
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

7

Devnagari Handwriting Recognition System using
Dynamic Time Warping Algorithm

Bhushan C. Bhokse
Sr.Lecturer,

Department of InformationTechnology,
MAEER’s Maharashtra Academy Of

Engineering
Kondhwa,Pune

Bhushan S.Thakare
Assistant Professor,

Department of Computer Engineering,
STES Sinhgad Academy Of Engineering,

Alandi (D),Pune

.

ABSTRACT
Online handwriting recognition is gaining renewed interest

owing to the increase of pen computing applications and new

pen input devices. The recognition of Devnagari characters is

different from western handwriting recognition and poses a

special challenge. This paper is an overview of the technical

status and the development in online Devnagari recognition

system which starts few years back.

The objective of this paper is to develop a system which can

recognize a handwritten Devnagari character, written with the

help of stylus or a digital pen. To develop the system,

dynamic time warping (DTW) technique is considered. In

dynamic time warping the entered character is processed in

terms of time sequences x and y as a function of time. The

time sequence of the character to be recognized is compared

with that of all the characters stored in a code file. The

distance between them is calculated. The character from the

code file which gives minimum distance is considered as the

recognized character. In order to improve the recognition rate,

along with DTW algorithm, additional feature vectors can be

used. In this paper, line extraction algorithm is developed.

Keywords
 HWR,HMM, PDAs ,DTW, VLSI, IDE, JVM, J2SE, OCR,

PCA.

1. INTRODUCTION

In this paper, it is explored the efficiency of various stroke-

based handwriting analysis strategies in classifying Devnagari

handwritten characters by using a template-based approach.

Writing units are variable from time to time, even within the

drawings of a specific character from the same user. Writing

units include the properties of stroke such as, number, shape

and size, order and writing speed. It is proposed to use

structural properties of writing samples having such

variability in writing units. This work employs a "Dynamic

Time Warping" (DTW) algorithm to align two on-line

handwritten strokes and to estimate the similarity and use two

different features for stroke identification, a sequence of

direction at every pen-tip position along the pen trajectory and

inclusion of pen-tip position with the direction as the feature

of the stroke. For each type of feature, two different systems

are trained by using the samples collected from the i) same

writer, ii) group of writers. To evaluate the system, it is

collected examples of 40 different characters from 5 different

writers, and then performed a series of different experiments.

Use of specific-stroke pre-processing and a sequence of both

pen-tip position and slope at every position as a feature of a

stroke, yield improved results, the superiority of the present

work over several related works on Devnagari script is the

recognition of stroke number and stroke order free natural

handwritten characters.

This paper describes a system for automatic recognition of

handwritten Devnagari characters obtained by linearising

characters. Owing to the large number of characters and

resulting demand on data acquisition, structural recognition

technique is used to reduce some characters to others. The

residual characters are then classified using the dynamic time

warping (DTW). Finally the results of structural recognition

and feature based matching are mapped to give final output.

1.1.On-line versus Off-line Handwriting

 Recognition

On-line handwriting recognition means that the ma-

chine recognizes the writing while the user writes.

The term ‘real time’ or ‘dynamic’ has been used in

place of online. Depending on the recognition

technique and the speed of the computer, the

recognition lags behind the writing to a greater or

lesser extent. Most commercial character recognizers

lag by only one or two characters. On-line recognition

systems need only be fast enough to keep up with the

writing.

Figure 1 shows generalized handwriting recognition.

With each block containing one complete module used

to process the character. It shows the general flow of

data in its intermediate processing stages.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

8

Fig 1: A Generalized Handwriting Recognition System

2. FEATURES OF DEVNAGARI SCRIPT
Vowels, Consonants and modifiers in Devnagari script are

shown in the figure 2.

Fig 2: Vowels, Consonants and Modifiers in Devnagari

Script

Some of the features of Devnagari script are listed below

which helps us in proper understanding of the script [4].

1. Akhand ligatures - Required consonant ligatures

that may appear anywhere in the syllable, and may

or may not involve the base glyph. Akhand ligatures

have the highest priority and are formed first; some

languages include them in their alphabets. Akhand

ligatures may be in either half or full or other form.

