
International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

10

A Balanced Scheduling Algorithm with Fault Tolerance
and Task Migration based on Primary Static Mapping

(PSM) in Grid

Arash Ghorbannia
Delavar

Department of Computer,
Payame Noor University,

PO BOX 19395-3697,
Tehran, Iran

Ali Reza Khalili Boroujeni
Department of Computer,
Payame Noor University,

Tehran, Iran

Javad Bayrampoor
Department of Computer,
Payame Noor University,

Tehran, Iran

ABSTRACT

In this paper we present a balanced scheduling algorithm with

considering the fault tolerance and task migration of

allocating independent tasks in grid systems. Resource

scheduling and its management are great challenges in

heterogeneous environment. Hence load balancing is one of

the best solutions to achieve the above purposes. The

scheduling algorithm which we will present in follow, with

taking the fault tolerance, checkpointing method, task

migration and priority for mapping independent tasks on

heterogeneous computing environment, creates the specific

situation to ensure high performance in grid systems. So by

implementing these parameters we can achieve more efficient

and dependable performance than similar previous algorithms.

It will be done with better condition and achieve high

performance in computational grids in compare with Min-min

algorithm. Finally the experiment and simulated results show

that proposed balanced scheduling algorithm performs

significantly to ensure high throughput, reduced makespan,

reliability and more efficiency in the grid environment.

Keywords

Grid Computing, Task Scheduling, Heuristic Algorithm, Load

Balancing, Fault Tolerance, Task Migration, PSM

1. INTRODUCTION
Grid is emerging as a wide scale infrastructure and next

generation parallel and distributed computing to aggregates

dispersed heterogeneous resources, support source sharing,

providing services to fit needs of scientific applications,

business, engineering and Commerce [1].

Grid computing environment combination of widely spread

computational machines includes of different interconnected

machines by interface network to execute different tasks that

have diverse computational requirements. A grid involves a

variety of resources that are heterogeneous naturally and

might span several administrative domains across not narrow

geographical distances. Grid computing environment includes

of different interconnected machines by interface networks to

execute different tasks that have diverse computational

requirements. The main purpose of grid systems is optimize

using sources and maximizes the efficiency of the system.

Managing various resources and task scheduling in grid

environment are challenging and indispensable works [2, 3].

Tasks scheduling is a NP- complete problem and finding the

absolute optimum solution is too hard. So many heuristic

algorithms have been developed to solve this hard problem.

The heuristic scheduling can be classified into two categories:

on-line mode and batch-mode heuristics. In the on-line mode

heuristics, a task is mapped on to a machine as soon as it

arrives at the scheduler. In the batch-mode heuristics, tasks

are not mapped on to machines as they arrive; instead they are

collected into the buffer and then it is scheduled at

prescheduled time [4, 5].

Our study is based on the batch-mode heuristics, and presents

a batching heuristic scheduling algorithm with consider the

fault tolerance and task migration of dedicating independent

tasks in grid systems. The scheduling algorithm which we will

present in follow executes primary static mapping (PSM) of

meta-tasks on the machines in grid systems. Then based on

PSM the tasks will be mapped on the machines. The main

idea is that if a fault occurs at run time ,or we need to migrate

the tasks, the execution will be continued with switching from

a processing node to another node, based on PSM (as an

optimal target). In this proposed algorithm, the failed

machines can be returned to systems to reallocating. By

implement the fault tolerance and priority for mapping the

tasks in simulated environment we will achieve more

efficiently in proposed scheduling algorithm performance,

throughput maximization and reduced makespan (measure of

the throughput) of the heterogeneous grid computing systems

in the grid environment.

2. Related Works
Many heuristics algorithms have been designed and

developed to solve meta-task optimal scheduling in

distributed heterogeneous computing systems. Braun et al.

have studied the relative performance of eleven heuristic

algorithms for task scheduling in grid computing. They have

also provided a simulation basis for researchers to test the

algorithms. The simple algorithms proposed by Braun are

Opportunistic Load Balancing (OLB), Minimum Execution

Time (MET), Minimum Completion Time (MCT), Min-min,

Max-min, Duplex, Genetic Algorithm (GA), Simulated

Annealing (SA), Genetic Simulation Annealing (GSA), Tabu

and A* [6].

The Min-min heuristic begins with the set of all unmapped

tasks. Then, the set of minimum completion times is found.

