
International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

27

A Goal-Oriented Workflow Scheduling in Heterogeneous

Distributed Systems

Arash Ghorbannia Delavar
Payam Noor University

Department of Computer
PO BOX 19395-3697, Tehran, IRAN

Yalda Aryan
Payam Noor University

Department of Computer
PO BOX 19395-3697, Tehran, IRAN

ABSTRACT

In heterogeneous distributed systems like grid and cloud

computing infrastructures, the major problem is the task

scheduling which can have much impact on system

performance. For some reasons, such as heterogeneous and

dynamic features and the dependencies among the requests,

this issue is known as a NP-hard problem. In this article a

hybrid meta-heuristic method based on Genetic Algorithm

(GMSW) is being proposed in order to find a suitable solution

for mapping the requests on resources. The proposed method

tries to obtain the response quickly, with some goal-oriented

operations. It begins, through making a good initial population

by merging some features of the Best-Fit and Round Robin

methods and a bi-directional tasks prioritization in

unbalanced-structured workflow, considering their impact on

each other, based on graph topology. Some other operations

control and lead the algorithm steps in order to obtain the

solution by using efficient parameters in the mentioned

systems. Here the focus is on optimizing the makespan and

reliability, by considering a good distribution of workload on

resources. The experiments here indicate that the GMSW

improves the results, with the increasing number of tasks in

application graph, for the mentioned objectives. The results

are compared with other studied algorithms.

General Terms

Internet and Distributed Computer Systems, Heterogeneous

distributed systems, Cloud computing, Grid computing,

Scheduling.

Keywords

Heterogeneous distributed systems, Grid computing, Cloud

computing, Workflow scheduling, Reliability, Genetic

Algorithm.

1. INTRODUCTION
Heterogeneous distributed systems (HDS) consist of millions

of heterogeneous computing nodes interconnected through

arbitrary network architecture and are made to achieve

high-throughput computing resource pools [1]. Grid and

Cloud computing are paradigms for HDS system promised to

deliver the utility computing view with some desirable

properties such as sharing the many dynamic resources by

virtualization technology in order to meet the requirements of

widely varying requests.

Task scheduling is a key process in these systems, that is,

mapping the requests on resources in an efficient manner by

considering the environment characteristics. Due to its

heterogeneous and dynamic properties of resources, in

addition to many number of tasks with different

characteristics this issue is referred to as a NP-hard problem.

Since a good scheduling method would enhance the

performance of the distributed system significantly and there

is no direct method to find an optimal solution in polynomial

time, the scheduling decisions must rely on finding the best

solution within possibilities.

Many methods are proposed for this problem. Each method

often focuses on limited number of parameters and main

objectives such as the completion time of all tasks

(makespan), reliability or distribution of workload on

resources. For example, many fundamental heuristic methods

like greedy (First-fit) [2] and Round-Robin (RR) [3], Min-

min, Max-min or Sufferage [4] try to achieve the makespan.

Moreover, some different dynamic list scheduling methods

are presented for HDS systems [5] which often do not

consider the latency among resources and focus on the

makespan and/or another main issue.

Some meta-heuristic based methods are presented to solve NP

problems such as: particle swarm optimization (PSO) [6],

tabu search (TS) [7], simulated annealing (SA) [8],

genetic algorithm (GA) etc. In contrast, GA by [9] [10] [11]

are known to give good results in several optimization

domains and provide robust search techniques that allow a

high-quality solution to be obtained from a large search space

and parallel search in polynomial time by applying the

principle of evolution. It could present several solutions to

evaluate the efficient parameters.

Some of GA based proposed scheduling methods apply

random manner in some steps like preparing the initial

population or adopting a different prioritization method, for

task ordering in the same level in the workflow[12], and some

of them use simple graph with the most two output nodes.

