchCity=City 

 

The query can be executed in different ways. In centralized 

database, the join technique used for joining the tables plays 

the most important role as the join method can reduce or 

increase the size of the plan and the query cost. So we 

implement different join methods and see the difference 

between each. The joins are implemented using SQL hints. 

 

Plan 1 –  

Using inner loop join on CustomerDetail and Account tables. 

The SQL hint used for this is ‘inner loop join’. The query 

looks like –  

 

Select AccountNumber, CustomerName, Balance  

From Account as A inner loop join CustomerDetail as CD on 

A.OwnerID=CD.CustNumber  

Where CustNumber<'C200' and BranchCity=City 

 

The query execution plan for plan 1 is shown below in figure 

2. 

 

AccountNumber OwnerID BranchCity Balance 

A321 C042 Delhi 50000 

A512 C873 Gurgaon 40000 

A543 C098 Gurgaon 35000 

A632 C129 Faridabad 80000 

A634 C179 Faridabad 45000 

A675 C298 Faridabad 25000 

A7162 C098 Delhi 72000 

A721 C987 Gurgaon 20000 

A723 C176 Gurgaon 25000 

A761 C298 Faridabad 35000 

A932 C129 Gurgaon 40000 

A981 C872 Faridabad 25000 

A986 C127 Gurgaon 70000 
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Figure 2. Query plan 1 for Query 1 

Plan 2 –  

Using merge on CustomerDetail and Account tables. The 

SQL hint used for this is ‘inner merge join’. The query looks 

like – 

 

Select AccountNumber, CustomerName, Balance  

From Account as A inner merge join CustomerDetail as CD 

on A.OwnerID=CD.CustNumber  

Where CustNumber<'C200' and BranchCity=City 

 

The query execution plan for plan 2 is shown below in figure 

3. 

 

 
Figure 3.Query plan 2 for Query 1 

Plan 3 –  

Using right outer hash join on CustomerDetail and Account 

tables. The SQL hint used for this is ‘right outer hash join’. 

The query looks like – 

 

Select AccountNumber, CustomerName, Balance  

From Account as A right outer hash join CustomerDetail as 

CD on A.OwnerID=CD.CustNumber  

Where CustNumber<'C200' and BranchCity=City 

 

The query execution plan for plan 3 is shown below in figure 

4. 

 

 
Figure 4. Query plan 3 for Query 1 

Plan 4 –  

Using left outer hash join on CustomerDetail and Account 

tables. The SQL hint used for this is ‘left outer hash join’. The 

query looks like – 

 

Select AccountNumber, CustomerName, Balance  

From Account as A left outer hash join CustomerDetail as CD 

on A.OwnerID=CD.CustNumber  

Where CustNumber<'C200' and BranchCity=City 

 

The query execution plan for plan 4 is shown below in figure 

5. 

 

 
Figure 5. Query plan 4 for Query 1 

We now compare these plans for Query 1. The comparison is 

done on basis of three criteria – cached plan size, relative 

query cost and estimated query cost. 

 

Table 3. Comparison of query plans for Query 1 

Plan 

number 

Cached 

Plan Size 

(in Bytes) 

Relative 

Query Cost 

(in %) 

Estimated 

Query Cost 

(in sec) 

1 13 9 0.0075697 

2 21 31 0.0254061 

3 35 30 0.02464324 

4 35 30 0.02464324 
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As it is shown in table 3 that the plan 1 not only has less cost 

as compared to other plans but it also had less cached plan 

size. So plan 1 is found to be most optimum execution plan 

for Query 1. Thus, plan 1 will be used to process Query 1. 

 

Now we use the rule induction algorithm and find the 

alternate query for query 1. Let this query be Query 2.  

 

Query 2: Select the account number, customer name and 

balance in account where the owner ID of Account table is 

same as customer number and balance in account is greater 

than 40000 from the Account table and CustomerDetail table. 

SQL Query –  

Select AccountNumber, CustomerName, Balance  

From Account as A,CustomerDetail as CD  

Where A.OwnerID=CD.CustNumber and Balance>40000 

 

Different execution plans for query 2 are defined as follows.  

