
International Journal of Computer Applications (0975 – 8887)  

Volume 52 – No. 6, August 2012 

27 

Multibeam Antennas Array Pattern Synthesis using 

Hybrid Particle Swarm Optimiser with Breeding and 

Subpopulations Algorithm 

 
Hichem CHAKER 
Telecom laboratory 

BP 285, 13400 Ghazaouet 
Tlemcen ALGERIA 

S.M. MERIAH 
Telecom laboratory 

BP 285, 13400 Ghazaouet 
Tlemcen ALGERIA 

F.T. BENDIMERAD 
Telecom laboratory 

BP 285, 13400 Ghazaouet 
Tlemcen ALGERIA 

 

 

ABSTRACT 

In this paper a new effective optimization algorithm called 

hybrid particle swarm optimizer with breeding and 

subpopulation is presented. This algorithm is essentially, as 

PSO and GA, a population-based heuristic search technique, 

now in use for the optimization of electromagnetic structures, 

modeled on the concepts of natural selection and evolution 

(GA) but also based on cultural and social rules derived from 

the analysis of the swarm intelligence and from the interaction 

among particles (PSO). The optimized design of multibeam 

antennas arrays is reported with numerical results. 
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1. INTRODUCTION 
In recent years several global optimization algorithms have 

been developed for the optimization of every kind of 

electromagnetic problems. Global search methods present two 

competing goals, exploration and exploitation: exploration is 

important to ensure that every part of the solution domain is 

searched enough to provide a reliable estimate of the global 

optimum; exploitation, instead, is also important to 

concentrate the search effort around the best solutions found 

so far by searching their neighbourhoods to reach better 

solutions [1]. Advantages of evolutionary computation are the 

capability to find a global optimum, without being trapped in 

local optima, and the possibility to face nonlinear and 

discontinuous problems, with a great number of variables. On 

the other hand, these algorithms have strong stochastic bases, 

thus they require a great number of iterations to get significant 

results. To solve the antenna array pattern synthesis problems, 

among a number of optimization procedures, the artificial 

intelligence techniques such as genetic, simulated annealing   

and   tabu search   algorithms owing   to    their simplicity, 

flexibility and accuracy have received much attention. Genetic 

algorithm (GA) is a search technique based on an abstract 

model of Darwinian evolution. Simulated annealing (SA) 

technique is essentially a local search, in which a move to an 

inferior solution is allowed with a probability, according to 

some Boltzmann-type distribution, that decreases as the 

process progresses. Tabu search (TS) algorithm has been 

developed to be an effective and efficient scheme for 

combinatorial optimization that combines a hill-climbing 

search strategy based on a set of elementary moves and a 

heuristics to avoid to stops at sub-optimal points and the 

occurrence of cycles.  Recently, particle swarm optimization 

algorithm (PSO) is proposed for solving global numerical 

optimization problem. The search techniques mentioned 

above are the probabilistic search techniques that are simple 

and easily be implemented without any gradient calculation. 

This study uses an electromagnetic optimization technique, 

hybrid particle swarm optimiser with breeding and 

subpopulation [2]. 

In this article, an efficient method for the pattern synthesis of 

the linear multibeam antenna arrays is presented. Multibeam 

pattern is achieved by finding both magnitudes and phases 

excitation of each array element. The proposed method is 

based on the hybrid particle swarm optimiser with breeding 

and subpopulations algorithm, and the linear antenna array 

synthesis was modelled as a mono-objective optimization 

problem. To verify the validity of the technique, several 

illustrative examples are simulated, and multibeam patterns 

are demonstrated. 

2. PROBLEM   FORMULATION  
An array can form multiple narrow beams towards different 

directions. For example, suppose it is desired to form two or 

three beams towards steering angles. The design of a linear 

array antenna is based on finding both magnitudes and phases 

excitation that can generate the desired patterns. We consider 

a linear array of 2N isotropic antenna elements, which are 

assumed, uncoupled, symmetrically and equally spaced with 

half wavelength. Its array pattern can be described as follows 

[3]: 
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N  = element number; 

  = wavelength; 

k = phases of the elements (-180°≤θ≤180°); 

ka = amplitude of the elements; 

kd = distance between position of  
thi  element and   the array 

center; 

  = scanning angle. 
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In order to generate a beam pattern fulfilling some constraints, 

SLL lower than a fixed threshold or reproducing a desired 

shape, an array configuration must be synthesized. First of all, 

it is necessary to define the objective function that measures 

the difference between desired and synthesized beam pattern. 