In our last article, we proposed a QoS-based dynamic

scheduling method for independent task scheduling with

focusing on deadline [13]. Here, we suggest a hybrid

meta-heuristic method (GMSW) based on GA in order to find

a proper scheduling solution with unbalanced-structure

computational applications. The proposed algorithm here

would make a reduction in number of GA operation iterations

by making an optimized initial population, with respect to the

reliability and suitable distribution of workload on resources,

simultaneously. This method obtains the solutions by two

evaluation functions, one function measures priority of each

task in DAG for bi-directional form based on their influence

on the other tasks, and another function evaluate the value of

the produced solutions.

mailto:a_ghorbannia@pnu.ac.irYalda
mailto:a_ghorbannia@pnu.ac.irYalda

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

28

The remainder of this article is organized as follows: in

section 2 the related works are discussed, in section 3 the

problem definition is defined, and in section 4 the proposed

algorithm is introduced. The simulation result of GMSW is

presented in section 5, and the conclusion in section 6 would

end the article.

2. RELATED WORK
The known policies, First-Fit or RR are non-preemptive

methods and are used by some cloud systems such as

Eucalyptus. In these methods the starvation problem is almost

solved and the makespan is decreased. But, the requests will

run on all resources and would not support the optimal usage

of resources and a proper load distribution.

Some heuristic proposed algorithms in HDS, like the ones

proposed by [14], [15] and [16], focus on makespan and the

workload distribution. However these algorithms do not

consider communication latency among resources for data

transferring and related cost. Although the bandwidth of links

will be dedicated in distributed systems, many parameters

influence the data transfer speed rate, such as distance, noise

etc. The list-based scheduling [17] focused on the three

mentioned objectives. A duplication task method is adopted in

[18]. It should be noted that, since in HDS the workload

against resources is great, task duplication is not an efficient

method because it increases the workload and makespan of

other application.

GVNS algorithm is proposed for heterogeneous systems [19].

This algorithm incorporates GA with the variable

neighborhood search (VNS) algorithm. Here, some solutions

are made in normal GA by considering a task ordering similar

to the HEFT. Then two novel neighborhood structures as VNS

phase are applied in the solutions. In one of the steps of VNS,

a task on resource with the highest computation workload is

chosen randomly, and will be reallocated to another randomly

selected resource. In the other step of VNS, for all tasks on

resource with the highest communication workload, the

GVNS randomly selects a predecessor for each task, and

reallocates the predecessors to the mentioned resource. The

GVNS seeks to obtain a near minimum completion time

where task-machine matching, and task scheduling are

integrated. Here the bandwidth of the links is dedicated, the

runtime of algorithm is long and in the VNS phase, two

steps’ effects cancel each other.

CMMS algorithm [20] is proposed for cloud computing

systems. It is a list based scheduling that focuses on reducing

the makespan using min-min algorithm. For each application,

the CMMS lists the tasks by considering the graph topology

without being influenced by the other parameters. Then the

tasks will be allocated on resources in the order indicated by

the list. The task on the top of this list will be assigned to the

resource that can finish the task at the earliest time. Here the

communication cost of resources is considered.

The LAGA algorithm [21] has proposed for large-scale

distributed systems like Grid and Cloud, based on GA. It is a

computation-intensive and reliability-driven reputation

algorithm that considers the tasks’ runtime using the task

failure rate (task failures per unit time) of resources in order to

define the reputation and evaluate the reliability of resources.

This method computes a task ordering procedure by resource

completion time in each generation and selects a resource

with the least failure rate in mutation operation. It focuses on

completion time and schedule failure rate.

In this study the unbalanced-structured workflow is used

which should be assigned in the pool of resources with fully

connected graph and different communication latency. The

algorithm tries to obtain a good proportion among the three

mentioned objectives by making initial population method

through a contribution to the optimal characteristics in

Best-Fit and Round Robin methods, in order to find the

response and other goal-oriented operations in a rapid manner.

3. PROBLEM DEFINITION
In Grid and Cloud environments, there is an information

service or data-center system which is assumed to collect and

save the information of resources and tasks. Some key static

information such as: physical memory storage space, virtual

memory storage space, disk storage space, etc and some

dynamic information such as: the load average of the node,

the number of the running tasks, the current running tasks’

number of threads, and the status of these tasks, CPU usage,

etc, are collected. These data are updated frequently, in

real-time [22].

Some static and dynamic information for scheduling could be

used here. Since a lot of tasks are received instantaneously,

the workload and other dynamic information influence the

selection of a good candidate resource for task.

