
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.6, August 2012

8

Performance Evaluation of Regression Techniques for
Effort Estimation

Parasana Sankara Rao
Reasearch Scholor,

Dept of CSE,
JNTU KAKINADA,

Kiran Kumar Reddi
Phd, Assistant Professor,

Department of Computer Science,
Krishna University,

Machilipatnam.

ABSTRACT

Software effort estimation assesses the quantity of work

required to develop a software project. It is a well known fact

that the software industry is unable to give proper an estimate

of effort, time and development cost and this is described in

reports in various reports including those from project

management consultancy companies through case studies on

failed projects, and surveys. In this paper, we propose to

investigate the Mean Magnitude Relative Error (MMRE) and

Median Magnitude Relative Error (MdMRE) using various

techniques such as M5, Linear regression, SMO Polykernel

and RBF kernel. The dataset COCOMO is used for the

investigations.

General Terms

Performance Evaluation, Regression analysis, Algorithms.

Keywords

Effort estimation, Mean Magnitude Relative Error (MMRE)

and Median Magnitude Relative Error (MdMRE), SMO

Kernels.

1. INTRODUCTION
Software effort estimation assesses the quantity of work

required to develop a software project. It is a well known fact

that the software industry is unable to give proper an estimate

of effort, time and development cost, and this is described in

reports in various reports including those from project

management consultancy companies through case studies on

failed projects, and surveys. Estimation accuracy results

reported are sometimes biased towards high inaccuracy, e.g.,

consultant’s studies providing estimation advice, journalists’

stories on failed projects or software houses which sell

estimation tools. It is hard to have a balanced view on this

industry’s estimation performance without unbiased

information from representative projects and organizations.

Scientific surveys in journals and conferences might be

sources for unbiased information [1].

In software engineering, the typical break up of effort

distribution is shown in Figure 1 [2]. That conventional

estimation techniques focus only on actual development

instead of including the additional activities involved, like

software testing further complicates achievement of accurate

effort estimates. This is because when techniques to estimate

development effort evolved, the notion of estimating test-

engineering time was overlooked. Certain preconditions have

to be met independent of the software size to be tested to

design test cases to reach (guaranteed) code coverage level.

Figure 1: Effort Distribution in Software Projects.

The most common approaches for effort estimation are expert

judgment, algorithmic models and analogy. Expert judgment

is widely used for small projects, and sometime more than one

expert’s opinion is pooled for estimation. Algorithmic models

such as COCOMO [3], SLIM [4], function points [5] are

popular in the literature. Most of the algorithmic models are

derived from:

 . effort size

Where α is a productivity coefficient and β refers to the

economies of scale coefficient. The size is measured in

estimated line of code (LOC). In analogy estimation, similar

completed projects with known effort value are used for

predicting the effort for the project.

A varied range of metrics was proposed for early software

project effort estimation. Many authors suggested that

standard sets had too many parameters, and suggested a

reduction in the number of sets (large metric sets had high

collection costs, and risked generation of over-fitted models).

Reductions relied on linear methods for metrics elimination,

and linear models to estimate metric sets size and effort.

However, there is a risk that some dependencies might be

non-linear. Researchers have started investigating alternative

methods to develop predictive models, including fuzzy logic,

evolutionary approaches, neural networks, and regression

trees.

In this paper, it is proposed to investigate the Mean

Magnitude Relative Error (MMRE) and Median Magnitude

Relative Error (MdMRE) using various regression techniques

including M5, Linear regression, SMO Polykernel and RBF

kernel. COCOMO dataset is used for the investigations. The

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.6, August 2012

9

paper is organized as follows: section II deals with related

work, section III details the materials and methods used.

Section IV gives the results of the experiments and discussion

of the same and section V concludes the paper.

2. RELATED WORKS
In a meaningful manner the main requirement to collect and

analyze data is to design, manage and evaluate the software

development process. To analyze software engineering data,

the traditional methods for analysis are not always suitable.

Hence, Lionel C. Briand et al., [7] illustrated a pattern

recognition method to analyze the software engineering data,

which is named as optimized set reduction (OSR). Most of the

problems related to the usual methods are considered by the

OSR. In order to use the method for prediction, risk

management and quality evaluation, the techniques are

discussed in this paper. The efficiency/effectiveness of the

proposed OSR method for a specific application of software

cost estimation is illustrated through the experimental results

obtained. The proposed OSR is able tackle the problems

giving simple interpretable patterns in management

decisions/corrective actions that are done in the software

development on the basis of empirical quantitative prototypes.

A large variety of modeling problems and evaluating the other

data sets is done efficiently by OSR.

