

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

34

Customized Data Exchange Gateway (DEG) for
Automated File Exchange

across Networks

*Abhishek Vora B. Lakshmi C.V. Srinivas

National Remote Sensing Center (NRSC), Indian Space Research Organization (ISRO), Balanagar
Hyderabad, India

 *Mr.Abhshek Vora was formerly with NRSC

ABSTRACT

This paper addresses a customized solution to ensure security

of the trusted network while receiving files from applications

residing on less trusted networks. The solution is a four

layered secured file transfer service which controls and

authenticates the data transfer through service blocking

mechanism and digital signatures at the first two levels and by

introducing a novel concept of privileged socket creation and

finger printing TCP packets at layer three and four by

customizing the Linux kernel. The solution is deployed using

a pair of systems connected peer to peer running customized

Linux kernels and the solution will ensure that the first system

on the gateway accepts only authentic data and transfers to

second system which accepts the data only when it originates

from the first system. The link between the two systems and

the systems as such are physically protected. Data is received

only from the first system. In this paper we explain its security

architecture and discuss implementation on Linux kernel

2.6.24.2

Index Terms

Network Security, Secured automated file exchange, Kernel

hardening.

1. INTRODUCTION
Connectivity and Seamless data exchange is a prerequisite to

automate the business work flow across distributed locations.

Generally the connectivity is through computer networks

using TCP/IP based protocols. This connectivity makes the

networks vulnerable to attacks from each other. The degree of

vulnerability is higher when any of the networks is connected

to Internet. Hence ensuring secured mechanism for

transferring the files across the participating network is a

requirement.

In addition to configuring the commercially available Firewall

and Intrusion detection and prevention systems deploying a

customized solution suiting the specific enterprise

requirements will ensure total security. The task of the

customized solution is to provide total security for automatic

movement of data across the networks of varying level of trust

knowing the involved networks, systems, applications, types

of files, direction of traffic flow, file format and several other

attributes. The solution addresses a secured mechanism for the

preregistered applications to forward the data to the storage

accessible to processing network either through fibre channel

interface or other TCT/IP network.

Section 2 discusses the need for customized solution even

when generic security systems like Firewall and IDPS exist.

Section 3 explains five layered security architecture. It also

discusses how this proposed solution counters different types

of attacks. In section 4 we explain implementation on Linux

kernel 2.6.24 running inside Operating System RHEL 5.0.

 2. INADEQUACY OF ‘GENERIC’

SECURITY SYSTEM
Generally networks are secured using generic solutions like

Firewall and Intrusion Detection & Prevention System

(IDPS). But when connecting the systems of varying trust

customized security systems are required as the generic

solutions can not address specific requirements of the

enterprise.

Firewall functions on the basis of pattern matching. It protects

networks against attacks by filtering the traffic based on

policy rules set in advance. The policy rules use various

packet attributes like port number, IP address, protocol etc. to

filter the traffic. Due to its full reliance on packet header

attributes to control the traffic, firewall fails in protecting

network from two broad categories of attacks viz.

Masquerading and Vulnerability Exploitation [6].

In first type of attack if attacker injects traffic with fraud

header attributes directly at Data Link Layer (through RAW

or PACKET sockets) or hijacks port from legitimate

application, firewall will fail to detect the fraud and attacker

can get into the network. In second type of attack if the

attacker exploits vulnerability in a service accessible over the

network, firewall will fail in detecting attack as its filtering

capabilities does not extend to packet payload. Thus, when

immaculate security is the need, firewall can not be relied

upon fully [7].

Networks can be secured against vulnerability exploitation

attacks by deploying Intrusion Detection & Prevention

System (IDPS) along with Firewall. Signature based IDS are

capable of inspecting packet payloads and taking filtering

decision based on the signatures found in packet payload.

Anomaly based IDS monitors system & network activities and

alerts an attack, whenever threshold values are exceeded.

IDPS too fails in detecting an attack in two cases. In the first

case, if the attack is conducted using advance mechanisms for

which no signature is yet published or the signature Database

is not updated. In the second case, if the attack does not cause

system or network activity so high as to reach the threshold

value.

