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ABSTRACT 

Software effort estimation assesses the quantity of work 

required to develop a software project. It is a well known fact 

that the software industry is unable to give proper an estimate 

of effort, time and development cost and this is described in 

reports in various reports including those from project 

management consultancy companies through case studies on 

failed projects, and surveys. In this paper, we propose to 

investigate the Mean Magnitude Relative Error (MMRE) and 

Median Magnitude Relative Error (MdMRE) using various 

techniques such as M5, Linear regression, SMO Polykernel 

and RBF kernel. The dataset COCOMO is used for the 

investigations. 
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1. INTRODUCTION 
Software effort estimation assesses the quantity of work 

required to develop a software project. It is a well known fact 

that the software industry is unable to give proper an estimate 

of effort, time and development cost, and this is described in 

reports in various reports including those from project 

management consultancy companies through case studies on 

failed projects, and surveys. Estimation accuracy results 

reported are sometimes biased towards high inaccuracy, e.g., 

consultant’s studies providing estimation advice, journalists’ 

stories on failed projects or software houses which sell 

estimation tools. It is hard to have a balanced view on this 

industry’s estimation performance without unbiased 

information from representative projects and organizations. 

Scientific surveys in journals and conferences might be 

sources for unbiased information [1]. 

In software engineering, the typical break up of effort 

distribution is shown in Figure 1 [2]. That conventional 

estimation techniques focus only on actual development 

instead of including the additional activities involved, like 

software testing further complicates achievement of accurate 

effort estimates. This is because when techniques to estimate 

development effort evolved, the notion of estimating test-

engineering time was overlooked. Certain preconditions have 

to be met independent of the software size to be tested to 

design test cases to reach (guaranteed) code coverage level. 

 

Figure 1: Effort Distribution in Software Projects. 

The most common approaches for effort estimation are expert 

judgment, algorithmic models and analogy. Expert judgment 

is widely used for small projects, and sometime more than one 

expert’s opinion is pooled for estimation. Algorithmic models 

such as COCOMO [3], SLIM [4], function points [5] are 

popular in the literature. Most of the algorithmic models are 

derived from: 

 .  effort size  

Where α is a productivity coefficient and β refers to the 

economies of scale coefficient. The size is measured in 

estimated line of code (LOC). In analogy estimation, similar 

completed projects with known effort value are used for 

predicting the effort for the project. 

A varied range of metrics was proposed for early software 

project effort estimation. Many authors suggested that 

standard sets had too many parameters, and suggested a 

reduction in the number of sets (large metric sets had high 

collection costs, and risked generation of over-fitted models). 

Reductions relied on linear methods for metrics elimination, 

and linear models to estimate metric sets size and effort. 

However, there is a risk that some dependencies might be 

non-linear. Researchers have started investigating alternative 

methods to develop predictive models, including fuzzy logic, 

evolutionary approaches, neural networks, and regression 

trees. 

In this paper, it is proposed to investigate the Mean 

Magnitude Relative Error (MMRE) and Median Magnitude 

Relative Error (MdMRE) using various regression techniques 

including M5, Linear regression, SMO Polykernel and RBF 

kernel. COCOMO dataset is used for the investigations. The 
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paper is organized as follows: section II deals with related 

work, section III details the materials and methods used. 

Section IV gives the results of the experiments and discussion 

of the same and section V concludes the paper. 

2. RELATED WORKS 
In a meaningful manner the main requirement to collect and 

analyze data is to design, manage and evaluate the software 

development process. To analyze software engineering data, 

the traditional methods for analysis are not always suitable. 

Hence, Lionel C. Briand et al., [7] illustrated a pattern 

recognition method to analyze the software engineering data, 

which is named as optimized set reduction (OSR). Most of the 

problems related to the usual methods are considered by the 

OSR. In order to use the method for prediction, risk 

management and quality evaluation, the techniques are 

discussed in this paper. The efficiency/effectiveness of the 

proposed OSR method for a specific application of software 

cost estimation is illustrated through the experimental results 

obtained. The proposed OSR is able tackle the problems 

giving simple interpretable patterns in management 

decisions/corrective actions that are done in the software 

development on the basis of empirical quantitative prototypes. 

A large variety of modeling problems and evaluating the other 

data sets is done efficiently by OSR.   

Kjetil Moløkken et al., [8] reviewed surveys on software 

effort estimation and summarized estimation knowledge. The 

results concluded are: 1) There was 60-80% encounter effort 

and/or schedule overruns existing in most of the projects. But 

the overruns were observed to be lower than that reported by 

few consultancy companies. For instance, 30-40% was the 

average overruns observed in most of the surveys whereas the 

Standish Group’s ‘Chaos Report’ reported an average cost 

overrun of 89% higher to the others. 2) The methods used to 

estimate are mostly based on expert judgment. The main 

cause for using expert judgment is that the basic estimation 

model has no confirmation to direct to an accurate estimate. 