Kjetil Moløkken et al., [8] reviewed surveys on software

effort estimation and summarized estimation knowledge. The

results concluded are: 1) There was 60-80% encounter effort

and/or schedule overruns existing in most of the projects. But

the overruns were observed to be lower than that reported by

few consultancy companies. For instance, 30-40% was the

average overruns observed in most of the surveys whereas the

Standish Group’s ‘Chaos Report’ reported an average cost

overrun of 89% higher to the others. 2) The methods used to

estimate are mostly based on expert judgment. The main

cause for using expert judgment is that the basic estimation

model has no confirmation to direct to an accurate estimate.

The motive for effort and schedule overruns along with

extensive analyses, is not described properly in the software

estimation surveys, hence there is a lack of surveys.

To estimate the staff resources or effort necessary for a

software project in advance is complicated. Recently, the

major works did emphasis on the algorithmic cost models like

COCOMO and Function Points. This causes the limitation to

experience the necessity of calibrating the models with every

individual measurement environment united with alterable

accuracy levels subsequent to the calibration also. Hence

another method for effort estimation using analogy is

required. Martin Shepperd et al., [9] demonstrated this

alternative method and revealed its performance in six

different datasets to prove that it outperforms over traditional

algorithmic techniques. The only limitation of this proposed

method is that it requires more amount of computation. Martin

Shepperd et al., also proposed ANGEL, an automated

environment that maintains the collection, storage and

recognition of the majority of analogous projects for the

purpose to estimate the effort for a new project. On the basis

of the minimization of Euclidean distance in n dimensional

space is ANGEL. With differing datasets, in terms of both the

number of observations (projects) and in the variables

collected, this software is more flexible and is able to address

it easily. Evaluated with six distinct datasets obtained from a

variety of different environments, the performance of the

proposed method is estimated and it outperforms other

techniques. The estimation by analog is a candidate method

that is also extremely practical method with the use of an

automated environment.

Accurate software development effort estimates are not

produced by the existing accessed algorithmic prototypes.

Tridas Mukhopadhyay et al., [10] developed a case-based

reasoning model, Estor, to deal this issue. Estor was modeled

on the basis of verbal methods of a human expert, which

resolved many problems in estimation. While comparing this

method to the expert along with the function point and

COCOMO estimations of the projects, the estimates of Estor

and human experts estimate produced consistent and more

accurate estimate than that of the function point and

COCOMO protocols. The plausibility of case-based

reasoning as a solution to solve a problem in this domain and

the potential for increasing the accuracy of software cost

estimates through this form of deliberation is demonstrated.

Hence, the case-based reasoning method for software effort

estimation is a promising and additional research provides

better performance than the traditional methods.

Mohammad Azzeh et al., [11] proposed a novel basic EA

prototype on the basis of integration of Fuzzy set theory with

Grey Relational Analysis (GRA). To decrease the uncertainty

in distance measure between two tuples at the kth continuous

feature (   0
x k x ki) is performed by the Fuzzy set

theory. A method solving problems, applied to measure the

association between two tuples with M features is a GRA. The

uncertainty in the similarity degree is maximized, as these

characteristics are not necessarily to be continuous and also

have ordinal and nominal scale type, aggregating various

forms of similarity measures. Between two software projects

for both continuous and categorical characteristics, the major

application of GRA is to decrease uncertainty in the distance

measure. While the relationship between effort and other

effort drivers is complicated, both methods are appropriately

used. When comparing with the results obtained using other

well-known estimation models like Case-Based Reasoning,

Artificial Neural Networks methods and Multiple Linear

Regression, the experimental results attained from the

integration of GRA with FL yielded better credible estimates.

3. MATERIALS AND METHODS

3.1 COCOMO Dataset
The COCOMO dataset [6] contains details of 63 software

project. Each project is described by 16 cost derivers or effort

multipliers. Of the 16 attributes, 15 are measured on the scale

of six categories: very low, low, nominal high, very high, and

extra high. The categories are represented by a numeric value.

Kilo Delivered Source Instructions (KDSI) is the only

numeric attribute. COCOMO dataset is generally used to

evaluate the comparative accuracy of proposed new

techniques. The effort histogram for COCOMO dataset is

shown in Figure 2.

3.2 Regression analysis with MMRE

(Mean Magnitude Relative Error) and

MdMRE (Median Magnitude Relative

Error)
To determine the accuracy of the software estimates and also

for evaluating and validating the estimates, MMRE (Mean

Magnitude Relative Error) and MdMMRE (Median

Magnitude Relative Error) are used [12].

