
International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

6

Closure Properties of Prefix-free Regular Languages

Meenu Lochan
 Thapar University

Patiala, Punjab, India

Sunita Garhwal

Thapar University

 Patiala, Punjab, India

Ajay Kumar
Thapar University

 Patiala, Punjab, India

ABSTRACT

Regular languages are closed under union, intersection,

complementation, Kleene-closure and reversal operations.

Regular languages can be classified into infix-free, prefix-

free and suffix-free. In this paper various closure properties of

prefix-free regular languages are investigated and result

shows that prefix-free regular languages are closed under

union and concatenation. Under complementation, reverse,

Kleene-closure and intersection operations prefix-free regular

languages are not closed.

General Terms

Theoretical Computer Science

Keywords

Regular expressions; State complexity; Prefix-free

1. INTRODUCTION
Regular languages are used in various fields of computer

science like compilers, data compression, text processing,

software engineering and pattern matching. Regular languages

can be represented by finite-state automata (FAs) or regular

expressions. Regular languages can be classified as infix free,

prefix free, suffix free. A regular language is prefix-free [1] if

and only if its minimal DFA M has only one final state and

the final state has no out-transitions whose target state is not a

sink state. In this paper various properties of prefix-free

regular languages are investigated.

2. BASIC DEFINITION AND NOTATION
Regular languages can be represented by regular expressions

or finite automata. Finite automata can be classified into

deterministic finite automata and non-deterministic finite

automata. Non-deterministic finite automata are

generalizations of DFA.

Def. 2.1: A deterministic finite automaton [10] M is a

quintuple (Q, Σ, δ, q0, F), where Q is the finite set of states, Σ

is the finite set of symbols called the alphabet , δ is a

transition function mapping Q × Σ → Q, q0 is the starting

state (q0 ∈ Q), F is the set of accepting states (F ⊆ Q).

Def. 2.2: A non-deterministic finite state automaton (NDFA)

[7, 8] is same as DFA except the transition relation is defined

as QXΣ2Q.

A word is accepted by the NFA if some choice of transitions

takes the machine to a final state [6]. Some other choices may

lead to a non-final state, but the word is accepted as long as

there exist at least one accepting computation path in the

automaton.

Def. 2.3: A regular expression [10] is a pattern that describes

some set of strings.

Example 2.1: Considering input alphabets A = {a, b} then

(a+b)* represents a regular expression that includes all strings

over a and b.

Def. 2.4: A regular language L is prefix-free [4] if, for all

distinct strings x, y ∈ Σ* and x, y ∈ L mean that x and y are not

prefixes of each other. A regular language is prefix-free if and

only if its minimal DFA A has only one final state and the

final state has no out transitions whose target state is not a

sink state [1].

Def. 2.5: A regular language L is suffix free [4] if, for all

distinct strings x, y ∈ Σ*, and x, y ∈ L mean that x and y are not

suffixes of each other. Given two strings x and y over Σ, x is a

suffix of y if there exists z ∈ Σ* such that zx = y. A regular

language is suffix-free if and only if its minimal DFA have a

unique sink state and its starting state does not have any in-

transitions [2].

Def. 2.6: A language L is infix free [4] if, for all distinct

strings x, y ∈ Σ*, and x, y ∈ L mean that x and y are not

substrings of each other. x is said to be substring or an infix of

y if there are two strings u and v such that uxv = y. A regular

language is infix-free [5] if a DFA A is minimal and is non-

returning and non-exiting.

Regular languages are closed under union, concatenation,

Kleene closure, intersection, complement and reverse

operations.

3. CLOSURE PROPERTIES OF PREFIX-

FREE REGULAR LANGUAGES
State complexity [9] is the number of states that are necessary

and sufficient in the worst-case for the minimal deterministic

finite state automaton that accepts the language obtained from

the operation. There is a lot of research work which has been

done on state complexity but very few on closure properties of

regular languages. So, it is natural to investigate the closure

properties of various forms of regular languages.

Theorem 3.1: Prefix-free regular languages are closed under

union operation.