An application is a workflow that contains a set of tasks that

are connected to each other by precedence constraint. Each

task will be executed and give an output dataset. This data set

is then sent to the next task as defined by the structure of the

workflow. Generally, a workflow has the structure of a DAG

(Direct Acyclic Graph): a graph where the nodes are the tasks

and the edges are the precedence constraints [17].

According to many workflow projects, the workflow

application structures can be categorized as either

balanced-structure or unbalanced-structure [9]. In the

balanced-structure workflows, nodes are related together

considering certain level, but the unbalanced-structure

application is complex, like [23] and has more relation among

nodes where the level of some nodes is not certain (see Figure

1). When the size of the workflow is increased the processing

time may become very long. Because of their heterogeneity,

the heterogeneous system platform has hosts with different

properties and calculation capacities.

Some of applications are computation-intensive and some are

communication-intensive. The communication to computation

ratio (CCR) is a measure that indicates whether a task graph is

communication-intensive, computation-intensive or moderate

[24]. The CCR factor is computed by the average

communication cost divided by the average computation cost

on target system.

An application DAG graph is represented as G=(V,E), where

V is the set of v nodes presented as tasks and E is the set of e

edges or dependencies among tasks, indicating the relation

and precedence constraints. Each task in this graph has a

weight w(vi), that is the length or the same number of

instructions of the task, and the data transfer rate among tasks

is introduced by the weigh w(ei,j) of the edges.

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

29

Fig 1: An unbalanced-structure graph.

No task is dispatched until its precedence tasks are completes.

The start time of each task is determined in accordance with

the following equation:

 () (1)

where, Tavail(rj) is the time when resource rj is available for the

execution of task vi , Tready(vi,rj) is the time when all the

predecessors of task vi are executed, and all the necessary

input data are available and could be transmitted to the

processor rj, through the following equation:

 () { ()}

, (2)

where, TFT(vk) is the finish time of predecessor, and w(ek,i) is

the weight between task and its predecessor. The finish time

of each task can be computed as:

 () ()
 (3)

When the tasks are being assigned to the resources, the cost of

data transfer between two tasks can be computed as follow:

 () () () (4)

where, Tc(vi,vj) is the output size of vi to vj and C(rk,rj) is the

communication latency between resources rk and rj for vi and

vj respectively.

In the workflow graph, the tasks with are entry

tasks, and the tasks with are exit tasks.

The experiment is conducted on the unbalanced-structured

graph presented in figure 1(b). In these graphs some tasks are

not in certain level, so the task selection to send to the ready

queue is important. The resources are fully connected by

different links’ capabilities (see Figure 2):

Fig 2: An example of resources’ connections

Since HDS systems like grid and cloud, have some properties

that should be considered in the scheduling process, the

important constraints are:

 The amount of entry requests are always more than

the amount of resources. So each resource can

process more than one request

 The system is a collection of heterogeneous

resources with dynamic hardware and software

features such as: the node workload average, CPU

usage, etc.

4. THE PROPOSED ALGORITHM
In this approach, a hybrid meta-heuristic method, based on

GA is used, by considering the heterogeneous distributed

computing system characteristics. Generally, the pseudo-code

of the proposed algorithm is as follow:

Pseudo code of GMSW method

Input: Available resources and unmapped tasks of an

application

Output: An optimum derived scheduling

1. Make a virtual list of available resources (ARVL)

from Data center

2. For all tasks vi ϵ V in each application graph do

3. Find the depth (in critical path)

4. End for

5. Set the priority of each task by equation (5)

considering the graph topology

6. Update virtual list of resources

 // make initial population

7. For each chromosome do

8. Find the best fit resources for each task

based on the execution time order by Best-fit

&& RR methods (is described in 4.3. section)

9. Go to the next place in resource list for

finding candidate resources for next

chromosome

10. If the counter=last resource index then

11. Go to the first place in resource list

12. End for

 // doing other operations

13. Evaluate all chromosomes using equation (9)

14. While the stop conditions are met

15. One-point crossover operation

16. Goal-oriented mutation operation

17. Select the best chromosomes as elites

18. End while
19. Save the best solution

20. Dispatch all mapped tasks on candidate resources

due to obtain the best solution

In the following sections, the algorithm steps are described.