2. Base glyph - The only consonant or consonant

conjunct in the syllable that is written in its "full"

(nominal) form. In Devnagari, the last consonant of

the syllable (except for syllables ending with letter

"Ra") usually forms the base glyph; in other Indic

scripts, the first consonant or conjunct (e.g. Telugu),

or others, may form the base glyph. In "degenerate"

syllables that have no vowel (last letter of a word),

the last consonant in halant form serves as the base

consonant and is mapped as the base glyph. Layout

operations are defined in terms of a base glyph, not a

base character, since the base can often be a ligature.

3. Below-base form of consonants - The form that

consonants appear below the base glyph. Consonants

in below-base form appear in Indic syllables after the

ones that form the base glyph. Below-base forms are

represented by the non-spacing mark glyph.

4. Consonant - Each represents a single consonant

sound. Consonants may exist in different contextual

forms, and have an inherent vowel (usually, the short

vowel "a"). Therefore, those illustrated in the

examples below are named, for example, "Ka" and

"Ta", rather than just "K" or "T".

5. Consonant conjuncts (aka 'conjuncts') - Ligatures

of two or more consonants. Consonant conjuncts may

have both full and half forms, or only full forms.

6. Halant (Virama) - The character used after a

consonant to "strip" it of its inherent vowel. A

Virama follows all but the last consonant in every

Indic syllable, except in languages like Sanskrit,

Tamil, and Malayalam, where the last consonant may

also have a Virama.

7. Note: A syllable containing halant characters may be

shaped with no visible halant signs by using different

consonant forms or conjuncts instead.

8. Halant form of consonants - The form produced by

adding the Virama to the nominal shape. The Halant

form is used in syllables that have no vowel, or as the

half form when no distinct shape for the half form

exists. In some scripts (Bengali, Tamil), the half and

halant forms are always the same.

3. SYSTEM DEVELOPMENT
This paper describes the development of a recognition engine

for online handwritten Devnagari characters. Devnagari

script is a logical composition of its constituent symbols

in two dimensions. It has eleven vowels and thirty three

simple consonants. A horizontal line is drawn on top of all

characters which is referred to as the header line or

‘shirorekha’. A character is usually written such that it is

vertically separate from its neighbors. Devnagari script has

many multi-stroke characters. The data entry/ recognition

mechanisms need to deal with such multi-stroke characters

and also conjuncts that are made up by joining two or more

characters partially.

In this paper, segmented characters are assumed at the

data entry level. The database collected for training the

system is acquired in individual boxes for each character

without any conjuncts. Some of the constraints imposed both

on the handwriting input and the recognition methodology in

order to simplify the complexity of data acquisition, and

subsequent training and testing. The process used for

acquiring handwriting data for training and testing the

system is discussed. Next the process used for training the

system using unsupervised learning method is discussed.

In order to reduce the complexity of the problem, only the

characters in their simple form without any additional

modifiers are considered for the training and the

Thresholding Line

Localization

Word

Localization

Preprocessing

Feature Extraction Lexicon Lookup

Letter Segmentation

Recognition

Linguistic Postprocessing

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

9

recognition purposes. It was further assumed that the

characters will be entered without header line or

‘shirorekha’.

3.1. System Model
Figure 3 shows the system model used for creating the

Devnagari handwriting recognition system to recognize the

handwritten Devnagari characters. The working of the proposed

system and the data flow in the system can be explained with the

help of these blocks. The very first block Data collection tool is

developed to create and store the handwritten Devnagari samples

in the form of distinct strokes. A single character may contain

one or more number of strokes. As the system is considering the

recognition of individual characters only, the strokes for a single

character are joined, so as to convert distinct strokes of a single

character into a single stroked character. Finally the data is

stored in the form of (x, y, t) arrays in the ‘.mat’ file. The data is

collected through the DCT developed in Matlab7.01.

Fig 3: System Model

As a single frame contains 25 character samples, there co-

ordinate points are different, in order to keep same reference

point i.e. origin for all samples, the samples are shifted after the

scaling operation. Scaling is performed to keep the unique size

for all the characters. The sample after scaling and shifting is

downsampled to reduce the number of sampe points then it is

quantized to the nearest integer points. To develop classifier it is

needed to extract the features (structural and statistical) of every

sample used for training the system. In the training process for

every character a code vector is formed and is stored in the code

book matrix. In the recognition step, the same operations are

carried over on the entered character upto forming a code vector.