Next, the task with the overall minimum completion time is

selected and assigned to the corresponding machine. Last, the

newly mapped task is removed from unmapped tasks set and

the process repeats until all tasks are mapped. Min-min is

based on the minimum completion time and considers all

unmapped tasks during each mapping decision at a time. Their

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

11

results show that Min-min is the simple and fastest algorithm

and its good performance depend on the choice of mapping

the meta-tasks to the first choice of minimum execution time.

However the drawback of Min-min is that, it is unable to

balance the load because it usually assigns the small task first

and few larger tasks, while at the same time, several machines

sit idle, which leads to poor utilization of resources [6].

2.1 Load Balancing
The resource managers or usages must modify their behavior

dynamically so as to extract the maximum performance from

the available resources and services. So to achieve high

performance we need to understand the factors that can affect

the performance of an application like load balancing which is

one of most important factors which influence the overall

performance of application. Load balancing is a technique to

enhance resources, using parallelism, exploiting throughput

improvisation and to cut response time through an appropriate

distribution of the usages [7, 8].

2.2 Fault Tolerance
Fault tolerance is an important problem in grid computing as

the dependability factor of grid resources and may become

more prevalent in grid applications. The appearance of grid

computing further increases the importance of fault tolerance.

Some of the factors due to which the probability of problem in

a grid environment is much higher than a traditional

distributed system are lack of centralized environment,

predominant execution of long tasks, highly dynamic resource

availability and diverse geographical distribution of resources

and different nature of grid resources. Thus, fault tolerance

related features must be used in grid task planning to improve

the performance of the grid system [9].

2.3 Checkpointing Tools
When a failure occurs the whole application is shutdown and

has to be restarted from the beginning. A technique to avoid

restarting of the application from the beginning is rollback

recovery which is based on the idea of checkpoint. It

periodically saves the application’s state to stable storage. So

whenever a failure interrupts a volunteer computation, the

application can be resumed from the last stable checkpoint.

The tools of checkpointing can be classified into two types,

kernel-level and user-level. Kernel-level checkpointing tools

are a part of the operating system kernel, while user-level

checkpointing tools are themselves application programs.

Kernel-level checkpointing is often implemented through inter

process communication mechanisms such as signals, making

user-level checkpointing portable [9].

2.4 Task Migration
The definition of migration is the movement of process, job,

data, method, or service from one node to another. We can

aim process migration as a fail-safe mechanism. It is supposed

to prevent running jobs or processes from being failed

because of shutdown of the execution node, power failure of

the area or personal factor in the management of the execution

node. Main situations show that migration mechanism is on

demand. However, to migration running job or process to

other execution nodes may pay for something else, such as the

late of the complete time of these jobs, because of

communication time, checkpointing time and reschedule time.

A simple equation can be used to estimate the total execution

time of a job which accounts from when a user submits the

job to when the job is completed or failed [10,11]. A general

migration mechanism includes:

 Shared Storage devices:

Shared storage devices are the most common methods used in

a migration mechanism. Once the system discover load

unbalance of some processors over specific threshold, it

migrate the tasks or jobs in the waiting queue and dispatches

to the most suitable idle processor through shared-storage

devices, which act as a media for the storage of process states

or images [11].

 Preserving Memory image:

Preserving memory image is the activity of writing the states

of a running process to a file. Checkpointing is a general term

referred to collecting and keeping the states of a running

process, which is an operation of capturing the states and data

of a running job or process. The items of captured states and

data of a running process include:

-Registers containing the address, variables, and data else.

-Memory spaces keeping source codes, libraries, data

structures.

-Files containing data with a large size [11].

In the next section, we will describe the details of the

algorithm and show the benefits of our work via comparison

and simulation. Finally, we will conclude our contributions

and point out the future work scheduling algorithm.

3. Problem Definition
The problem of task scheduling will be studying in

heterogeneous computing environment. In this environment,

there is number of independent tasks to allocate and number

of machines to execute these tasks and each machine executes

one task at a time. For this mapping, a number of tasks,

machines, the machine instructions for each task, the

processing speed of machines, the transmission size and the

return result size of task file and the network bandwidth

between the scheduler and the machines are known and there

for the accurate estimate of the expected execution time for

each task on each machine will be known to execution. The

fault tolerance and task migration mechanism that is used in

proposed algorithm, rescheduling tasks which have failed or

delayed with switching from a processing node to another

node based on PSM.