Let us define a function called fitness function as follows: 
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3. HYBRID PARTICLE SWARM 

OPTIMIZER WITH BREEDING AND 

SUBPOPULATIONS 
Both Eberhart and Angeline conclude that hybrid models of 

the standard GA and the PSO could lead to further advances. 

We present such a hybrid model. The model incorporates one 

major aspect of the standard GA into the PSO, the 

reproduction. In the following work, we will refer to the used 

reproduction and recombination of genes only as “breeding”. 

Breeding is one of the core elements that make the standard 

GA a powerful algorithm. Hence our hypothesis was that a 

PSO hybrid with breeding has the potential to reach a better 

solution than the standard PSO. In addition to breeding we 

introduce a hybrid with both breeding and subpopulations. 

Subpopulations have previously been introduced to standard 

GA models mainly to prevent premature convergence to 

suboptimal points [4]. Our motivation for this extension was 

that the PSO models, including the hybrid PSO with breeding, 

also reach suboptimal solutions. Breeding between particles in 

different subpopulations was also added as an interaction 

mechanism between subpopulations. The traditional PSO 

model, described by [5], consists of a number of particles 

moving around in the search space, each representing a 

possible solution to a numerical problem. Each particle has a 

position vector Xi=(xi1,…,xid,…,xiD), a velocity vector 

Vi=(vi1,…,vid,…,viD), the position Pi=(pi1,…,pid,…,piD) and 

fitness of the best point encountered by the particle, and the 

index (g) of the best particle in the swarm. At each iteration 

the velocity of each particle is updated according to their best 

encountered position and the best position encountered by any 

particle, in the following way: 

)(())(() 21 idgdidididid xprandcxprandcvwv      (3) 

w is the inertia weight described in [6]-[7] and Pgd  is the best 

position known for all particles. C1 and C2 are random values 

different for each particle and for each dimension. If the 

velocity is higher than a certain limit, called Vmax, this limit 

will be used as the new velocity for this particle in this 

dimension, thus keeping the particles within the search space. 

The position of each particle is updated at each iteration. This 

is done by adding the velocity vector to the position vector; 

                                  
ididid vxx                                (4) 

The particles have no neighborhood restrictions, meaning that 

each particle can affect all other particles. This neighborhood 

is of type star (fully connected network), which has been 

shown to be a good neighborhood type in [8]. Figure 1 shows 

the structure illustration of the hybrid model. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: The structure of the hybrid model. 

The breeding is done by first determining which of the 

particles that should breed. This is done by iterating through 

all the particles and with probability pb (breeding probability 

= 0.6), mark a given particle for breeding. Note that the fitness 

is not used when selecting particles for breeding. From the 

pool of marked particles we now select two random particles 

for breeding. This is done until the pool of marked particles is 

empty. The parent particles are replaced by their offspring 

particles, thereby keeping the population size fixed. The 

position of the offspring is found for each dimension by 

arithmetic crossover on the position of the parents: 

  )(*)1()(*)( 211 iiiii xparentpxparentpxChild          (5) 

 )(*)1()(*)( 122 iiiii xparentpxparentpxChild         (6) 

Where pi is a uniformly distributed random value between      

0 and 1. The velocity vectors of the offspring are calculated as 

the sum of the velocity vectors of the parents normalized to 

the original length of each parent velocity vector.  
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The arithmetic crossover of positions in the search space is 

one of the most commonly used crossover methods with 

standard real valued GAs, placing the offspring within the 

hypercube spanned by the parent particles. The main 

motivation behind the crossover is that offspring particles 

benefit from both parents. In theory this allows good 

examination of the search space between particles. Having 

two particles on different suboptimal peaks breed could result 

in an escape from a local optimum, and thus aid in achieving a 

better one. We used the same idea for the crossover of the 

velocity vector. Adding the velocity vectors of the parents 

results in the velocity vector of the offspring. Thus each 

parent affects the direction of each offspring velocity vector 

equally. 

