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ABSTRACT 

Regular languages are closed under union, intersection, 

complementation, Kleene-closure and reversal operations. 

Regular languages can be classified into infix-free, prefix- 

free and suffix-free. In this paper various closure properties of 

prefix-free regular languages are investigated and result 

shows that prefix-free regular languages are closed under 

union and concatenation. Under complementation, reverse, 

Kleene-closure and intersection operations prefix-free regular 

languages are not closed.  
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1.  INTRODUCTION 
Regular languages are used in various fields of computer 

science like compilers, data compression, text processing, 

software engineering and pattern matching. Regular languages 

can be represented by finite-state automata (FAs) or regular 

expressions. Regular languages can be classified as infix free, 

prefix free, suffix free. A regular language is prefix-free [1] if 

and only if its minimal DFA M has only one final state and 

the final state has no out-transitions whose target state is not a 

sink state. In this paper various properties of prefix-free 

regular languages are investigated. 

2. BASIC DEFINITION AND NOTATION 
Regular languages can be represented by regular expressions 

or finite automata. Finite automata can be classified into 

deterministic finite automata and non-deterministic finite 

automata. Non-deterministic finite automata are 

generalizations of DFA. 

Def. 2.1: A deterministic finite automaton [10] M is a 

quintuple (Q, Σ, δ, q0, F), where Q is the finite set of states, Σ  

is the finite set of symbols called the alphabet , δ is a 

transition function mapping Q × Σ → Q, q0 is the  starting  

state (q0 ∈ Q), F is the set of accepting states (F ⊆ Q).  

Def. 2.2: A non-deterministic finite state automaton (NDFA) 

[7, 8] is same as DFA except the transition relation is defined 

as QXΣ2Q. 

A word is accepted by the NFA if some choice of transitions 

takes the machine to a final state [6]. Some other choices may 

lead to a non-final state, but the word is accepted as long as 

there exist at least one accepting computation path in the 

automaton.  

Def. 2.3: A regular expression [10] is a pattern that describes 

some set of strings.  

Example 2.1: Considering input alphabets A = {a, b} then 

(a+b)* represents a regular expression that includes all strings 

over a and b. 

Def. 2.4: A regular language L is prefix-free [4] if, for all 

distinct strings x, y ∈ Σ* and x, y ∈ L mean that x and y are not 

prefixes of each other. A regular language is prefix-free if and 

only if its minimal DFA A has only one final state and the 

final state has no out transitions whose target state is not a 

sink state [1].  

Def. 2.5: A regular language L is suffix free [4] if, for all 

distinct strings x, y ∈ Σ*, and x, y ∈ L mean that x and y are not 

suffixes of each other. Given two strings x and y over Σ, x is a 

suffix of y if there exists z ∈ Σ* such that zx = y. A regular 

language is suffix-free if and only if its minimal DFA have a 

unique sink state and its starting state does not have any in-

transitions [2].  

Def. 2.6: A language L is infix free [4] if, for all distinct 

strings x, y ∈ Σ*, and x, y ∈ L mean that x and y are not 

substrings of each other. x is said to be substring or an infix of 

y if there are two strings u and v such that uxv = y. A regular 

language is infix-free [5] if a DFA A is minimal and is non-

returning and non-exiting.  

Regular languages are closed under union, concatenation, 

Kleene closure, intersection, complement and reverse 

operations.  

3. CLOSURE PROPERTIES OF PREFIX-

FREE  REGULAR LANGUAGES 
State complexity [9] is the number of states that are necessary 

and sufficient in the worst-case for the minimal deterministic 

finite state automaton that accepts the language obtained from 

the operation. There is a lot of research work which has been 

done on state complexity but very few on closure properties of 

regular languages. So, it is natural to investigate the closure 

properties of various forms of regular languages.  

Theorem 3.1: Prefix-free regular languages are closed under 

union operation.  

Proof: Suppose L1 and L2 are prefix-free regular languages 

represented by DFA M1 (Q1, ∑1, δ1, q01, F01) and M2 (Q2, ∑2, 

δ2, q02, F02).Since both M1 and M2 contains a single final state 

and no out-going transition from their final states. L1 U L2 can 

be found by adding a new starting state q0 to q01and q02. Final 

states of M1 and M2 are combined and there is no transition 

from the final state. After removing null transitions, we obtain 

a DFA representing a single final state and no out-going 

transition from the final state. Hence, the resulting language L 

is prefix-free regular language. We can say that prefix-free 

regular languages are closed under union. 

http://en.wikipedia.org/wiki/State_%28computer_science%29
http://en.wikipedia.org/wiki/Alphabet_%28computer_science%29
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Finite_state_machine#Start_state
http://en.wikipedia.org/wiki/Finite_state_machine#Start_state
http://en.wikipedia.org/wiki/Finite_state_machine#Accept_state
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Example 3.1: Given L1= {ab} and L2= {aabb} are prefix-free 

regular languages, then L=L1UL2 is also a prefix-free regular 

languages. L1 and L2 can be represented by fig. 1 and fig. 2 

respectively.q2 and q7 represent the final states of the DFA as 

shown in fig. 1 and fig. 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: DFA for L2 = {aabb} 

 

Union of L1 and L2 after removal of ε-transition and 

minimization of DFA is shown in fig. 3.state q2 represents the 

final state of the fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: Union after ε-transition  

Clearly, L = L1 U L2 is a prefix-free regular language as there 

is no out-going transition from the final state.   

