
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

24

Peer to Peer Secure Communication in Mobile
Environment: A Novel Approach

Ashutosh K. Singh, Shubham Maheshwari ,S. Verma and Rahul Dekar

Indian Institute of Information Technology,Allahabad,India

ABSTRACT

Peer-to-Peer (P2P) communicating is a networking and distributed

communication paradigm which allows symmetric sharing of

messages between two entities, ideally without any interception

from any third entity. Privacy in peer-to-peer communication is,

however, can be compromised via a large number of approaches.It

is thereforea need of the hour to provide security against eaves-

dropping and electronic surveillance while exchanging confiden-

tial and/or personal information. SMS or Short Message Service is

the most widely used mode of communication for information

exchange around the globe. In this paper, an approach to android

application is presented which will be helpful for users of android

based mobile phones to share textual information via SMS without

the fear of it being intercepted by any middle-man. A cryptogra-

phy technique is implemented which avoids the leakage of clear

messages that is being transferred from one end to the other, by

encrypting it using an already exchanged private key, thereby

making the middle-man unable to decipher the intercepted in-

formation. The private key exchange is done using the Dif-

fie-Hellman key exchange algorithm, and AES-128 is used as the

encryption/decryption algorithm. The messages sent and received

are stored in a database accessible by the application, for future

reference to the messages. The implemented application was

successfully tested on Android Virtual Machine as well as on

mobile phone running android version 2.3. The message received

was a random jumble of characters and the original message was

available only through the application.

General Terms

SMS communication, android, secure mobile communication

Keywords

android, cryptography, mobile communication, security, sms

communication

1. INTRODUCTION

Secure communication of information is the prime concern in the

military and top business class persons. Started by IBM and Bell

Labs, the era of cryptography is at its peak in the modern world.

Seeing the increasing demand for ways of secure communication,

cryptographic applications have found their way into a variety of

domains, viz. ATM, credit cards, EDGE, GSM, SIM, computer

networks, even native desktop applications. In this paper, an

approach is proposed to turn simple and widely used SMS channel

of communication into a secure way of exchanging information.

Cryptography has been the core of security framework in Mobile

Ad hoc Network (MANET)[1]. The key management for

peer-to-peer secure communicationin MANET has been a hot

topic of research, owing to the limitations on energy and compu-

tational capabilities of the devices. The computational capabilities

of mobile devices have, however, now been increased by a much

substantial number, and is expected to increase in the upcoming

years. This facilitates the implementation of much complex ar-

chitectures for MANET.

Short Message Service, or commonly known as SMS, isthe most

popular and widely used mode of exchanging information via

mobile devices. Unfortunately, the SMS technology does not

provide a built-in support for any security feature[2]. Addition of a

layer on the SMS technology, which ensures the security of the

exchanged information, would allow SMS messages to be used in

applications where confidentiality and authenticity of the mes-

sages must be insured.

Open Handset Alliance (OHA) hosting members like Google,

Motorola, HTC etc. released an open source platform Android for

mobile devices[3]. It runs on a linux shell with a customized JVM

that sits on top of the underlying kernel. Continued efforts are

made to make the new operating system more and more energy

efficient, so as to provide the mobile devices with better battery

life. Android, a mobile operating system for both netbooks as well

as for other embedded devices, allows developers to create ap-

plications in Java language, giving access to device’s hardware via

specific hardware drivers. It is gaining popularity among the

consumers rapidly, owing to the availability of a wide range of

applications and expertise. Because Android is open source, there

is a lot more freedom around who can use it on their device and

who can develop apps for it, as well as more freedom to adapt and

customise it. This makes it the perfect candidate to be worked on

for creating the SMS encrypting app to solve our purpose.

Android allows us to gain access to the incoming and outgoing

SMS’s. Thus, we can encode the textual information required to be

sent in the background before actually sending it, and similarly,

decode the text received in the background before displaying it to

the end-user. This also makes the application user friendly,

thereby enabling the user with no technical knowledge use it

effortlessly.

For the encryption/decryption to work, a symmetric key needs to

be exchanged between the communicating peers. This can also be

done in the background, on a single click of a dedicated button.