Then that code is compared with each entry in the code matrix.

The entry whichever is close to the code vector is considered as

the recognized character.

4. SYSTEM DEVELOPMENT USING

SUPERVISED LEARNING

4.1 Data Collection Tool
The data for training and testing was acquired through an

iBall pen, using a GUI developed using MATLAB7.01.

Each page of the GUI contains 25 writing blocks in which

characters are to be written in an isolated manner.

The data collection tool shown in the figure 4, on its top-left

corner shows letter ‘k’, indicating the writer to enter ‘k’ letter

25 times in the boxes formed by the grid lines. The blue lines

are plotted to guide the writer while writing Devnagari letters

and these lines are where the ‘Shirorekha’ is to be placed. To

make the work of pre-processing and later recognition of the

character easy, the writers are said, not to draw the shirorekha.

The font used to draw ‘k’ is ‘kailash’. It is a true type font and

is created by using the Font Creator software.

For the purpose of drawing the handwritten character, the

canvas is formed by using the ‘axes control’. As explained

above the entire axis is divided into 25 parts so that through

one screen 25 samples can be entered. As the digital pen

moves over this canvas when writer writes, the co-ordinates x

and y are get stored continuously alongwith the time

parameter ‘t’. Every stroke is treated as an array of (x, y, t)

which starts when ‘pen is down’, spans over the length when

the ‘pen is in motion’ and ends when ‘pen is up’. All these

events are handle by the button events of the language. The

data for this one window, 25 characters are stored as an array

of structure, with array elements an individual stroke, and

structure elements containing x, y, time arrays of each stroke.

A single character may contain one or more number of

strokes.

Steps for data collection:

1. For character = 1 to 40

2. Wait for character entry

3. While buttondown = no go 2

4. Record the first point of the stroke

5. While buttonmotion = no go 6

6. Successive points of the stroke are recorded

7. While buttonup

8. Wtore all the points of stroke, stroke number

9. If additional stroke needs to complete character go 2

10. Store the character as group of strokes, each stroke

with stroke array

11. Performs step 1 to 9 to collect all 25 samples of

same character

12. Store the character into character array

Character Sample

Stroke Joining

Compare code

with Code Book

Scaling and

Shifting

Down Sampling

and Quantization

Feature Extract

Structural and

Statistical

 Training a

Classifier

Forming a code

book

Form a code

The Nearest

Match

Found?

Recognized

Character

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

10

13. Store the entire character as a letterno file on disk

14. Move to next character (press ‘next’ button)

15. Stop

In this fashion the data is collected for all the 40

characters used for recognition. The 40 characters used in this

system are shown in the following figure 5. The characters

shown are collected with the same data collection tool

explained above.

For the purpose of training & testing, character samples

were collected in two different sets. i) From a single writer,

twenty five instances of each character were collected. From

this the best 6 samples per character are selected, ii) from

each of 5 writers corresponding to each of the 40 characters,

twenty five instances of each character were collected. From

this the best 6 samples per character are selected.

From each of these sets, the first instances are used

for the purpose of training and the rest five are used for

testing purpose.

Fig 4: Data Collection Tool

Fig 5: The Devnagari Character Set Used in The System

4.2 Strokes Joining

The strokes of individual characters within one grid box are

determined first and then joined together to represent the multi-

stroke character as a single stroke character. The character is

represented and further processed in the form of a signal and not

an image. Due to this reason the strokes are joined together.

Steps for strokes joining:

1. For character = 1 to 40

2. For sample = 1 to 25

3. Read the character.

4. If not multistroke go 6

5. Join the stroke

6. Move to next sample

7. Store all samples for a single character

8. Move to next character

9. Stop

4.3 Scaling and Shifting

After joining the character (required in the case of multi-stroke

character), the character is cropped out and scaled so as to

represent a unique size throughout all the characters. As the data is

collected in the window at different positions, for the comparison it

is needed to at same position with respect to origin. This is done by

shifting it to make the origin as a reference point.

The character contains (xPoints, yPoints) as (x, y) co-

ordinates. Width and height of the character is determined as

Width = maximum(xPoints)-minimum(xPoints)

Height = maximum(yPoints)-minimum(yPoints)

The data is normalized by dividing xPoints with width and

yPoints with height.