3. DATA EXCHANGE GATEWAY (DEG)
The proposed solution Data Exchange Gateway is a security

mechanism that needs to be deployed on the two gateways of

the involved networks. DEG is designed with multilayer

security architecture. The security mechanisms like service

blocking, authentication, integrity checks & content filtering,

customized traffic filtering, packet finger printing are

deployed to protect the networks against attacks at different

layers.

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

35

Figure : 1 Deployment of Data Exchange Gateway

The proposed Data exchange gateway (DEG) is configured

using one system on each of the network connecting to the

respective network through disk storage accessible to the

authentic nodes and is used to post and deliver the data from

and to the applications network nodes through a customized

file transfer service (FTS). The two systems are connected

P2P and they together act as controlled gateway for data

exchange. The FTS is expected to ensure the security by

dispatching the files which are posted by authentic

applications alone. The kernel services related TCP/IP

server/client on each of the system are customized to enable

FTS to control the traffic, hence physically security of the two

systems is a prerequisite for the effectiveness of solution. If

the kernel is reloaded the solution fails.

3.1 Layered architecture

Figure 2 Layered Security architecture of DEG

Layer-1 Service Blocking

First layer restricts network service access to DEG system by

blocking all network services other than NFS. Disabling

remote command execution and file transfer services

significantly reduces the chance of DEG being compromised

from systems through network.

 Layer 2 File Transfer Service

The customized file transfer service identifies and drops the

files which are not from authentic source (preregistered

applications with digital signature) and the file attributes are

not as per the predefined properties.

 Layer-3 privileged sockets for communication

The customized TCP socket creation and registration enables

the file transfer service to register and communicate on

privileged sockets only.

 Layer-4 customized TCP/IP client-server

The customized TCP server/client on each DEG ensures that

FTS transfers/receives only the finger printed data packets,

which establishes the authenticity of the source of the packets.

4. IMPLEMENTATION
 Secured file exchange by DEG is achieved using customized

FTS and modified TCP Server & TCP Client. FTS is the

Servers
running

registered

application

DEG

(external)
DEG

(internal)

Storage NFS

Servers
running

registered

application

Standard security interface like IDPS &Firewall

 Service blocking

 Authentication (DSA)

 integrity checks(SHA) &

content filtering

 traffic filtering

 packet finger printing

Fiber channel I/F

Customized TCP/IP server

Service blocking

Privileged sockets

File filter

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

36

service for transferring the files from storage of one network

to the storage on the other network. A registration process is

implemented to register the application which needs the

service. The service registration is an executable which needs

to be executed on the DEG system by giving all the required

details of the application and the system from where the

application executes. After successful registration is a key pair

is generated and passed on to the application. On sender side

the FTS verifies the authenticity of files on storage and

transfers them to receiver which verifies the origin of the

packets and hands over the authentic packets to its FTS

service to deliver onto the storage. In addition to

authentication FTS implements file filtering, gets access to the

customized sockets authorized to access the TCP client which

fingerprints TCP packets and delivers to receiver network.

The FTP service on receiver side checks the authenticity of

the packets and dispatches them to the disk storage on

receiver side.

4.1 Implementation of layered security
4.1.1 Layer 1[4] [5]
Both DEG systems run software based firewall (using

IPTables) which filters incoming traffic and allows only the

traffic destined to NFS port. This will reduce the attacks using

the network services to a large extent.

4.1.2 Layer 2

Each client application which needs the files to be delivered to

the other network through DEG FTS service has to register

through a registration process and obtain a public-private key

pair for digitally signing the files. The registered client can

post the digitally signed files on to NFS mounted storage.

The FTS at this layer filters the files first by the verifying the

application digital signature and then by checking the against

the predefined file attributes. The files which do not pass

through the file filter are dropped and warning messages are

logged for monitoring. The files passing through the filter

proceed to next process in FTS.

4.1.3 Layer-3 Access Restriction and traffic

filtering [8] [9] [10] [11]
The access restriction is based on new system service namely

privileged socket creation and registration. This is done by

customizing the TCP/IP protocol stack and socket structure

modification. Traffic originating from privileged socket is

only allowed. The packets received from such sockets are

fingerprinted which is done at kernel level.