While the user types the required text to be sent, the app generates

a symmetric key for the pair of communication peers using the

Diffie-Hellman key exchange algorithm. Once the key has been

successfully exchanged, the corresponding two end-users can use

it any number of times to communicate information.

Storage of the messages communicated can also be done. Android

provides a full support of the SQLite database, which is used for

storing the received messages along with their encryption keys.

Thus, user can easily access the received messages anytime in

future. An option to delete the saved messages is also provided in

case the user wants to delete some or all of them. The messages are

stored in the .db files maintained by the application.

Since the app stores the messages and the key to decrypt them, a

certain method must be used to prevent unauthorized access to the

 International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

25

mobile app. An authorization screen is designed for the same.

Figure 1. System Architecture of Android[8]

2. ANDROID

Google’s Andy Rubin describes Android as:

“The first truly open and comprehensive platform for mobile

devices, all of the software to run a mobile phone but without the

proprietary obstacles that have hindered mobile innovation.”[4]

Android[5] software platform incorporates a Linux kernel that

is responsible for providing the base functionalities like memory

management, processing, networking, storage, etc. to the system, a

middleware layer that supports the hosted applications, and finally

some core applications. The middleware layer has the native

Android libraries (written in C/C++), core java libraries (written in

Java) and Dalvik Virtual Machine, an optimized version of JVM,

which is responsible for the execution of the binaries of higher

layer applications. Android applications are written in Java and

consist of separated modules, so-called components. Android

middleware known as Binder, which is a reduced implementation

of Open Binder, provides an Inter Component Communication

(ICC) mechanism which enables the components to communicate

with each other and also to the components of other applications.

[6]

2.1 System Architecture of Android

●Applications: Android phones generally come with a set of

preinstalled applications for the basic functioning of the mobile

phone. These apps include an e-mail client, an SMS management

app, WebKit based browser, music player and a picture gallery,

basic camera and video recording application, home screen, a

calculator and an alarm clock. All these apps are a part of Android

Open Source Project (AOSP).

●Application Framework: The Android SDK provides the

developers with the APIs to gain access to all the hardware com-

ponents of the mobile device, such as camera, Wi-Fi, power

management, accelerometers, network connections, etc. [7]. This

gives developers the freedom to use the mobile device’s hardware

in any way.

●Libraries: Android’s middleware consists of c/c++ libraries,

which are used by different components/application modules of

the android. These Libraries are accessible to developers via the

use of corresponding API calls[8].

●Linux Kernel:Android relies on Linux version 2.6 for core

system services such as security, memory management, process

management, network stack, and driver model. The kernel also

acts as an abstraction layer between the hardware and the rest of

the software stack[8].

Android also provide a mechanism to run apps invisibly, in the

background. This facilitates the developer to come up with an

event-driven architecture for the application, wherein the app

would be running in the background, waiting for the event to

happen. It is a perfect scenario for screening incoming calls and

SMSs before being notified on the screen.

As mentioned before, Android also provides facility for effi-

cient data storage and retrieval via SQLite Database. SQLite is a

lightweight relational database available for each application.

Since each application’s database is sandboxed – availability of

the database’s data is limited to the corresponding application only

– developers can securely use it for data storage. There is, however,

a mechanism for managed sharing of the databases using Content

Providers.

2.2. Android application fundamentals

Applications for android platform are coded in Java Programming

language, and all the code is packed in a ‘.apk’ file which is the file

extension for installable file of the android applications. Upon

installation, each application lives in its own sandbox and work in

isolation from other processes.

2.3. Application Components
They are the essential building blocks of an Android application.

They are of four types[11]:

1. Activity: An activity represents a single screen with a user

interface. It is analogous to the canvas in J2ME where we can

place any draw able item such as button, Text field, etc and many

more user interaction components.

2. Service: A service is a component that runs in the background

to perform long-running operations or to perform work for remote

processes.

3. Content provider: A content provider manages a shared set of

application data.

4. Broadcast receiver: A broadcast receiver is a component that

responds to system-wide broadcast announcements.

There is some permission required for every application if it is

using some hardware intensive resource and to be explicitly added

by developer in the manifest.xml file.