This normalized character is of size 1 square unit. The

normalized points are then multiplied by 16 to get size of ‘16

x 16’ square unit for each character.

In scaling operation the point (minimum(xPoints),

minimum(yPoints)) is shifted to the origin (0,0) by

performing the operation.

For all (x, y) points

[xPoints;yPoints]=[xPoints;yPoints].–

[min(xPoints);min(yPoints)]

Steps for scaling and shifting:

1. For character = 1 to 40

2. For sample = 1 to 25

3. Read the sample

4. dx = xmax - xmin

5. dy = ymax - ymin

6. x = x / dx

7. y = y / dy

8. x = 16 * x

9. y= 16 * y

10. Move to next sample

11. Store all samples for a single character

12. Move to next character

13. Stop

4.4. Down Sampling and Quantization

The collected sample points for each characters are re-sampled

once, twice and thrice to reduce the number of sample points. The

samples are down sampled in time domain. Here in the system

different number of characters may contain different number of

sample points. What is important is the positions of points and the

direction in which they moves. The quantization operation is

performed straightly in terms of rounding the values of x and y co-

ordinates.

Steps for down sampling and quantization:

1. For character = 1 to 40

2. For sample = 1 to 25

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

11

3. Read the sample

4. Sample = sample(1:2:samplelength) ;alternate (x, y)

points

5. Sample = sample(1:2:samplelength) ;alternate (x, y)

points

6. Sample = sample(1:2:samplelength) ;alternate (x, y)

points

7. Round off the samplepoints

8. Move to next sample

9. Store all samples for a single character

10. Move to next character

11. Stop

4.5 Feature Extraction

The down sampled and quantized input character pattern

represented by a sequence of x-y coordinates is

preprocessed to extract structural features at the stroke

level, such as mean (x, y) value, mean (x, y) value of all 4

segmentsby dividing the character into four parts, character

length , directional codes etc.

The character pattern is divided into four parts. For each part

mean x and mean y are calculated and stored as {mean1x,

mean2x, mean3x, mean4x} and {mean1y, mean2y, mean3y,

mean4y}.

The length feature is extracted in the form of horizontal

distance, vertical distance traveled while writing the character.

This is a scalar quantity. One additional feature is extracted in

the form of vector quantity. It is the horizontal and vertical

displacement traveled while writing the character.

The directional codes are formed in the form of the total

directions moved while writing the letter. It includes vertical

direction changes i.e. towards ‘North’ & ‘South’ and

horizontal direction changes i.e. towards ‘West’ & ‘South’.

The structural features are also extracted in the form that the

letter contains complete vertical line, half vertical line,

complete horizontal line and half horizontal line. These

features are extracted by using the principle ‘dx = 0’ i.e.

difference is zero along horizontal direction, indicates it is a

vertical line, if successive dx are zeros (in this system needs at

least 15). This is the case for half vertical line too, which

spans over only half of the vertical line. Similarly ‘dy = 0’

successively gives a horizontal line and half horizontal line.

The Devnagari characters contain various curves in them. To

extract these features work by taking double differences along

x and y directions or convert the character into a linear

piecewise segments and then determine their slope.

Steps for feature extract: finding vertical line

1. Define location[], v_points[]

2. Read character

3. Take first order difference

dx = xi+1 – xi

4. For i = 1 to numel(dx)

locate first dx = 0

whiel dx(i) ~= 0

i = i +1

end

location= [location i]

k=1; counter

whiel dx(i) == 0

i = i +1

k=k+1

end

v_points = [v_points k]

End

5. From location & v_points locate vertical line

Steps for feature extract: finding horizontal line:

Same as algorithm no 5. Instead of dx find dy

4.6 Training

To train the classifier a simple approach is adapted. From the

character set used for training, each individual character is

segmented into four parts. Means of x and y co-ordinates are

determined separately to get a feature vector containing eight

elements as explained above. The feature vector of every character

is normalized by multiplying it with normalization factor.

Normalization factor= (vector length of the feature vector of the

character)-1

Where vector length is calculated as

Vector length = sqrt(sum(square of each element in feature

vector))

The normalized feature vector of each character together forms a

normalized feature matrix for the entire character set. This

normalized feature matrix is stored in the file as a ‘codebook’.

When the system starts, this codebook stored in the ‘.mat’ file, first

get loaded into the RAM and is available there onwards for the

comparison purpose of the entered character with the entries stored

in the codebook.