Security at this layer restricts applications other than FTS

from sending traffic to remote networks by filtering outgoing

traffic. Instead of using IP_FORWARD to disable routing, it

is stopped within kernel by modifying ip_rcv() function.

Traffic filtering based on port numbers, process ID or process

name will fail in stopping an attack if the attacker

masquerades identity. User-id based filtering also fails to stop

attacker’s packets as it allows all the applications running

under that user to send traffic.

Here traffic filtering is implemented by introducing a concept

of ‘privileged’ socket. To send any traffic to network, it is

required to register its socket. After successful registration the

sockets gets ‘privileged’ status. Later, all the traffic from this

socket is allowed to go to remote network. To implement this,

TCP/IP protocol stack of kernel is customized by redefining

the socket structure. This registration is enabled by

introducing new system call. Structure ‘socket’ has been

augmented with a field ‘privilege’. Before registering a

socket, the system call authenticates the process using

symmetric key. The customized TCP Client and TCP Server

are the only applications having knowledge of symmetric key.

Hence no other application can create privileged socket and

hence will be able to send data across the network.

In TCP/IP protocol, default implementation of data link layer

function dev_queue_xmit() has been augmented with filtering

logic. This logic allows traffic from only privileged socket to

go to the destination network. When this function gets packet

(structure sk_buff) to transmit to remote network, it finds out

which kernel socket (structure sock) has caused it following

which it identifies corresponding user space socket (structure

socket). If the user space socket is not privileged to send

traffic across the networks the packet is dropped, otherwise it

is fingerprinted and sent to the DEG on destination network.

The system call ‘socket ()’ has been modified to stop creation

of non AF_INET (TCP) socket. Hence no process can create

RAW or PACKET sockets and so direct packet injection at

data link layer or packet sniffing will not be possible on this

customized kernel.

.1.4 Layer 4
Layer-4 security protects DEG systems in the event when an

attacker gets physical access to the link between DEGs. This

is achieved through Selective reception. Instead of accepting

all incoming packets the receiver DEG filters the incoming

packets based on fingerprint attached. Selective Reception is

implemented by modifying functions dev_que_xmit() (dev.c)

and ip_rcv() (ip.c). The former is augmented with

fingerprinting logic and later with validation and filtering

logic.

 On receiver DEG whenever the function ip_rcv() receives an

incoming packet, before passing it to higher layer function

(ip_rcv_final), it validates the packet fingerprint. If fingerprint

is not present or is found to be invalid, packet is dropped. If

fingerprint is found to be valid, this function removes it from

packet and then passes the packet to higher layers of protocol

stack.

Lack of knowledge about packet fingerprint and about

symmetric key for fingerprinting stops an attacker from

creating the packets which can accepted by receiver DEG. So

even if attacker succeeds at tapping and injecting packets,

those packets will be dropped by receiver DEG as long as

kernel of the system is reloaded.

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

37

4.2 Software architecture

Figure 3 software components

The five components of the software deployed on the Data

exchange gateway system are described in this section.

4.2.1 Register
This component of Data Exchange Gateway implements

registration facility. As discussed before, to use the FTS

service to transfer the data the application has to get registered

with the DEG. On successful registration, a pair of public-

private keys are generated which are to be used for signing the

file to make the file authentic.

4.2.1 Software Firewall
This component implements service blocking. As discussed

earlier, all the services other than NFS will be blocked on

DEG. This component will be software based firewall,

implemented through iptable/ipchains. This forms the first

layer of security.

4.2.2 Content Filter
Content filter filters the files before sending it to ‘destination

DEG’. File filtering at layer-2 is done at two levels. First level

of filtering is done through file authentication. On receiving a

file FTS tries to establish identity of sender application using

the digital signature. If FTS fails in authenticating the sender

it drops the file. After successful authentication, it passes

through second level of filtering which is based on file

attributes.