 – Expected completion time of the task on the machine

 .

 – Expected execution time of the task on the machine

 . (Machine instructions of the task / processing speed of

the machine) Suppose that machine has no load when

task is assigned.

 : Ready time of the machine (the time when machine

 becomes ready to execute task).

 : The transmission size of the task file .

 : The return result size of task file .

 : The network bandwidth between the scheduler and the

machine j.

 : Transmission time of the task file to the machine

(the wait time needed to mapping task to the machine).

 : Return time of the task file from the machine (the

wait time needed to return results of task from machine).

 (1)

In Which:

 (2)

Or:

 (3)

Ensure high throughput when a fail occurs and reduced

makespan, is primary object of proposed heuristic scheduling

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

12

Min-min Algorithm as first phase

Respectively Find the machine with

minimum earliest completion time and

allocated tasks to it, in first phase

Reassign task to the new machine

Is there any

machine to

rescheduling?

Is the completion time

less than previous

completion time?

Y

N

Finish

For each allocated task, find another machine

with minimum compute completion time:

Y

N

Start
algorithm in this paper. Makespan is defined as completion

time of the system:

 (4)

3.1 Proposed Algorithm
The proposed scheduling algorithm execute at two phases.

First; presents a static mapping of meta-tasks on the machines

in heterogeneous computing systems based on Min-min.

Second; for more workload balancing and decrease system

makespan, tasks are rescheduling on machines again. The

above phases are defined as primary static mapping (PSM).

Then based on PSM the tasks start to mapping on the

machines. If a fail occurs at run time, by using checkpointing

method, tasks which have been failed can be continue with

switching from a processing node to another node that has

minimum completion time based on PSM.

In our proposed algorithm we have these restricts:

1. The proposed strategy is based on message transmission.

2. The dynamic load balance is used at user-level.

The proposed heuristic scheduling algorithm is defined as

follow:

First:

Do until all tasks in meat-tasks are scheduled

 For each task

o For each machine

 Compute the earliest completion time

 Find the task with the minimum

earliest completion time

 Assign each task to the machine

giving the earliest completion time

 Delete task from meat-tasks

 Update machine ready time

o End for

 End for

End do

Second:

For all machine order by minimum earliest completion time

respectively

 For all tasks have selected with this machine in first

phase

o Find the another machine with the minimum

earliest completion time than previous machine

o Reassign task to the new machine

o Delete task from previous machine

o Update machines ready time

 End for

End for

The proposed heuristic algorithm phases diagram as PSM is

showed as follow in Figure 1.

Fig1. The proposed algorithm diagram

Algorithm starts based on PSM as static scheduling and will

be continue while no fail occurs. So if no fail occurs, at the

end based on PSM, Tasks will become mapped on

corresponding machine. At follow we will describe that if a

fail occurs, the tasks scheduling will change to dynamic

scheduling to reassign failed tasks to a new machine based on

PSM, and checkpointing method used for failed running tasks.

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

13

3.2 Fault Tolerance Implementation
When a fail occurs, if the task is running, continuance of

calculation can be save to keep on its task with switching

from a processing machine that is failed to another machine

not failed and has minimum completion time base on PSM.

Then, completion times of machines updated and saved to

probable failed states in future. This processing will continue

while schedule/reschedule whole tasks on machines will be

done. Each machine executes a single task at a time and in an

order in which the tasks are assigned and in failed condition,

failed task will reassign to selected machine after its running

task. By using checkpointing mechanism, the return time will

be improved considerably that is useful for the environments

with high source fault rate.

In the experiments, omission faults will arise when resources

become unavailable, due to the dynamic nature of many grids.

The fault tolerance proceeding as rescheduling processing for

failed tasks is defined as follow:

o Determine the failed machine and the task that must be

reallocated on a new machine based on PSM

o If the failed task is running

 Save continuance of calculation

End if

o Switching the task to another machine which has

minimum completion time (

)

base on PSM after the current running task

o Update primary static mapping information (PSMI) to

probable failed states in future

3.3 Checkpointing Tool Implementation
Checkpointing is combination of two activities that save the

running data and restore it after getting suitable resource.

Captured states and data of a running process include registers

containing the address, variables, memory spaces keeping

source codes, libraries, data structures, files containing data

with a large size and other data.