 

 

 

Begin 
          Initialise 
          While (not terminate-condition) do 
              Begin 
                   Evaluate 
                   Calculate new velocity vectors 
                    Move 
                    Breed 
              End 
End 
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 In order to control that the offspring velocity was not getting 

too fast or too slow, the offspring velocity vector is 

normalized to the length of the velocity vector of one of the 

parent particles. The starting position of a new offspring 

particle is used as the initial value for this particle’s best 

found optimum (
ip


). The motivation for introducing 

subpopulations is to restrict the gene flow (keeping the 

diversity) and thereby attempt to evade suboptimal 

convergence. The subpopulation hybrid PSO model is an 

extension of the just described breeding hybrid PSO model. In 

this new model the particles are divided into a number of 

subpopulations. The purpose of the subpopulations is that 

each subpopulation has its own unique best known optimum. 

The velocity vector of a particle is updated as before except 

that the best known position (
gp
  in the formula) now refers to 

the best known position within the subpopulation that the 

particle belongs to. In terms of the neighborhood topology 

suggested by Kennedy in [8], each subpopulation has its own 

star neighborhood. The only interaction between 

subpopulations is if parents from different subpopulations 

breed. Breeding is now possible both within a subpopulation 

but also between different subpopulations. An extra parameter 

called probability of same subpopulation breeding psb 

determines whether a given particle selected for breeding is to 

breed within the same subpopulation (probability psb = 0.6), or 

with a particle from another subpopulation (probability 1-psb). 

Replacing each parent with an offspring particle ensures a 

constant subpopulation size. 

4. RESULTS 
In order to illustrate the capabilities of the hybrid evolutionary 

algorithm for solving the array configuration for desired 

pattern synthesis by varying the amplitude and phase of the 

elements feed, we introduce the case of an array with 10 

isotropic elements with λ/2 spacing, which is supposed to 

generate two beams steered towards the two angles 70° and 

130° , figure 2 shows the output pattern, the relative 

amplitudes of the two beams were equal to unity, after 940 

iterations maximum side lobes level of -29.13 dB was 

achieved amplitude and phase distributions in degree are 

shown table 1. 
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Fig 2:  Multi-beam arrays with maximum sidelobes level 

equal to -29.13dB. 

Table 1. Amplitude and phase distributions 

 

Element 

N° 

Magnitude 

 

Phase 

(Degree) 

1 0.1034 26.1784 

2 0.3094 111.0851 

3 0.5454 -64.5265 

4 0.7122 -31.5929 

5 0.8548 170.157 

6 0.8548 -170.157 

7 0.7122 31.5929 

8 0.5454 64.5265 

9 0.3094 -111.085 

10 0.1034 - 26.1784 

 

 
In the second example, we consider an array of 20 isotropic 

elements spaced 0.5 λ apart in order to generate three beams 

towards the steering angles 60°, 90°, 110° with amplitude-

phase synthesis. Because of symmetry, here only ten phases 

and ten amplitudes are to be optimized. 

Acceptable side lobe level should be equal to or less than the 

desired value -20dB. Figure 3 shows normalized absolute 

power pattern in dB the maximum side lobes level reach         

-20.84 dB, there is a very good agreement between desired 

and obtained results. The optimized excitation magnitudes and 

phases elements are presented in the table 2. For design 

specifications of amplitude-phase synthesis, the hybrid 

algorithm is run for 960 generations. 
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Fig 3: Multi-beam arrays with maximum sidelobes level 

equal to - 20.84dB. 

 
In order to evaluate the performance of the proposed 

algorithm, we compare the numerical results calculated by the 

hybrid model, and the neural network [9]. We show the 

comparison of the far-field patterns among the hybrid model 

results, and the neural network simulated results in [9]. The 

hybrid model side lobe level is -20 dB, these results remain 

comparable to the neural network, and an improvement in the 

side lobe level is obtained. 

With the same array as the last section, and the same type of 

synthesis, we present synthesis results of multibeam array as 

indicated in the figures 4, 5 and 6. Figure 4 shows normalized 

absolute power pattern in dB for multibeam array by 

amplitude-phase synthesis.  
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Fig 4: Multi-beam arrays with maximum sidelobes level 

equal to - 23.21dB. 