4.1 Encoding
In GA method, every solution is encoded as a chromosome.

Each chromosome has N genes, as the chromosome length. In

workflow scheduling each schedule appears in a chromosome

form. Each schedule contains the tasks of application and the

related candidate resources. Figure 3 presents a chromosome

in GMSW method.

Fig 3: A sample chromosome in GMSW

Here, first, the tasks of the graph are ordered on priority based

on their influence on the other tasks in the graph for execution

according to section 4.2; second, the tasks should mapped on

suitable resources from a set of available resources.

In this algorithm, to make a chromosome, each task is mapped

to a selected resource from a virtual list of available resources,

according to the data-center information. The virtual list will

be updated in some operations such as initial population.

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

30

4.2 Task prioritization
Before making the initial population, all tasks of entered

application should be sorted based on priority in graph

topology. Because some tasks on the unbalanced application

graph cannot be categorized in levels, and each task’s length

and successor are different from the others, the task selection

based on graph topology is an important problem. Since each

task produces some outputs as input data set for its successor,

the predecessor task should be executed before children.

Completion time of each task influences the application

completion time. So a bi-directional ordering method is being

proposed that could be computed as the priority of tasks in

both horizontal and vertical direction in graph topology,

according to the following equation:

 ∑

 ()

, (5)

where, d(vj) is the depth of the task vj in critical path. The

critical path for each task is the longest path from it to an exit

task. Each task has some successors, and each successor has a

depth. According to the unbalanced-structured graph shown in

figure 1(b) the set of successors of v6 are

Tsucc(v6)={v12,v13,v14}. So the execution of task v6 is efficient

for its successor and the execution of each successor of v6 is

efficient for their successor alternatively, as well. Also v11 can

be executed with v19 at the same time, because the depth of

task v11 is 0. So we can select the more important successor of

each task with an important depth. Thus, the limited range of

depth selection is between α and β for selecting the most

important successor for equation (5).

where, β represents the depth of successor with the longest

sequence and α can be computed as:

 (6)

The priority of each task with respect to its dependencies in

graph topology will be computed, and a list of task ordering is

prepared by descending to make the first row of

chromosomes.

4.3 Initial population
A set of multiple possible solutions (chromosomes) is

assumed to be referred to as a population. The initial

population is made randomly in normal genetic algorithm.

Making a good and goal oriented initial population that would

lead to find the response in a rapid manner is the concern

here. For this purpose, for making initial population, after the

tasks are sorted by priority, they will be placed in the first row

of genes in the chromosome, and for each task, a suitable

resource will be selected with minimum running time for the

task from virtual list of available resources as ARVL based on

w(vi) and rj
MIPS as resource speed at the first time.

Fig 4: A part of an ARVL

The ARVL consist of workload and failure rate of available

resources at current schedule time. The failure rate factor can

be computed as in [21].

This process is repeated for all genes as Best-fit, in this

manner, in first chromosome for each gene, the algorithm

selects the fittest resource from the first place in ARVL, but

for the second chromosome, it finds the best resource from the

second place in ARVL and so on like Round-Robin method

but here for resource selection. If the counter is finished, the

resource selection will be continued from first place. This

process will continue until a population is made.

This method assures that all resources will be selected for

making population. Thus, all possible solutions can almost be

made, and attended the balance the load on resources.

Fig 5: A sample of selecting candidate resources

A good property of this technique for making initial

population is leading the algorithm to find an optimized

solution, faster than other algorithms.

After an available resource is selected as the candidate, the

ARVL list will be updated based on the rest processing

capacity on current workload of resources for designated

tasks.

4.4 Crossover
Here, a one-point crossover is used. Two parents and their two

genes are selected randomly. Then two other solutions by a

change in resource sections of selected genes are created. For

example in two selected chromosomes for the randomly

selected point such as second to the last genes, the candidate

resources are changed by each other. Figure 6 illustrates the

before and after crossover in mentioned example.