In the experiments, we adopt a user-level checkpointing tool,

which is a kind of usage consist a set of libraries and

programs for checkpointing.

3.4 Task Migration Implementation
In this paper we assume the information collected by the grid

monitor system that is based on periodical framework (where

a period is called a time slice). In each time slice, the system

will record the availability of all nodes. So the task scheduling

system is based on the statistical information gathered by the

system monitoring and the estimated migration cost. Similar

to a checkpoint/restart system, the migration is separated into

three phases: data collection, data transmission and data

restoration. The times spent on these phases are represented as

 , , and respectively. The source machine and the

destination machine are represented as and . For a

general process migration system without any optimization,

the cost to migrate a running process from to is:

 (5)

Given an application App running on a machine , at time

 , it reaches a poll point . If App does not migrate at

time , it finishes on at . If App is scheduled to migrate

to another machine at time , it finishes on at . The

available communication bandwidth from to is

which can be estimated with existing network performance

prediction tools. The available computing capacity of and

 are represented as and sequence.

The migration cost is defined as the time spent to

migration App from to :

 (6)

So if has the same computing capacity as , that is

 (in most cases, this means is identical to),

then the migration cost is:

 (7)

The proposed algorithm strive to move jobs when wait time at

the machines rise above specific threshold. So if the wait time

of the task is below threshold , the system volunteers itself

for receiving jobs by informing other machines of its low

utilization. The migration threshold τ also acts as a gate to

discourage excessive job movement. We define threshold

as:

 (
) (8)

In Which:

 (
) – Maximum completion time of the task on the

machine based on PSM.

 – Variable value is defined as follows:

 ∑ ∑
 (9)

 (We define as a variable parameter in order to preventing

from over migration of tasks and allocating greater chance to

machines with Maximum completion time, based on PSM.)

Where:
∑ – Sum of task computational requirements that is

assigned to whole machines.

∑
 – Sum of task computational requirements that is

assigned to machine .

In the experiments, the delay of the complete time of these

jobs occurs by communication time because of bandwidth

between the scheduler and the machines and execution time as

a result of Machine capabilities. The task migration

proceeding as rescheduling processing for tasks with long

delay is based on threshold that is defined as follow:

o Determine the machine which cannot be executed on

deadline based on specific threshold and the task that

must be reallocated on a new machine base on PSM

o Restore the last checkpointing calculation of the running

task

o Switching the task to another machine which has

minimum completion time (

)

base on PSM after the current running task

o Update primary static mapping information (PSMI) to

probable failed states in future

4. Benchmark Descriptions
To better evaluate the behavior of mapping heuristics,

investigating the performance of the heuristics under different

heterogeneous computing systems and under different types

of tasks must be mapped. So the expected execution time for

each task on each machine can be achieved from machine

instructions of the task, the processing speed of the

machines, the transmission size of the task file, the return

result size of task file and the network bandwidth between the

scheduler/machine in grid.

5. Performance Analysis
To evaluate the efficiency of the proposed algorithm, it is

compared with Min-min heuristic algorithm in fault states and

delay times with checkpointing and without checkpointing

method. The follow tables show the parameters of system,

machines and tasks. Also follow Diagrams show the

improvement of proposed heuristic scheduling algorithm over

Min-min at different percentage of failure coefficient.

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

14

Table 1. The used parameters for simulating of proposed algorithm with fault tolerance and Min-min algorithm

Number of tasks 512

Number of machines 16

Task computational requirements 5 - 50 (billion machine instructions)

Machine capabilities 10-100(million machine instructions)

Task send/ receive file size 0.1-100(Mb)

Network bandwidth 100-1000 (Mbps)

Failure coefficient 0, 10, 20, 30 and 40 (%)

Delay Rate 0

Fig2. Comparison of result obtained by Min-min algorithm, proposed algorithm without checkpointing and proposed

algorithm with checkpointing for various fault occurrence rates based on table 1

Fig3. Comparison of result obtained by Min-min algorithm, proposed algorithm without checkpointing and proposed

algorithm with checkpointing for 20% fault occurrence rate based on table 1

0

5000

10000

15000

20000

25000

30000

Failure coefficient
0%

Failure coefficient
10%

Failure coefficient
20%

Failure coefficient
30%

Failure coefficient
40%

Min_min Algorithm

Proposed Algorithm without Chechpointing and Task Migration

Proposed Algorithm with Chechpointing and Task Migration

5000

10000

15000

20000

25000

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

Min_min Algorithm

Proposed Algorithm without Chechpointing and Task Migration

Proposed Algorithm with Chechpointing and Task Migration

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

15

Table 2. The used parameters for simulating of proposed algorithm with fault tolerance and Min-min algorithm