Stpes for forming code book with the mean of the four

segments:

For character = 1 to 40

Read character

Divide it into four segments

Find the mean of each segment

Normalize the mean

Store into codebook

End

5. TESTING AND RECOGNITION

To test the recognition system another set of character named as

‘test character set’ is considered. For the purpose of testing the

same initial steps as in training are applied on the ‘test character

set’. Every character is tested for the purpose of its recognition

against the ‘codebook’.

Fig 6: GUI for Character Testing and Recognition

Another provision is made for the online recognition of character.

Here after writing the character, the handwritten character will go

through the entire process like strokes joining, scaling and shifting,

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

12

down sampling and quantization, feature extraction, formation of

codes etc. and then a code is formed containing normalized means.

This code is then compared with each entry called as code vector

in the code matrix formed in the training process. As the system is

not rejecting any entry, the nearest match found is considered as a

recognized one, and a character is mapped for that code and

displayed on the graphical user interface as a recognized character.

6. CONCLUSIONS
Many challenges need to be overcome in the field of Devnagri

online handwriting recognition, if handwriting is to evolve

into a reliable method of data entry. In particular, a

recognition system must be able to accommodate the large

variations that exist between writing styles. The Devnagari

character is written with multiple strokes. In a sentence along

with the multiple strokes, presents ‘shirorekha’ and modifiers

to the character. Though this system is developed only for the

recognition of individual characters, it is prepared with

intention that it can be easily extended for the word

recognition and then for the recognition of entire Devnagri

script. The system is developed not for specific group of

users. It requires large learning set than a system that tries to

match handwriting from an arbitrary writer. It is a writer

independent handwriting system.

 The technique to compare the time sequences-Dynamic

Time Warping is studied and implemented. Its

application to the Devnagari character recognition is

worked out by applying it in different ways i.e

 i) Applying DTW directly to the x and y-time sequences

of a character,

 ii) Applying DTW to the means of the segments of the

character.

 The technique gives a adequate accuracy 64% when

applied directly on the time sequences compared to its

application to the means of the segments where it is

48.5%. The accuracy or recognition rate can be further

improved if one use more number of classifiers along

with the DTW technique or apply DTW on the feature

vector of classifier.

 Euclidean distance between the means of the segments is

taken in order to find the minimum distance. Taking

Euclidean distance instead of DTW on the means of the

segments produces the results which are less accurate

than DTW techniques. In this case also the results can be

improved by using more number of classifiers. The

results obtained here can be improved if the number of

segments is increased and weight is applied to every

segment.

 In both the technique above to improve the accuracy or

recognition rate one needs additional classifier which

needs additional feature vector. To get additional feature

vector we need feature extraction algorithms which could

transfer the curved stroke into piecewise linear segments.

The attempt is made and is successful for obtaining the

vertical line and horizontal line using the difference

operator. Further to get the features from the curved

surface double difference technique with the help of

Laplacian operator is to be performed. In addition to this

a piecewise linear segmentation followed by linear

regression is worked out to fit straight lines and non-

linear curves for the character segments. This is a form

of supervised learning.

7. REFERENCES
[1] C. C. Tappert, C. Y. Suen and T. Wakahara, “The State

of the Art in On-Line Handwriting Recognition”, IEEE

Transactions on Pattern Analysis and Machine

Intelligence, Vol. 12, No.8, 1990, pp. 787-808.

[2] Gareth Loudon, Olle Pellijeff, Li zhong-wei, “A Method

for Handwriting Input and Correction on Smart Phones”,

Proceedings IAPR-IWFHR-2000,

eldoc.ub.rug.nl/files/home/IAPR_IWFHR_2000/Posters/

p04/poster-001.

[3] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern

Classification”, Second Edition, John Wiley & Sons Inc,

New York, 2006, pp. 115,128,259,582.

[4] Anil K. Jain, Robert P.W. and Jianchang Mao,

“Statistical Pattern Recognition: A Review”, IEEE

Transactions on Pattern Analysis and Machine

Intelligence, Vol. 22, No. 1, January 2000, pp. 4-7.

[5] Bharath A, Sriganesh Madhvanath, “Hidden Markov

Models for Online Handwritten Tamil Word

Recognition”, http://www.hpl.hp.co.uk/techreports /2007

/HPL-2007-108.pdf.