3. AES (ADVANCED ENCRYPTION

STANDARD)

This standard specifies the Rijndael algorithm, a symmetric

block cipher that can process data blocks of 128 bits, using cipher

keys of length 128, 192 and 256 bits.

The Advanced Encryption Standard (AES) specifies a

 International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

28

FIPS-approved cryptographic algorithm that is available for use in

protection of electronic data, mobile or static. The AES algorithm

is a symmetric block cipher algorithm that encrypts (encipher) and

decrypts (decipher) information. Encryption converts data to an

unintelligible form called cipher text; decrypting the cipher text

converts the data back into its original form, called plain-text[9].

AES implementation is provided in JAVA. Java Cryptography

Extension (JCE) was integrated with the SDK and the JRE, be-

ginning with the Java 2 SDK, Standard Edition (J2SE) v1.4.0.

Thus, AES can be used as any other cipher in Java programs.

4. DIFFIE-HELLMAN KEY EXCHANGE

ALGORITHM

DiffieHellman[10] is a protocol, explained in Algorithm 1,

which allows two users to share a secret key, over an unsecure

communication channel, without any prior secrets.

The prerequisites requires for the algorithm is to have a Prime

number (p), and a Generator (g), with the condition that ‘p’ > ‘g’

and ‘g’ is a Primitive Root of ‘p’.

Algorithm 1.Diffie Hellman key exchange algorithm

5. APPROACH

The workflow for the implementation of the application is as

follows:

1. To begin with, the authorization of user by the application is

essential. The user would also have an option to change the login

password of the installed application.

2. If Authorized he/she may send or receive encrypted mes-

sages.

3. On the Sender’s end if a key is already present for encrypting

the message for a session (session is defined as the continued

duration between the starting and closing of application) for a

particular receiver then user can directly send the encrypted

message. Go to step 5.

4. Else sender has to first do the key exchange with the receiver.

Then Go to Step 3.

5. On the Receiver’s end, when key not present and key ex-

change takes place. It firstly receives a Key Exchange message

having p, g, Y_a of the Deffie Hellman Key Exchange and index

of p and g, it then calculates it’s Y_b then sends Y_b to the sender

from which key exchange request was initialized. At initiator’s

end the message received is Get_Yb message. Else the message

will be encrypted message and receiver decrypt the message and

displays it in Toast.

6. Further receiver can become sender and vice versa accord-

ingly.

7. Any user can access the database where different senders

have sent him the messages and he can also get access to the

particular message and do delete operation on that message.

Figure 2. Use Case diagram for the application

5.1 Authorization
It happens by saving the password to a permanent file at the

installation time. Every time on application start-up, username and

passwords are matched accordingly and only then there is an

access to the application components. At every change password

option selected old passwords and new passwords are provided by

the user and the permanent file is updated.

1. Alice and Bob agree on 'p' and 'g'.

2. Alice chooses a random natural number 'a' and

sends '(ga mod p)' to Bob.

3. Bob chooses a random natural number 'b' and

sends '(gb mod p)' to Alice

4. Alice calculates key as '((gb)a mod p)'

5. Bob calculates key as '((ga)b mod p)'

 International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

27

Algorithm 2.Key handshake algorithm at sender

Algorithm 3.Key handshake algorithm at receiver

5.2 Key hand shake
Whenever a session (as defined above) begins for a sender to

send an encrypted message a key is required to encrypt it and the

same key would be required by the receiver to decrypt the message

for further processing with the message. This is provided by key

hand shake algorithm. We have already maintained

keys_p&keys_g String arrays of size 10 where keys_p contains

prime numbers of 128 bit and keys_g contains the primitive root of

corresponding keys_p in our application. At the sender end Algo-

rithm 2 is implemented.

At receiver’s end the Algorithm 3 follows.

5.3 Encryption/decryption of messages
For encryption/decryption, the in-built java libraries are used

with a 128-bit key.

Algorithm 4 for encryption and Algorithm 5 for decryption is

followed.

Algorithm 4.Encryption of message to be sent

Algorithm 5.Decryption of message received

5.4 Handling Failures
A key requirement in such an application is support an un-

planned disconnection of one of the peers from a session[12], as

the communication may fail between the two atomic processes -

key handshake and send encrypted message.