Fig4. Comparison of result obtained by Min-min algorithm, proposed algorithm without checkpointing and proposed

algorithm with checkpointing for various fault occurrence rates based on table 2

Fig5. Comparison of result obtained by Min-min algorithm, proposed algorithm without checkpointing and proposed

algorithm with checkpointing for 20% fault occurrence rate based on table 2

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Failure coefficient
0%

Failure coefficient
10%

Failure coefficient
20%

Failure coefficient
30%

Failure coefficient
40%

Min_min Algorithm

Proposed Algorithm without Chechpointing and Task Migration

Proposed Algorithm with Chechpointing and Task Migration

10000

20000

30000

40000

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

Min_min Algorithm

Proposed Algorithm without Chechpointing and Task Migration

Proposed Algorithm with Chechpointing and Task Migration

Number of tasks 1024

Number of machines 16

Task computational requirements 5 – 50 (billion machine instructions)

Machine capabilities 10-100(million machine instructions)

Task send/ receive file size 0.1-100(Mb)

Network bandwidth 100-1000 (Mbps)

Failure coefficient 0, 10, 20, 30 and 40 (%)

Delay Rate 0

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

16

Table 3. The used parameters for simulating of proposed algorithm with task migration and Min-min algorithm

Fig6. Comparison of result obtained by Min-min algorithm, proposed algorithm without task migration and proposed

algorithm with task migration for various delay rates based on table 3

Fig7. Comparison of result obtained by Min-min algorithm, proposed algorithm without task migration and proposed

algorithm with task migration for 10% delay rate based on table 3

17000

18000

19000

20000

21000

0% Delay to 5% Delay to 10% Delay to 15% Delay to 20% Delay

Min_min Algorithm

Proposed Algorithm without Chechpointing and Task Migration

Proposed Algorithm with Chechpointing and Task Migration

10000

13000

16000

19000

22000

25000

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

Min_min Algorithm

Proposed Algorithm without Chechpointing and Task Migration

Proposed Algorithm with Chechpointing and Task Migration

Number of tasks 512

Number of machines 16

Task computational requirements 5 - 50 (billion machine instructions)

Machine capabilities 10-100(million machine instructions)

Task send/ receive file size 0.1-100(Mb)

Network bandwidth 100-1000 (Mbps)

Failure coefficient 0

Delay Rate 0, 5, 10, 15 and 20 (%)

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

17

Table 4. The used parameters for simulating of proposed algorithm with task migration and Min-min algorithm

Fig8. Comparison of result obtained by Min-min algorithm, proposed algorithm without task migration and proposed

algorithm with task migration for various delay rates based on table 4

Fig9. Comparison of result obtained by Min-min algorithm, proposed algorithm without task migration and proposed

algorithm with task migration for 10% delay rate based on table 4

34000

35000

36000

37000

38000

39000

40000

41000

42000

0% Delay to 5% Delay to 10% Delay to 15% Delay to 20% Delay

Min_min Algorithm

Proposed Algorithm without Chechpointing and Task Migration

Proposed Algorithm with Chechpointing and Task Migration

30000

33000

36000

39000

42000

45000

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

Min_min Algorithm

Proposed Algorithm without Chechpointing and Task Migration

Proposed Algorithm with Chechpointing and Task Migration

Number of tasks 1024

Number of machines 16

Task computational requirements 5 - 50 (billion machine instructions)

Machine capabilities 10-100(million machine instructions)

Task send/ receive file size 0.1-100(Mb)

Network bandwidth 100-1000 (Mbps)

Failure coefficient 0

Delay Rate 0, 5, 10, 15 and 20 (%)

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

18

Table 5. The used parameters for simulating of proposed algorithm with fault tolerance and task migration and Min-min

algorithm

Fig10. Comparison of result obtained by Min-min algorithm, proposed algorithm without task migration and proposed

algorithm with task migration for 20% fault occurrence rate and 10% delay rate based on table 5