The motive for effort and schedule overruns along with 

extensive analyses, is not described properly in the software 

estimation surveys, hence there is a lack of surveys.  

To estimate the staff resources or effort necessary for a 

software project in advance is complicated. Recently, the 

major works did emphasis on the algorithmic cost models like 

COCOMO and Function Points. This causes the limitation to 

experience the necessity of calibrating the models with every 

individual measurement environment united with alterable 

accuracy levels subsequent to the calibration also. Hence 

another method for effort estimation using analogy is 

required. Martin Shepperd et al., [9] demonstrated this 

alternative method and revealed its performance in six 

different datasets to prove that it outperforms over traditional 

algorithmic techniques. The only limitation of this proposed 

method is that it requires more amount of computation. Martin 

Shepperd et al., also proposed ANGEL, an automated 

environment that maintains the collection, storage and 

recognition of the majority of analogous projects for the 

purpose to estimate the effort for a new project. On the basis 

of the minimization of Euclidean distance in n dimensional 

space is ANGEL. With differing datasets, in terms of both the 

number of observations (projects) and in the variables 

collected, this software is more flexible and is able to address 

it easily. Evaluated with six distinct datasets obtained from a 

variety of different environments, the performance of the 

proposed method is estimated and it outperforms other 

techniques. The estimation by analog is a candidate method 

that is also extremely practical method with the use of an 

automated environment.  

Accurate software development effort estimates are not 

produced by the existing accessed algorithmic prototypes. 

Tridas Mukhopadhyay et al., [10] developed a case-based 

reasoning model, Estor, to deal this issue. Estor was modeled 

on the basis of verbal methods of a human expert, which 

resolved many problems in estimation. While comparing this 

method to the expert along with the function point and 

COCOMO estimations of the projects, the estimates of Estor 

and human experts estimate produced consistent and more 

accurate estimate than that of the function point and 

COCOMO protocols.  The plausibility of case-based 

reasoning as a solution to solve a problem in this domain and 

the potential for increasing the accuracy of software cost 

estimates through this form of deliberation is demonstrated. 

Hence, the case-based reasoning method for software effort 

estimation is a promising and additional research provides 

better performance than the traditional methods.  

Mohammad Azzeh et al., [11] proposed a novel basic EA 

prototype on the basis of integration of Fuzzy set theory with 

Grey Relational Analysis (GRA). To decrease the uncertainty 

in distance measure between two tuples at the kth continuous 

feature (    0
x k x ki ) is performed by the Fuzzy set 

theory. A method solving problems, applied to measure the 

association between two tuples with M features is a GRA. The 

uncertainty in the similarity degree is maximized, as these 

characteristics are not necessarily to be continuous and also 

have ordinal and nominal scale type, aggregating various 

forms of similarity measures. Between two software projects 

for both continuous and categorical characteristics, the major 

application of GRA is to decrease uncertainty in the distance 

measure. While the relationship between effort and other 

effort drivers is complicated, both methods are appropriately 

used. When comparing with the results obtained using other 

well-known estimation models like Case-Based Reasoning, 

Artificial Neural Networks methods and Multiple Linear 

Regression, the experimental results attained from the 

integration of GRA with FL yielded better credible estimates.  

3. MATERIALS AND METHODS 

3.1 COCOMO Dataset 
The COCOMO dataset [6] contains details of 63 software 

project. Each project is described by 16 cost derivers or effort 

multipliers. Of the 16 attributes, 15 are measured on the scale 

of six categories: very low, low, nominal high, very high, and 

extra high. The categories are represented by a numeric value. 

Kilo Delivered Source Instructions (KDSI) is the only 

numeric attribute. COCOMO dataset is generally used to 

evaluate the comparative accuracy of proposed new 

techniques. The effort histogram for COCOMO dataset is 

shown in Figure 2. 

3.2 Regression analysis with MMRE 

(Mean Magnitude Relative Error) and 

MdMRE (Median Magnitude Relative 

Error) 
To determine the accuracy of the software estimates and also 

for evaluating and validating the estimates, MMRE (Mean 

Magnitude Relative Error) and MdMMRE (Median 

Magnitude Relative Error) are used [12]. 
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Figure 2: Effort histogram of COCOMO 

 

Magnitude Relative Error (MRE) calculates the absolute 

percentage of error between actual and predicted effort for 

each reference project. 
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Mean Magnitude Relative Error (MMRE) computes the 

average of MREs over all reference projects. As the MMRE is 

susceptible to an individual outlying prediction, when a large 

number of observations is available, MdMRE is adopted. The 

median of MREs for the n projects is the MdMRE which is 

less sensitive to the extreme values of MRE is adopted. In 

spite of it the MMRE is widely used in estimation accuracy. 