Proof: Suppose L1 and L2 are prefix-free regular languages

represented by DFA M1 (Q1, ∑1, δ1, q01, F01) and M2 (Q2, ∑2,

δ2, q02, F02).Since both M1 and M2 contains a single final state

and no out-going transition from their final states. L1 U L2 can

be found by adding a new starting state q0 to q01and q02. Final

states of M1 and M2 are combined and there is no transition

from the final state. After removing null transitions, we obtain

a DFA representing a single final state and no out-going

transition from the final state. Hence, the resulting language L

is prefix-free regular language. We can say that prefix-free

regular languages are closed under union.

http://en.wikipedia.org/wiki/State_%28computer_science%29
http://en.wikipedia.org/wiki/Alphabet_%28computer_science%29
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Finite_state_machine#Start_state
http://en.wikipedia.org/wiki/Finite_state_machine#Start_state
http://en.wikipedia.org/wiki/Finite_state_machine#Accept_state

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

7

Example 3.1: Given L1= {ab} and L2= {aabb} are prefix-free

regular languages, then L=L1UL2 is also a prefix-free regular

languages. L1 and L2 can be represented by fig. 1 and fig. 2

respectively.q2 and q7 represent the final states of the DFA as

shown in fig. 1 and fig. 2

Fig.2: DFA for L2 = {aabb}

Union of L1 and L2 after removal of ε-transition and

minimization of DFA is shown in fig. 3.state q2 represents the

final state of the fig. 3.

Fig.3: Union after ε-transition

Clearly, L = L1 U L2 is a prefix-free regular language as there

is no out-going transition from the final state.

Theorem 3.2: Prefix-free regular languages are closed under

concatenation operation.

Proof: Suppose L1 and L2 are prefix-free regular languages

represented by DFA M1 (Q1, ∑1, δ1, q01, F01) and M2 (Q2, ∑2,

δ2, q02, F02).Since both M1 and M2 contains a single final state

and no out-going transition from their final states. L1L2 are

obtained by merging the final state of M1 and starting state of

M2. It will not cause any problem as final state of M1 is not

having any out-going transition. DFA obtained for L1L2

contains a single final state with no out-going transitions.

Hence prefix-free regular languages are closed under

concatenation.

Example 3.2: Given L1 = {ab} and L2 = {aabb} are prefix-free

regular languages, then

L=L1L2 is also a prefix-free regular language. L1 and L2 are

represented by fig.1 and fig.2 respectively.

Concatenation of L1 and L2 can be represented by a DFA (with

q6 as final state) as shown in fig.4.

Fig.4: L1L2 = {abaabb}

Clearly, L = L1.L2 is a prefix-free regular language as there is

no out-going transition from the final state.

Theorem 3.3 Prefix-free regular languages are not closed

under complementation operation.

Proof: We prove by an example that prefix-free regular

languages are not closed under complementation. Let L= ab*a

is a prefix-free regular languages.

Fig.5: L = {ab*a}

For performing complement operation, all the strings which

are accepting in original language become non-accepting and

all non-accepting strings become accepting strings.

For complement, following steps are carried out:

1. Add an additional state called dead state (qd).

2. Repeat for each state (q) of the DFA except qd .

2.1 Find the alphabet which is not having out-

transition from q.

2.2 Add an edge from q to qd with input

alphabets found from step 2.1.

3. Convert accepting state into non-accepting state and

non- accepting state into accepting state.

4. Add a self loop on qd with labeled all input

alphabets.

Above steps are carried out on the language L = {ab*a}.After

applying above steps, we obtain the DFA as shown in fig. 6

and fig. 7.

Fig.6: L with a dead state and q2 as final state

Fig.1: DFA for L1 = {ab}

 q2

q0 q1
a b

q3 q4

a
b

a
q5 q6

b

 q7

 q2

q0 q1
a b

q3 q4

a

b
b

 q2

q0 q1
a a

b

 q2

q0 q1
a a

b

q3

b
a,b

a,b

 q6

q0 q1 q2

a b
q3

q4

a

b
q5

b

a

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

8

Fig.7: Lc with a dead state

Clearly, DFA representing Lc is not a prefix-free regular

language.

Theorem 3.4: Prefix-free regular languages are not closed

under intersection operation.