Theorem 3.2: Prefix-free regular languages are closed under 

concatenation operation. 

Proof: Suppose L1 and L2 are prefix-free regular languages 

represented by DFA M1 (Q1, ∑1, δ1, q01, F01) and M2 (Q2, ∑2, 

δ2, q02, F02).Since both M1 and M2 contains a single final state 

and no out-going transition from their final states. L1L2 are 

obtained by merging the final state of M1 and starting state of 

M2. It will not cause any problem as final state of M1 is not 

having any out-going transition. DFA obtained for L1L2 

contains a single final state with no out-going transitions. 

Hence prefix-free regular languages are closed under 

concatenation. 

Example 3.2: Given L1 = {ab} and L2 = {aabb} are prefix-free 

regular languages, then 

L=L1L2 is also a prefix-free regular language. L1 and L2 are 

represented by fig.1 and fig.2 respectively.   

Concatenation of L1 and L2 can be represented by a DFA (with 

q6 as final state) as shown in fig.4. 

 

 

 

 

 

 

 

 

 

 

Fig.4:  L1L2    = {abaabb} 

Clearly, L = L1.L2 is a prefix-free regular language as there is 

no out-going transition from the final state.   

Theorem 3.3 Prefix-free regular languages are not closed 

under complementation operation.  

Proof: We prove by an example that prefix-free regular 

languages are not closed under complementation. Let L= ab*a 

is a prefix-free regular languages.  

 

 

 

 

 

 

 

 

Fig.5: L = {ab*a} 

For performing complement operation, all the strings which 

are accepting in original language become non-accepting and 

all non-accepting strings become accepting strings. 

For complement, following steps are carried out: 

1. Add an additional state called dead state (qd).  

2. Repeat for each state (q) of the DFA except qd . 

2.1 Find the alphabet which is not having out-

transition from q. 

2.2 Add an edge from q to qd with input 

alphabets found from step 2.1. 

3. Convert accepting state into non-accepting state and 

non- accepting state into accepting state. 

4. Add a self loop on qd with labeled all input 

alphabets. 

Above steps are carried out on the language L = {ab*a}.After 

applying above steps, we obtain the DFA as shown in fig. 6 

and fig. 7. 

 

 

 

 

 

 

 

 

  

 

 

 

Fig.6: L with a dead state and q2 as final state 

Fig.1: DFA for L1 = {ab} 
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Fig.7: Lc with a dead state  

 

Clearly, DFA representing Lc is not a prefix-free regular 

language. 

Theorem 3.4: Prefix-free regular languages are not closed 

under intersection operation. 

Proof: We proof it by contradiction. Let us assume 

intersections of L1 and L2 prefix-free regular language are 

closed. Then, L1 ∩ L2 = (L1
C+ L2

C )C where L1
C  represent 

complement of L1. In Theorem 3.3, we have proved that a 

prefix-free regular language is not closed under complement. 

It implies that L1 ∩ L2 may or may not be a prefix-free regular 

language. Hence prefix-free regular languages are not closed 

under intersection operation. 

Theorem 3.5: Prefix-free regular languages are not closed 

under Kleene closure operation. 

Proof: Let L be a prefix-free regular language represented by 

a DFA M (Q, ∑, δ, q0, F). We prove by an example that 

prefix-free regular languages are not closed under Kleene 

closure operation. 

Consider L1 = {ab} represented by DFA M as shown in fig.1. 

Kleene closure of M can be obtained as shown in fig. 8. 

ε-closure (q3) = {q3, q0, q4} = A 

On reading a on state q0 from A, we reach to q1. ε-closure (q1) 

= {q1} = B 

Reading of b is not possible on state A, as there is no out 

transition from q0, q3 and q4 labeled b. 

Reading of a on state B is not possible as there is no out 

transition from q1 labeled a. 

In reading b on state B, we reach to q2.  ε- Closure (q2) = {q0, 

q2, q4} = C 

Similarly, on reading a on state C we reach to state B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9: DFA without ε- Closure  

Clearly, under Kleene-closure prefix-free regular languages 

are not closed. 

Theorem 3.6: Prefix-free regular languages are not closed 

under reversal operation. 

Proof: Let L be a prefix-free regular language represented by 

a DFA M (Q, ∑, δ, q0, F).We proof it by giving an example in 

which reversal of a prefix-free regular language is not a 

prefix-free regular language. Let Language L represented by 

fig.9.  

 

 

 

 

 

 

 

Fig.9: DFA for language L 

Reversal of M can be obtained as shown in fig. 10. 

 

 

 

 

 

 

 

 

 

Fig. 10: Reversal of (L1)
R 

Hence under reversal operation, prefix-free regular languages 

are not closed. 

4. Conclusion and future directions 
Prefix-free regular languages are closed under union and 

concatenation operation. Prefix-free regular languages are not 

closed under complementation, intersection, Kleene closure 

and reversal operations. In future work can be carried out on 

closure properties of suffix-free and infix-free regular 

languages. 
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Fig.8: DFA for L* 
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