[6] Jianying Hu, Michael K. Brown and William Turin,

“HMM Based On-Line Handwriting Recognition”, IEEE

Transactions on Pattern Analysis and Machine

Intelligence, Vol. 18, No.10, October 1996, pp.1039-

1045.

[7] Deepu Vijayasenan and Sriganesh Madhvanath,

“Principal Component Analysis for Online Handwritten

Character Recognition”, Proceedings of the 17th

International Conference on Pattern Recognition (ICPR

2004),August 2004, No. 2, pp. 327-330.

[8] L. Rabiner and B.H. Juang, “Fundamental of Speech

recognition”, First Edition, Pearson Education India,

1993, pp 257-261.

[9] C. Bahlmann and H. Burkhardt, “The Writer Inependent

Online Handwriting Recognition System Frog on Hand

and Cluster Generative Statistical Dynamic Time

Warping”, IEEE transactions on Pattern Analysis and

Machine Intelligence, Vol. 26, No.3, March 2004, pp.

299-309.

[10] http://www.heatonresearch.com/articles/series/1, access

date: May 15, 2008.

[11] http://en.wikipedia.org/wiki/Handwriting_recognition,

access date: July 17, 2007.

[12] http://www.microsoft.com/windosxp/tabletpc/default.ms

px, access date: August 7, 2007.

[13] Sriganesh Madhavnath, Deepu Vijaysenan and Thanigai

M.K, “LipiTk: A Generic Toolkit for Online

Handwriting Recognition”, International Conference on

Computer Graphics and Interactive Techniques, No. 13,

2007.

[14] R.M.K. Sinha and Veena Bansal, “On Devanagari

Document Processing”, in Proceedings of International

Conference on Systems, Man and Cybernetics,

Vancouver, BC, October, 1995, pp. 1621–1626.

[15] V. Bansal and R.M.K. Sinha, “Segmentation of Touching

Characters in Devanagari”, Technical Report,

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.9, August 2012

13

Department of Computer Science and Engineering, IIT

Kanpur, India,

http://www.iitk.ac.in/ime/veena/PAPERS/stwo.pdf .

[16] V. Bansal and R.M.K. Sinha, “On how to Describe

Shapes of Devanagari Characters and use them for

Recognition”, in Proceedings of 5th International

Conference Document Analysis and Recognition,

Banglore, India, September1999, pp. 410–413.

[17] S. D. Connell, R.M.K. Sinha and A. K.Jain, “Recognition

of Unconstrained On-Line Devanagari Characters”, in

Proceedings of 15th International Conference on Pattern

Recognition, September 2000, pp. 368–371.

[18] Niranjan Joshi, G. Sita, A. G. Ramakrishnan and

Sriganesh Madhvanath, “Machine Recognition of Online

Handwritten Devanagari Characters”, Proceedings.

Eighth International Conference on Document Analysis

and Recognition, Vol. 2, September 2005, pp. 1156-

1160.

[19] Santosh K.C. and Cholwich Nattee, “Structural Approach

on Writer Independent Nepalese Natural Handwriting

Recognition”, IEEE 2006.

[20] R. J. Ramteke & S. C. Mehrotra, “Feature Extraction

Based on Moment Invariants for Handwriting

Recognition”, IEEE 2006.

[21] Dr. P. S. Deshpande, Mrs. Latesh Malik and Mrs.

Sandhya Arora, “Recognition of Hand Written

Devnagari Characters with Percentage Component

Regular Expression Matching and Classification Tree”,

IEEE 2007.

[22] http://www.mathworks.com/products/matlab/description

1.html, access date: August 28, 2007.

[23] http://java.sun.com/docs/overviews/java/java-overview-

1.html, access date: September 2, 2007.

[24] Lawrence R. Rabiner, Aaron E. Rosenberg, Stephen E.

Levinson, “Considerations in Dynamic Time Warping

Algorithms for Discrete Word Recognition”, IEEE

Transactions on Acoustics, Speech and Signal

Processing, Vol. ASSP-26, No. 6, December 1978, pp.

575-582.

[25] Patrick Naughton and Herbert Schildt, “The Complete

Reference Java 2”, Fifth Edittion, TMH India 2005, pp.

158-170.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10526
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10526