Proof: We proof it by contradiction. Let us assume

intersections of L1 and L2 prefix-free regular language are

closed. Then, L1 ∩ L2 = (L1
C+ L2

C)C where L1
C represent

complement of L1. In Theorem 3.3, we have proved that a

prefix-free regular language is not closed under complement.

It implies that L1 ∩ L2 may or may not be a prefix-free regular

language. Hence prefix-free regular languages are not closed

under intersection operation.

Theorem 3.5: Prefix-free regular languages are not closed

under Kleene closure operation.

Proof: Let L be a prefix-free regular language represented by

a DFA M (Q, ∑, δ, q0, F). We prove by an example that

prefix-free regular languages are not closed under Kleene

closure operation.

Consider L1 = {ab} represented by DFA M as shown in fig.1.

Kleene closure of M can be obtained as shown in fig. 8.

ε-closure (q3) = {q3, q0, q4} = A

On reading a on state q0 from A, we reach to q1. ε-closure (q1)

= {q1} = B

Reading of b is not possible on state A, as there is no out

transition from q0, q3 and q4 labeled b.

Reading of a on state B is not possible as there is no out

transition from q1 labeled a.

In reading b on state B, we reach to q2. ε- Closure (q2) = {q0,

q2, q4} = C

Similarly, on reading a on state C we reach to state B.

Fig.9: DFA without ε- Closure

Clearly, under Kleene-closure prefix-free regular languages

are not closed.

Theorem 3.6: Prefix-free regular languages are not closed

under reversal operation.

Proof: Let L be a prefix-free regular language represented by

a DFA M (Q, ∑, δ, q0, F).We proof it by giving an example in

which reversal of a prefix-free regular language is not a

prefix-free regular language. Let Language L represented by

fig.9.

Fig.9: DFA for language L

Reversal of M can be obtained as shown in fig. 10.

Fig. 10: Reversal of (L1)
R

Hence under reversal operation, prefix-free regular languages

are not closed.

4. Conclusion and future directions
Prefix-free regular languages are closed under union and

concatenation operation. Prefix-free regular languages are not

closed under complementation, intersection, Kleene closure

and reversal operations. In future work can be carried out on

closure properties of suffix-free and infix-free regular

languages.

 q2

a

a

b

q1 q0

q2

 q4

q3

q0

q1
a b


a


a


a


a

Fig.8: DFA for L*

a,b

a a

b

b
a,b

 q1

q2 q0

 q3

 q3

b

b

q2

q1

q0

a

a

c

b

q2

b

 q0

b

b

q1

q3

a

a

c

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 8, August 2012

9

5. REFERENCES
[1] Han Y.S., Salomaa K., Wood D., 2007, “ State

complexity of Prefix-free Regular Languages”, HKUST

Theoretical Computer Science Center Research Report

HKUST-TCSC-2006-02.

[2] Han Y.S., Salomaa K, 2009, “State complexity of basic

operations on suffix-free regular languages”, Theoretical

Computer Science 410, 2537-2548.

[3] Han Y.S., Wang Y., Wood D., 2005, “Prefix-Free

Regular-expression Matching” Springer-Verlag Berlin

Heidelberg, LNCS 3537, 298-309.

[4] Han Y.S., Wood D., 2007, “Outfix-free Regular

Languages and Prime Outfix-free decomposition”,

Fundamenta Informaticae XX, 1-17.

[5] Han Y.S. ,Wood D., “ Overlap-free Regular Languages”,

Springer-Verlag, LNCS 4112, Berlin Heidelberg,

COCOON 2006, 469-478.

[6] Kari J., 2011, “Automata and formal languages”,

University of Turku.

[7] Mishra K.L.P. and N. Chandrasekaran, 1998, “Theory of

Computer Science (Automata Language and.

Computation) ", PHI, Second edition.

[8] Peter Linz, 2009, "An Introduction to Formal Languages

and Automata", Narosa publishers, fourth edition.

[9] Sheng Yu, 2001, "State Complexity of Regular

Languages”, Journal of automata, Languages and

Combinatorics, 6(2).

[10] Ullman, J., J. E. Hopcroft and R. Motwani, 2001,

"Introduction to Automata Theory, Languages, and

Computation", Pearson Education Inc.