MMRE has been criticized that it is unbalanced for many 

validation procedures and often leads to overestimation [12]. 
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3.3 Linear Regression 
Consider the problem of approximating the set of data [13], 

    1 1, ,...., , ,   ,l l nD x y x y x y    

with a linear function, 

  ,f x w x b   

the optimal regression function is given by the minimum of 

the functional, 

   21
,

2
i i

i

w w C        

where C is a pre-specified value, and ξ- , ξ+  are slack variables 

representing upper and lower constraints on the outputs of the 

system. 

3.4 SMO Polykernel and RBF kernel  
SVMs based methods are used widely for classification tasks 

[14]. For a given training data  , ,  1,..,i ix y i n , where 

d
ix  is a feature vector and  1, 1iy    indicates the 

class value of ix solve the following optimization problem: 

2

, ,

1

1
min    

2

N

w b i

i

w C 


   

subject to  

   1  for i=1...n

0

T
i i i

i

y w x b 



   


 

where :  , H being the high dimensional space 

,  and bw  . 0C  is a parameter which controls 

minimization of the margin errors and maximization of the 

margins.  is chosen so that an efficient kernel function K 

exists. In practice, Lagrange Multiplier methods are used to 

solve the above optimization problem. Sequential Minimal 

Optimization (SMO) [14] is a simple algorithm which is used 

for solving SVM QP problem. The advantage of SMO is its 

capability to solve the Lagrange multipliers without using 

numerical QP optimization. The following is the Lagrangian 

form: 

 
, 1 1

1
min    ,

2

n n

i j i j i j i

i j i

y y K x x   
 

   

subject to 

1

0   for i=1...n

0

i
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i

C
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




 
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On solving the optimization problem, w is computed as 

follows: 

 
1

n

i i ii
w y x


   

ix is a support vector if 0i  . New instance x is computed 

by the following function: 

   
1

,
Sn

i i i

i

f x y K s x b


   

Where si are support vectors and nS is the number of vectors. 

The polynomial kernel function is given by: 

   , ,   where >0
d

T
i j i jK x x x x r    

And the Radial basis function (RBF) kernel: 

 
2

, exp ,   where >0i j i jK x x x x 
 

   
 

 

4. RESULTS AND DISCUSSIONS 
The experimental setup consisted of using the attributes of the 

cocomo dataset as it is and feature transformation of the 

attributes using Principal Component Analysis (PCA).  In the 

first experiment without data transformation Sequential 

Minimal Optimization (SMO) with RBF kernel produced the 

lowest relative error between the estimated and the actual 

value as seen in Table I. After attribute transformation using 

PCA, SMO with polykernel showed a decrease in MMRE by 

17.6%. However with PCA linear regression technique did not 
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decrease the MMRE.  Figure 3, Figure 4 and Figure 5 show 

the instance wise MMRE for the three techniques under study. 

Table 1: Average MMRE and MdMRE for various 

techniques 

Technique Used MMRE MdMRE 

M5 + PCA 6.875919 157.6677 

Linear regression +PCA 5.21539 219.7753 

SMO polykernel  + PCA 4.833664 93.8034 

SMO RBF kernel + PCA 2.662263 85.94772 

M5  4.674381 185.6412 

Linear regression  5.215322 219.7713 

SMO polykernel  5.67898 91.95121 

SMO RBF kernel  2.675412 84.55606 

 
 

 

 
 

 

 

 
 

 

 

 

 
Figure 3: Comparison of MMRE for linear regression 

with and without PCA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Comparison of MMRE SMO Polykernel and 

RBF Kernel with and without PCA 

Figure 6 shows the comparative graph of the MMRE from six 

algorithms. Figure 7 shows the MdMRE and it can be seen 

that Sequential Minimal Optimization with PCA for feature 

transformation has the lowest error 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: MMRE for different techniques used 

 

 

Figure 7: MdMRE for different techniques used 
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5. CONCLUSION 
In this paper, it was proposed to investigate the performance 

of three regression algorithms namely Linear regression, M5 

and modified Support Vector Machine (SVM) to avoid the 

quadratic problem. Two kernels were used in for the SVM 

with the first kernel being a polykernel and the second kernel 

using Radial Basis Function (RBF). From experimental results 

it is found that SVM with RBF kernel produces low MMRE. 

Future direction to lower the MMRE can be in the areas of 

soft computing. 
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