 

Plan 1 –  

Using inner loop join on CustomerDetail and Account tables. 

The query looks like –  

 

Select AccountNumber, CustomerName, Balance  

From Account as A inner loop join CustomerDetail as CD on 

A.OwnerID=CD.CustNumber  

Where Balance>40000 

 

The query execution plan for plan 1 is shown below in figure 

6. 

 

 
Figure 6. Query plan 1 for Query 2 

Plan 2 –  

Using merge on CustomerDetail and Account tables. The 

query looks like – 

 

Select AccountNumber, CustomerName, Balance  

From Account as A inner merge join CustomerDetail as CD 

on A.OwnerID=CD.CustNumber  

Where Balance>40000 

 

The query execution plan for plan 2 is shown below in figure 

7. 

 

 
Figure 7. Query plan 2 for Query 2 

Plan 3 –  

Using right outer hash join on CustomerDetail and Account 

tables. The query looks like – 

 

Select AccountNumber, CustomerName, Balance  

From Account as A right outer hash join CustomerDetail as 

CD on A.OwnerID=CD.CustNumber  

Where Balance>40000  

 

The query execution plan for plan 3 is shown below in figure 

8. 

 

 
Figure 8. Query plan 3 for Query 2 

Plan 4 –  

Using left outer hash join on CustomerDetail and Account 

tables. The query looks like – 

 

Select AccountNumber, CustomerName, Balance  

From Account as A left outer hash join CustomerDetail as CD 

on A.OwnerID=CD.CustNumber  

Where Balance>40000  

 

The query execution plan for plan 4 is shown below in figure 

9. 

 

 
Figure 9. Query plan 4 for Query 2 
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We now compare these plans for Query 2. The comparison is 

done on basis of three criteria – cached plan size, relative 

query cost and estimated query cost. 

 

Table 4. Comparison of query plan for Query 2 

Plan 

number 

Cached 

Plan Size 

(in Bytes) 

Relative 

Query Cost 

(in %) 

Estimated 

Query Cost 

(in sec) 

1 10 9 0.0072389 

2 14 31 0.0250769 

3 27 30 0.0245428 

4 26 30 0.0245427 

 

As it is shown in table 4 that the plan 1 not only has less cost 

as compared to other plans but it also had less cached plan 

size. So plan 1 is found to be most optimum execution plan 

for Query 2. Thus, plan 1 will be used to process Query 2. 

 

Now we compare the optimized plans of query 1 and query 2. 

By comparing the optimized plans of both queries we get the 

best query to be used for processing the query for the same 

result. 

 

 

Table 5. Comparison of optimized plans of query 1 and 

Query 2 

Query Cached 

Plan Size 

(in Bytes) 

Relative 

Query Cost 

(in %) 

Estimated 

Query Cost 

(in sec) 

1 13 51 0.0075697 

2 10 49 0.0072389 

 

Table 5 shows that the query 2 is more efficient than query 1. 

Query 2 have less cached plan size and relative and estimated 

cost. Thus the query 2 can be used instead of query 1 so that 

the cost and size for query is reduced. 

 

5. CONCLUSION 
The semantically equivalent query generated using the 

inductive learning method is more efficient than the original 

query fired by the user. This is clear from the table 5. Table 5 

clearly shows that even the best plan for the original query is 

less efficient than the best plan of the semantically equivalent 

query. The inductive learning method not only reduces the 

cost of execution of query but also reduces the size of plan 

used while executing the query. The concept of semantic 

query optimization proves to be beneficial in optimizing the 

queries.  

The semantic query optimization can further be extended to 

the distributed databases. In distributed databases not only 

optimization is difficult but also the query processing is 

complicated as compared to the relational databases. The 

semantic query optimization will be more difficult to be 

implemented in distributed databases as the databases are 

stored at different locations. So the generation of alternate 

query will not be an easy process. A very different and strong 

algorithm will be required for generation of alternate 

semantically equivalent query in distributed databases. The 

algorithm should be able to take data from the different site 

and generate an alternate query for the original query fired. 

The alternate query should be semantically equivalent and less 

expensive.  
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