●When it comes up, sender may send the encrypted message to

receiver assuming it may have the key. But as according to our

assumption, key must be there with an application for a particular

session. So, receiver may not decrypt the encrypted message.

Hence, it discards the message and sends a

KEY_NOT_FOUND_EXCEPTION_DELETE_KEY message to

sender. And sender then do key hand shake and then again send the

encrypted message.

●In case the application which comes up the second time sends

a request for key exchange and if the key is already present at the

receiver’s end, the receiver’s key is deleted and new key is ex-

changed.

5.5 Maintaining Database
Database is maintained for the application. Android provides

the full support of the SQLite database. A database whenever 1st

1. Generate a key

a. If key is more than 128-bit long, truncate it to

128-bit by discarding the Least Significant Bits

b. Else if key is less than 128-bit long, do padding at

Least Significant Bit

c. Store it to x

2. SecretKeySpec key = new SecretKeySpec(x, “AES”)

3. Cipher cip = Cipher.getInstance(“AES”)

4. cip.init(Cipher.DECRYPT_MODE,key)

5. byte[] enc = base64 decoding of the received message

6. message = cip.doFinal(enc)

1. Receive the key exchange message. Extract r and Ya from

it

2. Calculate Xb, i.e. random number of 20 digits

3. Calculate Yb as

Yb = g.modPow(Xb,p)

where:

*modPow: a function in BigInteger class of Java

*g: value of keys_g at location 'r'

*p: value of keys_p at location 'r'

4. Create a Get_Yb message by appending Yb to it and send

it to sender

5. When received calculate key as

key = Ya.modPow(Xb,p)

1. Select a random number 'r' which indicates the index of

array (varying from 0-9) of keys_p/keys_g to be selected

2. Select a random number a of 20 digits

3. Calculate Ya as

Ya = g.modPow(Xa,p)

where:

*modPow: a function in BigInteger class of Java

*g: value of keys_g at location 'r'

*p: value of keys_p at location 'r'

4. Create key exchange message by appending

Key_Exchange flag, r, and Ya, and send it to receiver.

5. Wait for receiving Yb from receiver

6. when Yb is received, calculate key as

key = Yb.madPow(Xa,p)

1. Generate a key

a. If key is more than 128-bit long, truncate it

to 128-bit by discarding the Least Signifi-

cant Bits

b. Else if key is less than 128-bit long, do

padding at Least Significant Bit

c. Store it to x

2. SecretKeySpec key = new SecretKeySpec(x, “AES”)

3. Cipher cip = Cipher.getInstance(“AES”)

4. Cip.init(Cipher.ENCRYPT_MODE,key)

5. Byte[] encrypted = cip.doFinal(message.getBytes())

6. message = Base64 encoding of ‘encrypted’

 International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

28

sender sends a message. It is stored in application as .db file.

Emulator/device instances store SQLite3 databases in the folder

/data/data/<package_name>/databases.We need database in our

application to access the encrypted messages. In our case Database

contains two types of the table.

Type 1. Table TABLE_SENDER whose fields are (phone

TEXT PRIMARY KEY)

Type 2. Table TABLE_NAME whose fields are (id INTEGER

PRIMARY KEY (auto-incremented), message TEXT , key

TEXT)

Where TABLE_SENDER will be storing the table name

“TABLE_SENDER” and TABLE_NAME will be storing

(“TABLE_NO” + phone). Thus, there will be as many table of

type 2 as there are number of senders.

Using database will also help us to delete messages very easily.

Start

User LogIn
Show Error

Message

Type phone
number and
text message

Key
present

Key Exchange
Encrypt

Message

Send
Message

Application
Screen

Message
Received

Key
Present

Decrypt
Message and

display as
‘toast’

Save Message
in DataBase

Ask Sender to
perform key

exchange
again, and

then resend
the message.

No YesNoYes

View Saved
Messages

Retrieve
Messages from
table, group by

phone numbers.

Display the
selected
message.

Delete
current

Message.

Delete
Message.