Fig 6: Crossover operation method in this algorithm

4.5 Mutation
To make a mutation in solutions, a goal-oriented method that

tries to lead the algorithm to reduce makespan considering

reliability is used. The mutation steps are:

Pseudo code of mutation method

1. Select a chromosome, randomly

2. Compute the finished time of all resources, and find

the resources with minimum (as r_min_w), and

maximum (as r_max_w) workload in current

selected chromosome

3. Select task with highest d(vj) on r_max_w

4. time_max=makespan by r_max_w

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

31

5. time_min= makespan by r_min_w

6. If ((failure frequency of r_min_w<failure frequency

of r_max_w) && (time_min< time_max)) then

7. Assign the selected task on r_min_w

8. Else

9. while (! select a suitable resource)

10. Select next-best resource in list with lower

workload, and lower failure rate

11. Assign the selected task on this

resource

12. End while

The failure frequency of resource i can be computed by:

 (7)

where, ri
f
 is the failure rate of resource i.

The mutation operation causes the GA not to stop in the local

minimum, but this method in mutation leads to the finding of

a good solution in a rapid manner.

4.6 Evaluation and selection solutions
In GA, to determine the value of a solution, it should be

evaluated by a fitness function with efficient parameters in

quality of solution. The fitness function is applied on all

solutions and computes their values, and then a solution with

the best value, based on parameters placement policy, is

obtained as the minimum or maximum for the fittest solution.

Here, the fitness value of each solution is computed through:

 ∑ ∑

 ()

 (8)

 (9)

where, fp is the failure probability in scheduling and TFT(vi,rj)

is the completion time of task vi mapped on resource rj based

on equation (3). So the maximum value of TFT(vi,rj) presents

completion time of last task or the completion time of all tasks

in workflow by current scheduling.

The chromosome with minimum fitness value is considered as

the best solution among the others. Some of the best of

chromosomes are will be selected by elitism method for next

iteration.

 (10)

4.7 Stop conditions
The algorithm would stop upon meeting a stop conditions.

The conditions to end the process are [13]:

 Number of generations, will reach to a maximum

bound

 The makespan of the best solution will not be

changed after the certain number of generations

 All chromosomes converge to the same mapping

5. PERFORMANCE EVALUATION
This section presents the comparative evaluation GMSW with

three algorithms, GVNS, CMMS and LAGA and

demonstrates and evaluates the three makespan, reliability,

and speedup rate subjects. The experiments are conducted

considering HDS systems with respect to heterogeneity in

resources and tasks properties as in some previous works such

as random DAG generator in [21, 25] with different

complexity rate, in order to simulate workflow applications.

Some other parameters applied are from [19, 21, 26, 13] that

are listed in tables 1. The parameters used in GA values such

as probability for crossover operation and mutation operation

are 0.2 and 0.125 respectively. Here the initial population size

is 30.

Table 1. Simulation Parameters

Parameter Value

Number of tasks in application 40 ~ 200

Task size 12 ~ 72 (*103 MI)

The number of resources 200

Resource speed 500~1000 (MIPS)

Resource failure rate 10-3 ~ 10-4 (failure/h)

The communication latency

among resources

10 ~ 100 (ms)

CCR value ~0.2 ~0.5 ~1.0 ~2.0

The average results of the three objectives are described and

the figures are presented as follows:

5.1 The makespan evaluation
As mentioned, one of the main objectives in all methods is

makespan. In this experiment, the proposed method was

compared with three mentioned algorithms. Figure 7

illustrates how the GMSW reduces makespan for at least

about by 2% and at most about by 15%in comparison with

other mentioned algorithms in this section with respect to the

different number of tasks and 1000 iterations. Also in

different iterations for 200 tasks (in GA-based methods), a

faster convergence in finding the optimum result is perceived.

This is because of a good initial population and search space,

that leads the search in mutation operation by reducing the

workload from heaviest resource to the lightest and if not

found it selects the next lightest resource and consideration

task with the highest d(vj).

5.2 The reliability evaluation
The proposed method here is compared to LAGA method.

The experiments showed that the failure probability of tasks

in GMSW is close to that of the LAGA, in about by 0.6%.