If either of checks fails, file is dropped. Besides filtering

Layer-2 security also alerts administrator if it finds an

unauthenticated file. It is possible to find out the node from

the unauthenticated file was sent as different nodes in local

network are assigned different mount points on the gateway.

4.2.4 Communicator
Communicator implements required interface to fetch the files

posted by authorized applications and despatch them on the

destination for authorized applications to collect.

4.2.5 Kernel Hardener
The basic functionality of this component is to filter the traffic

to ensure TCP packets generated by DEG are only accepted

by another DEG. This is achieved by custom build TCP/IP

based Client-Server programs on each of the system. This will

stop any attempts through IP Spoofing or Packet injection.

The implementation of traffic filtering is done by defining

privileged TCP sockets and fingerprinting of TCP packets.

Provision for this socket creation is incorporated in the kernel

by defining new system call. The privileged socket is

accepted only by the customized TCP client-server

implementation.

At the Data Link Layer of the sender gateway, all the packets

from privileged socket is fingerprinted with the MAC code

calculated over packet payload using secret key. Receiver

DEG will calculate fingerprint for the received packet using

same secret key, valid fingerprint ensures that it has been

produced by DEG.

5. FUTURE SCOPE
The assumption made while designing DEG was that gateway

systems are physically protected. Present version of DEG will

fail if attacker gets physical access to gateway & rebuilds the

kernel. Feasibility of a firmware based implementation is

being analyzed to overcome this limitation.

6. CONCLUSION
The four layer security solution built with Linux kernel

customization cannot be compromised through any type of

known or unknown network vulnerabilities to send

unauthorized or malicious data to internal DEG as the

gateway system does not accept the data packets unless they

originate from the external DEG system application.

7. ACKNOWLEDGEMENT
The Authors acknowledge the efforts of Ms.Naseeb Shaik

who is responsible in carrying out extensive testing and

deploying it to operational use. We express our sincere

gratitude to Director NRSC for providing us the opportunity.

8. REFERENCES
[1] Linux Kernel Version 0.8-3, David A Rusling

[2]Introduction to TCP/IP Network Attacks, Guang Yang

[3]TCP/IP Architecture, Design and Implementation in Linux

(Practitioners) Sameer Seth and M. Ajaykumar

Venkatesulu

[4] Martin A. Brown, “Guide to IP Layer Network

Administration with Linux V 0.4.5”, Ch-7 March 2007

Available: http://linux-ip.net/html/ch-packetfilter.html

[5] Gianluca Insolvibile, “Inside the Linux Packet Filter”, Feb

2002 Available www.linuxjournal.com/article/4852

[6] William Stallings, “Cryptography and Network Security:

Principles & Practice” 5th edition, Pearson ch 6, 11, 13,

19. pp. 192-218, 327-362, 395-407, 615-647

Data exchange
gateway

Register Content filter
Software
firewall

Communicator
Kernel
hardener

http://www.amazon.com/Sameer-Seth/e/B002N0LWTI/ref=ntt_athr_dp_pel_1/187-6291485-0583017
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2/187-6291485-0583017/187-6291485-0583017?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=M.%20Ajaykumar%20Venkatesulu
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2/187-6291485-0583017/187-6291485-0583017?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=M.%20Ajaykumar%20Venkatesulu

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

38

[7] Shari Lawrence Pfleeger and Charles P. Pfleeger,

“Security in Computing” 4rd edition, Prentice Hall PTR,

Oct 2006 Ch- 2, 7

[8] M. Tim Jones, “Anatomy of Linux Network Stack”, June

2007,Available

http://www.ibm.com/developerworks/linux/library/llinux

-networking-stack/

[9] Arnout Vandecappelle and Mind, “Kernel Flow”, Nov

2009, Available:

http://www.linuxfoundation.org/collaborate/workgroups/

networking/kernel_flow

[10] Chrisitan Benvenati, “Understanding Linux Network

Internals”, O’Reilly Dec 2005. Ch-18, 19, 20, 21

[11] M. Tim Jones, “Kernel Command Using Linux System

Call”, Feb 2010,

Available:http://www.ibm.com/developerworks/linux/lib

rary/lsystem-calls/