Fig11. Comparison of result obtained by Min-min algorithm, proposed algorithm without task migration and proposed

algorithm with task migration for 20% fault occurrence rate and 10% delay rate based on table 5

20000

21000

22000

23000

to 20% Fault and 10% Delay

Min_min Algorithm

Proposed Algorithm without Chechpointing and Task Migration

Proposed Algorithm with Chechpointing and Task Migration

8000

11000

14000

17000

20000

23000

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

Min_min Algorithm

Proposed Algorithm without Chechpointing and Task Migration

Proposed Algorithm with Chechpointing and Task Migration

Number of tasks 512

Number of machines 16

Task computational requirements 5 - 50 (billion machine instructions)

Machine capabilities 10-100(million machine instructions)

Task send/ receive file size 0.1-100(Mb)

Network bandwidth 100-1000 (Mbps)

Failure coefficient 20 (%)

Delay Rate 10 (%)

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

19

Table 6. The used parameters for simulating of proposed algorithm with fault tolerance and task migration and Min-min

algorithm

Fig12. Comparison of result obtained by Min-min algorithm, proposed algorithm without task migration and proposed

algorithm with task migration for 20% fault occurrence rate and 10% delay rate based on table 6

Fig13. Comparison of result obtained by Min-min algorithm, proposed algorithm without task migration and proposed

algorithm with task migration for 20% fault occurrence rate and 10% delay rate based on table 6

45000

46000

47000

48000

49000

50000

to 20% Fault and 10% Delay

Min_min Algorithm

Proposed Algorithm without Chechpointing and Task Migration

Proposed Algorithm with Chechpointing and Task Migration

0

10000

20000

30000

40000

50000

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

Min_min Algorithm

Proposed Algorithm without Chechpointing and Task Migration

Proposed Algorithm with Chechpointing and Task Migration

Number of tasks 1024

Number of machines 16

Task computational requirements 5 - 50 (billion machine instructions)

Machine capabilities 10-100(million machine instructions)

Task send/ receive file size 0.1-100(Mb)

Network bandwidth 100-1000 (Mbps)

Failure coefficient 20 (%)

Delay Rate 10 (%)

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

20

6. Conclusion and Future Work
Experimental results show the proposed algorithm has better

improvement than Min-min algorithm and reduces the time,

cost and changes reliability to the best possible amount. With

taking the fault tolerance with checkpointing method, task

migration for tasks with long delay and priority for mapping

tasks in simulated environment, we will achieve more

efficiently in proposed scheduling algorithm performance,

throughput maximization and reduced measure of the

throughput of grid computing systems. The future research

will be focused on communication cost, other delay times and

also consider the nodes and parameters to be dynamic

regarding the environmental conditions in grid systems.

7. References
[1] I. Foster and C. Kesselman, Eds., "the Grid: Blueprint for

a Future Computing Infrastructure". Morgan Kaufmann

Publishers, 1999

[2] A.Ghorbannia Delavar, M.Nejadkheirallah and

M.Motalleb, "A New Scheduling Algorithm for Dynamic

Task and Fault Tolerant in Heterogeneous Grid Systems

Using Genetic Algorithm", IEEE 2010.

[3] A. Ghorbannia Delavar , A. R. Khalili Boroujeni and J.

Bayrampoor, International Journal of Computer Science

Issues, “BPISG: A Batching Heuristic Scheduling

Algorithm With Taking Index Parameters for Mapping

Independent Tasks on Heterogeneous Computing

Environment”, Vol. 8, Issue 6, No 1, November 2011.

[4] Kamalam.G.K and Murali bhaskaran.V, "A New

Heuristic Approach: Min-Mean Algorithm for

Scheduling Meta-Tasks on Heterogeneous Computing

Systems", Journal of Computer Science and Network

Security, January 2010.

[5] G. K. Kamalam and V. Murali Bhaskaran, "An Improved

Min-Mean Heuristic Scheduling Algorithm for Mapping

Independent Tasks on Heterogeneous Computing

Environment", Journal of Computational cognition,

December 2010.

[6] Tracy D.Braun, Howard Jay Siegel and Noah Beck, “A

Comparison of Eleven Static Heuristics for Mapping a

Class of Independent Tasks onto Heterogeneous

Distributed Computing Systems”, Journal of Parallel and

Distributed Computing 61, 2001, pp.810-837.