Because in mutation operation in the proposed method, both

failure frequency and workload are tested and finding a

resource. So reducing the makespan causes to reduce the

failure probability. Reducing the failure probability or

increasing the reliability by a faster convergence is shown in

Figure 8 by different iterations for 200 tasks. This is because

the convergence in the completion time of application based

on the equation (8). The reliability in scheduling can be

computed through e-fp [21].

5.3 The speedup evaluation
To recognize the quality of distribution of workload among

resources, the speedup value is evaluated. This can be

computed by equations in [11] and [19], that is, dividing the

completion time of tasks in one resource t (Uct), in parallel

resources.

 (11)

So a higher value represents better result. According to

experiments in Figure 9, the GMSW distributes better

workload then the three mentioned algorithms. This is

because the search is being led to reduce workload from high

to low in resources in mutation and selection operations. The

results are optimized at least about by 4%. The convergence

of results in different iterations, are indicated in Figure 9.

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

32

Fig7: Average results of makespan

Fig 8: Average results of reliability

Fig 9: Average results of speedup

6. CONCLUSION
In this article, a hybrid meta-heuristic scheduling method is

suggested for workflow applications in HDS systems by fully

connected resources with different communication costs.

The GA based proposed algorithm here, tries to get an

optimized in a rapid manner with respected to completion

time, reliability and distribution of workload on resources. It

orders all tasks, by a bi-orientation priority method

considering their horizontal and vertical influences based on

graph topology.

Some goal-oriented operations are applied to fulfill the

objectives. To make the initial population and to select good

candidate resources the aggregation features of two methods,

the Best-Fit and Round Robin are used. Consequently this

technique speeds up the good solution finding process. The

GMSW leads the search by an especial mutation method that

reassigns resources based on workload and failure frequency

in addition to considering the most effective task. The GMSW

results are compared to LAGA, CMMS and GVNS

algorithms. The produced solution through this proposed

algorithm is perceived and it improves the results in

comparison with them. In the next work we want to present a

method that would support mapping the resources on tasks for

QoS-constraint with a new perspective.

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

33

7. REFERENCES
[1] Sahoo, B. Avinash Ekka, A. 2006. Performance Analysis

Of Concurrent Tasks Scheduling Schemes In a

Heterogeneous Distributed Computing System. National

Conference on Computer Science & Technology.

[2] BRENT, R. P. 1989. Efficient Implementation of the

First-Fit Strategy for Dynamic Storage Allocation.

Australian National University, ACM Transactions on

Programming Languages and Systems, Vol. 11, No. 3,

(July 1989).

[3] Nurmi, D. Wolski, R. Grzegorczyk, C. Obertelli,

G. So-man, S. Youseff, L. and Zagorodnov, D. 2009. The

Eucalyptus open-source cloud-computing system. IEEE

International Symposium on Cluster Computing and the

Grid (CCGrid).

[4] Izakian, H. Abraham, A. Member, S. Comparison of

Heuristics for Scheduling Independent Tasks on

Heterogeneous Distributed Environments.

[5] Casanova, H. Desprez, F. Suter, F. 2010. On cluster

resource allocation for multiple parallel task graphs.

ELSEVIER, J. Parallel and Distributed Computing, 70

(2010) 1193–1203.

[6] Pandey, S. 2010. Scheduling and Management of Data

Intensive Application Workflows in Grid and Cloud

computing Environments. Doctoral Thesis. Department

of Computer Science and Software Engineering, the

University of Melbourne, Australia (December 2010).

[7] Porto, S. Ribeiro, C. 1995. A tabu search approach to

task scheduling on heterogeneous processors under

precedence constraints. International Journal of High

Speed Computing, 7 (1995) 45–72.

[8] Kalashnikov, A. Kostenko, V. 2008. A parallel algorithm

of simulated annealing for multiprocessor scheduling,

International Journal of Computer and Systems Sciences

47 (2008) 455–463.

[9] Yu, J. Buyya, R. Ramamohanarao, K. 2009. Workflow

Scheduling Algorithms for Grid computing. Department

of Computer Science and Software Engineering, The

University of Melbourne, VIC 3010, Australia.

http://www.cloudbus.org/reports.

[10] Yoo, M. 2009. Real-time task scheduling by

multiobjective genetic algorithm. ELSEVIER, The

Journal of Systems and Software, 82 (2009) 619–628.