For design specifications of amplitude-phase synthesis, the 

hybrid algorithm is run for 738 generations. Side lobes level 

obtained for desired pattern is -23.21dB. Simulated results are 

shown in table 2. 

After 1200 iterations, an optimum multibeam pattern is 

obtained and plotted in figure 5, the optimized excitation 

magnitudes and phases of the elements from number one to 

twenty are shown in table 2. The optimized result indicates 

that a 20 elements symmetrically linear array is capable to 

realize the design goal with less number of antenna elements. 
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Fig  5: Multi-beam arrays with maximum sidelobes level 

equal to - 18 dB. 

 
After 1000 iterations, the fitness value reached to it 

maximum, and the optimization process ended due to meeting 

the design goal. Figure 6 shows the normalized absolute 

power pattern for the array with six beams. The element 

excitation required to achieve this desired pattern is presented 

in table 2. 
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Fig 6: Multi-beam arrays with maximum sidelobes level 

equal to - 18.74 dB. 

The desired patterns are achieved, which again demonstrate 

the validity of the hybrid model. 

5. CONCLUSION 
The proposed method, based on hybrid particle swarm 

optimizer with breeding and subpopulation, allows the 

successful synthesis of multibeam pattern antenna arrays. The 

implementation procedure is described, and a linear antenna 

arrays are discussed to demonstrate the validity of the hybrid 

model.  Optimized results show that the desired patterns are 

successfully obtained. The hybrid model is easy to implement 

and converges to the desired goal quickly. This study shows 

that the hybrid optimization performance model is quite 

excellent than other global optimization methods. 
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Table 2. Amplitude and phase distributions 
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Element 

N° 

Figure 3 Figure 4 Figure 5 Figure 6 

Amplitude 

 

Phase 

(Degree) 

Amplitude 

 

Phase 

(Degree) 

Amplitude 

 

Phase 

(Degree) 

Amplitude 

 

Phase 

(Degree) 

1 0.0187 14.3182 0.1006 -61.6503 0.2099 -101.0182 0.2943 -88.3386 

2 0.1291     -68.4169    0.2094 108.0255 0.2777 112.7867 0.2986 85.6973 

3 0.0723     -148.8201   0.2119 -51.0334 0.3835 -79.6068 0.4032 -84.5514 

4 0.4628     25.8519   0.2074 88.8027 0.5819 100.7203 0.5905 81.0907 

5 0.5793     13.0233    0.3661 -147.7257 0.4763 -64.7041 0.4962 -56.6942 

6 0.1048     54.7404    0.6384 20.9703 0.1094 -41.9863 0.3927 43.2583 

7 0.5509     119.6450    0.3477 -28.6307 0.2738 33.6441 0.7684 122.4296 

8 0.3262     48.2029   0.7013 -12.6452 0.7132 17.2632 0.5303 -80.4375 

9 0.9916     -40.1529    0.8981 104.2153 0.8468 50.4317 0.9469 6.0963 

10 0.6673     -41.3446   0.3524 5.5462 0.7477 -102.8975 0.7611 -79.0911 

11 0.6673     41.3446   0.3524 -5.5462 0.7477 102.8975 0.7611 79.0911 

12 0.9916     40.1529    0.8981 -104.2153 0.8468 -50.4317 0.9469 -6.0963 

13 0.3262     -48.2029   0.7013 12.6452 0.7132 -17.2632 0.5303 80.4375 

14 0.5509     -119.6450    0.3477 28.6307 0.2738 -33.6441 0.7684 -122.4296 

15 0.1048     -54.7404    0.6384 -20.9703 0.1094 41.9863 0.3927 -43.2583 

16 0.5793     -13.0233    0.3661 147.7257 0.4763 64.7041 0.4962 56.6942 

17 0.4628     -25.8519   0.2074 -88.8027 0.3835 -100.7203 0.5905 -81.0907 

18 0.0723     148.8201   0.2119 51.0334 0.3835 79.6068 0.4032 84.5514 

19 0.1291     68.4169    0.2094 -108.0255 0.2777 -112.7867 0.2986 -85.6973 

20 0.0187 -14.3182 0.1006 61.6503 0.2099 101.0182 0.2943 88.3386 