[7] Thilo Kielmann, Vrije Universiteit, Amsterdam,

“Scalability in Grid”. PPT Core GRID, Bridging Global

Computing with Grid (BIGG), Nov. 29, 2006.

[8] Malarvizhi Nandagopal, V. Rhymend Uthariaraj,

International Journal of Engineering Science and

Technology "Fault Tolerant Scheduling Strategy for

Computational Grid Environment" Vol. 2(9), 2010,

4361-4372.

[9] B. Yagoubi , Department of Computer Science, Faculty

of Sciences, University of Oran and Y. Slimani ,

Department of Computer Science, Faculty of Sciences of

Tunis, “Task Load Balancing Strategy for Grid

Computing”.

[10] J. Jayabharathy, and Ayeshaa Parveen, International

Journal of Recent Trends in Engineering, "A Fault

Tolerant Load Balancing Model for Grid Envirnment"

Vol. 2(9), 2009.

[11] Yuan-Jin Wen and Sheng-De Wang, “Minimizing

Migration on Grid Environments: an Experience on Sun

Grid Engine”, Journal of Information Technology and

Applications, Vol. 1, No 4, March 2007, 297-304.

[12] Shoukat Ali, Howard Jay Siegel and Muthucumaru

Maheswaran, "Task Execution Time Modeling for

Heterogeneous Computing Systems", IEEE Computer,

2000.

[13] Jia Yu and Rajkumar Buyya, “ Workflow Scheduling

Algorithms for Grid Computing “,Grid Computing and

Distributed Systems (GRIDS) Laboratory Department of

Computer Science and Software Engineering The

University of Melbourne.

[14] Hesam Izakian, Ajith Abraham, Senior Member, IEEE,

Václav Snášel, “Comparison of Heuristics for

Scheduling Independent Tasks on Heterogeneous

Distributed Environments”.

[15] Kamaljit Kaur, Amit Chhabra, Gurvinder Singh,

“Heuristics Based Genetic Algorithm for Scheduling

Static Tasks in Homogeneous Parallel System”,

International Journal of Computer Science and Security

(IJCSS), Volume (4).

[16] Cong Du, Xian-He Sun and Ming Wu, “Dynamic

Scheduling with Process Migration”, National science

Foundation.

[17] P.Kokkinos, K. Christodoulopoulos, A. Kretsis and E.

Varvarigos, “Data Consolidation: A Task Scheduling and

Data Migration Technique for Grid Networks”, IEEE

Computer Society, 2008.

[18] Abderezak Touzene, Sultan Al-Yahai, Hussien

AlMuqbali, Abdelmadjid Bouabdallah and Yacine

Challal, “Performance Evaluation of Load Balancing in

Hierarchical Architecture for Grid Computing Service

Middleware”, International Journal of Computer Science

Issues, Vol. 8, Issue 2, March 2011.

[19] Belabbas Yagoubi, “Load Balancing Strategy in Grid

Environment”, Journal of International Technology and

Applications, Vol. 1, No 4, March 2007, 285-296.

[20] Ashish Revar, Malay Andhariya, Dharmendra Sutariya,

“Load Balancing in Grid Environment using Machine

Learning-Innovative Approach”, Journal of International

Technology and Applications, Vol. 8, No 10, October

2010.

AUTHOR’S PROFILE

Arash Ghorbannia Delavar received the MSc and Ph.D.

degrees in computer engineering from Sciences and Research

University, Tehran, IRAN, in 2002 and 2007. He obtained the

top student award in Ph.D. course. He is currently an assistant

professor in the Department of Computer Science, Payame

Noor University, Tehran, IRAN. He is also the Director of

Virtual University and Multimedia Training Department of

Payame Noor University in IRAN. Dr. Arash Ghorbannia

Delavar is currently editor of many computer science journals

in IRAN. His research interests are in the areas of computer

networks, microprocessors, data mining, Information

Technology, and E-Learning.

 Ali Reza Khalili Boroujeni received the BS, in 2000 and

now, he is a Student the MS degree in the department of

Computer Engineering and Information Technology in

Payame Noor University, Tehran, IRAN. His research

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

21

interests include computer networks, grid and scheduling

algorithm.

 Javad Bayrampoor received the BS, in 2007 and now, he is

a Student the MS degree in the department of Computer

Engineering and Information Technology in Payame Noor

University, Tehran, IRAN. His research interests include

computer networks, grid and scheduling algorithm.