[11] Omara, F.A. Arafa, M. M. 2010. Genetic algorithms for

task scheduling problem. ELSEVIER, J. Parallel and

Distributed Computing, 70 (2010) 13_22.

[12] Fida, A. 2008. Workflow Scheduling for Service

Oriented Cloud Computing. MSc Thesis, College of

Graduate Studies and Research In Partial Fulfillment,

Department of Computer Science University of

Saskatchewan Saskatoon.

[13] Ghorbannia Delavar, A. Aryan, Y. 2011. A Synthetic

Heuristic Algorithm for Independent Task Scheduling in

Cloud Systems. IJCSI International Journal of Computer

Science Issues, 1694-0814.

[14] Ilavarasan E. and Thambidurai, P. 2007. Low

Complexity Performance Effective Task Scheduling

Algorithm for Heterogeneous Computing Environments.

Journal of Computer Sciences 3 (2): 94-103, 2007.

[15] Padmavathi, S. Mercy Shalinie, S. 2010. Scable Low

Complexity Task Scheduling Algorithm for Cluster of

Workstations. Journal of Engineering Science and

Technology Vol. 5, No. 3 (2010) 332 – 341.

[16] Shi, Z. Dongarra, J. J. 2006. Scheduling workflow

applications on processors with different capabilities.

Future Generation Computer Systems

22 (2006) 665–675.

[17] Tang, X. Li, K. Li, R. Veeravalli, B. 2010.

Reliability-aware scheduling strategy for heterogeneous

distributed computing systems, J. Parallel and

Distributed Computing, 70 (2010) 941_952.

[18] Tang, X. Li, K. Liao, G. Li, R. 2010. List scheduling

with duplication for heterogeneous computing systems.J.

Parallel and Distributed Computing, 70 (2010) 323_329.

[19] Wen, Y. Xu, H. Yang, J. 2011. A heuristic-based hybrid

genetic-variable neighbourhood search algorithm for task

scheduling in heterogeneous multiprocessor system.

ELSEVIER, Information Sciences, 181 (2011) 567–581.

[20] Li, J. Qiu, M. Ming, Z. Quan, G. Qin, X. Gue, Z. 2012.

Online optimization for scheduling preemptable tasks on

IaaS cloud systems. ELSEVIER, Journal of Parallel and

Distributed Computing, 72 (2012) 666–677.

[21] Wang, X. Shin Yeo, Ch. Buyya, R. Su, J. 2011.

Optimizing the makespan and reliability for workflow

applications with reputation and a look-ahead genetic

algorithm, ELSEVIER, Future Generation Computer

Systems 27 (2011) 1124–1134.

[22] Ge, J. Zhang, B. and Fang, Y. 2010. Research on the

Resource Monitoring Model Under Cloud Computing

Environment. WISM 2010, LNCS 6318, pp. 111–118,

Springer, Verlag Berlin Heidelberg.

[23] Ghorbannia Delavar, A. Aghazarian, V. Litkouhi S. and

Khajeh naeini, M. 2011. A Scheduling Algorithm for

Increasing the Quality of the Distributed Systems by

using Genetic Algorithm. International Journal of

Information and Education Technology, Vol. 1, No. 1,

ISSN: 2010-3689.

[24] Mezmaz, M. Melab, N. Kessaci, Y. Lee c, Y.C. Talbi, E.-

G. Zomaya, A.Y. Tuyttens, D. 2011. A parallel bi-

objective hybrid metaheuristic for energy-aware

scheduling for cloud computing systems. ELSEVIER, J.

Parallel and Distributed Computing (2011).

[25] Chitra, P. Rajaram, R. Venkatesh, P. 2011. Application

and comparison of hybrid evolutionary multiobjective

optimization algorithms for solving task scheduling

problem on heterogeneous systems, Applied Soft

Computing 11 (2011) 2725–2734.

[26] Lee, Y. C. Zomaya, A. Y. 2010. Rescheduling for

reliable job completion with the support of clouds. Future

Generation Computer Systems 26 (2010) 1192_1199.

http://www.cloudbus.org/reports