Yes

No

Unsuccessful successful

Change
Password

Figure 3. Flow Chart diagram for the application

6. CONCLUSION

The login screen is successfully made. Key Hand Shake is being

implemented. And as a result keys can be generated for a par-

ticular session for a particular sender. Hence forth, the encryption

of message through the 128 bit AES encryption and decryption of

a message is done using in built Java Libraries (JCE). Some ex-

ception handling also being done by the application in case when

one node goes down and when it comes up it does not has the key

for the recent session and other node may send encrypted message

without having knowledge that the other node has key or not, then

a KEY_NOT_FOUND_EXCEPTION_DELETE_KEY message

is being sent in that case which force the other end to delete it’s

key and resend the message in a new session. In case the applica-

tion which comes up sends a request for key exchange the key if

present at receiver’s end is deleted and new key is exchanged.

A database is maintained for storing the messages in accordance

with the sender phone numbers. By this user can delete or access

any message.

The actual message received is some random set of alphabets,

illegible to any normal person. Only after decrypting the message

received, using the corresponding exchanged key, would the

original message be revealed. Thus our original goal of having an

application to secure information exchange via use of the most

widely method of communication, SMS, is achieved.

Some previous works have been done in providing methods for

secure communication, but our application utilizes the most

commonly used mode of communication, SMS, and converting it

into a secure mode of information exchange, it opens up a wide

variety of other applications SMS could be used in.

Figure 4. Snapshot of the application’s main screen on suc-
cessfully doing a key exchange

 International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

29

Since the message is converted into a random set of characters

before entering into the network channel, same method can also be

used for communicating between peers sitting behind a Network

Address Translator (NAT)[13].

Figure 5. Snapshot of the application’s stored messages
management screen showing the stored messages (with their
corresponding serial number)

7. FURTHER WORK

The application can be further extended to do secure commu-

nication by means of voice calls also. That is if third party may tap

the phone call then he/she may not understand the communication

between the sender and receiver. Also, VOIP (Voice over Internet

Protocol) can be utilized so that the messages are not being sent as

SMS, instead they are being sent through the socket where IP of

the phone will be required.

The application approach can be further extended to work with

non-symmetric key algorithms, thus eliminating the need of ex-

changing a symmetric key before the start of communication.

8.REFERENCES

[1] Patnaik, G.K.; Gore, M.M.Tree-Like Peer-to-Peer Symmet-

ric Key Management in Mobile Ad Hoc Network in Net-

works and Communication, NETCOM. December 2009.

[2] De Santis, A.; Castiglione, A.; Cattaneo, G.; Cembalo, M.;

Petagna, F.; Petrillo, U.F.An Extensible Framework for Ef-

ficient Secure SMS in Complex, Intelligent and Software

Intensive Systems (CISIS), February 2010.

[3] Paul, K.; Kundu, T.K.Android on Mobile Devices: An En-

ergy Perspective in Computer and Information Technology

(CIT), IEEE 10th International Conference, June, 2010.

[4] http://googleblog.blogspot.com/2007/11/wheres-my-gphone.

html

[5] Android. http://www.android.com.

[6] Palm Source, Inc. Open Binder. Version 1.

http://www.angryredplanet.com/~hackbod/openbinder/docs/

html/index.html, 2005.

[7] Reto Meier. Professional android application development.

Indiana: Wiley Publishing, Inc. 2009, pp. 6.

[8] developer.android.com/guide/basics/what-is-android.html

[9] Federal Information Processing Standards Publication 197.

November 26, 2001.

[10] New Directions in Cryptography. W. Diffie and M. E.

Hellman, IEEE Transactions on Information Theory, vol.

IT-22, Nov. 1976, pp: 644–654

[11] J.F. DiMarzio. Android, A Programmer's Guide.

MCGraw-Hill Osborne

[12] Abdul-Mehdi, Z.T.; Mahmod, R.Security Management

Model for Mobile Databases Transaction Management in

Information and Communication Technologies: From The-

ory to Applications, April, 2008.

[13] Sunghyun Yoon; Soon Seok Lee; Sang-Ha Kim. Seamless

and secure P2P communication scheme for mobile Internet

devices behind NAT in Consumer Electronics (ICCE), 2012

IEEE International Conference, January, 2012.