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.6, August 2012

10

Figure 2: Effort histogram of COCOMO

Magnitude Relative Error (MRE) calculates the absolute

percentage of error between actual and predicted effort for

each reference project.

i i
i

i

actual estimated
MRE

actual




Mean Magnitude Relative Error (MMRE) computes the

average of MREs over all reference projects. As the MMRE is

susceptible to an individual outlying prediction, when a large

number of observations is available, MdMRE is adopted. The

median of MREs for the n projects is the MdMRE which is

less sensitive to the extreme values of MRE is adopted. In

spite of it the MMRE is widely used in estimation accuracy.

MMRE has been criticized that it is unbalanced for many

validation procedures and often leads to overestimation [12].

1

1
n

i

i

MMRE MRE
n



 

 i

i

MdMRE median MRE

3.3 Linear Regression
Consider the problem of approximating the set of data [13],

    1 1, ,...., , , ,l l nD x y x y x y  

with a linear function,

  ,f x w x b 

the optimal regression function is given by the minimum of

the functional,

   21
,

2
i i

i

w w C      

where C is a pre-specified value, and ξ- , ξ+ are slack variables

representing upper and lower constraints on the outputs of the

system.

3.4 SMO Polykernel and RBF kernel
SVMs based methods are used widely for classification tasks

[14]. For a given training data  , , 1,..,i ix y i n , where

d
ix  is a feature vector and  1, 1iy    indicates the

class value of ix solve the following optimization problem:

2

, ,

1

1
min

2

N

w b i

i

w C 


 

subject to

   1 for i=1...n

0

T
i i i

i

y w x b 



   



where :  , H being the high dimensional space

, and bw  . 0C  is a parameter which controls

minimization of the margin errors and maximization of the

margins.  is chosen so that an efficient kernel function K

exists. In practice, Lagrange Multiplier methods are used to

solve the above optimization problem. Sequential Minimal

Optimization (SMO) [14] is a simple algorithm which is used

for solving SVM QP problem. The advantage of SMO is its

capability to solve the Lagrange multipliers without using

numerical QP optimization. The following is the Lagrangian

form:

 
, 1 1

1
min ,

2

n n

i j i j i j i

i j i

y y K x x   
 

 

subject to

1

0 for i=1...n

0

i

n

i i

i

C

y






 



On solving the optimization problem, w is computed as

follows:

 
1

n

i i ii
w y x


 

ix is a support vector if 0i  . New instance x is computed

by the following function:

   
1

,
Sn

i i i

i

f x y K s x b


 

Where si are support vectors and nS is the number of vectors.

The polynomial kernel function is given by:

   , , where >0
d

T
i j i jK x x x x r  

And the Radial basis function (RBF) kernel:

 
2

, exp , where >0i j i jK x x x x 
 

   
 

4. RESULTS AND DISCUSSIONS
The experimental setup consisted of using the attributes of the

cocomo dataset as it is and feature transformation of the

attributes using Principal Component Analysis (PCA). In the

first experiment without data transformation Sequential

Minimal Optimization (SMO) with RBF kernel produced the

lowest relative error between the estimated and the actual

value as seen in Table I. After attribute transformation using

PCA, SMO with polykernel showed a decrease in MMRE by

17.6%. However with PCA linear regression technique did not

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.6, August 2012

11

decrease the MMRE. Figure 3, Figure 4 and Figure 5 show

the instance wise MMRE for the three techniques under study.

Table 1: Average MMRE and MdMRE for various

techniques

Technique Used MMRE MdMRE

M5 + PCA 6.875919 157.6677

Linear regression +PCA 5.21539 219.7753

SMO polykernel + PCA 4.833664 93.8034

SMO RBF kernel + PCA 2.662263 85.94772

M5 4.674381 185.6412

Linear regression 5.215322 219.7713

SMO polykernel 5.67898 91.95121

SMO RBF kernel 2.675412 84.55606

Figure 3: Comparison of MMRE for linear regression

with and without PCA

Figure 5: Comparison of MMRE SMO Polykernel and

RBF Kernel with and without PCA

Figure 6 shows the comparative graph of the MMRE from six

algorithms. Figure 7 shows the MdMRE and it can be seen

that Sequential Minimal Optimization with PCA for feature

transformation has the lowest error

Figure 6: MMRE for different techniques used

Figure 7: MdMRE for different techniques used

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.6, August 2012

12

5. CONCLUSION
In this paper, it was proposed to investigate the performance

of three regression algorithms namely Linear regression, M5

and modified Support Vector Machine (SVM) to avoid the

quadratic problem. Two kernels were used in for the SVM

with the first kernel being a polykernel and the second kernel

using Radial Basis Function (RBF). From experimental results

it is found that SVM with RBF kernel produces low MMRE.

Future direction to lower the MMRE can be in the areas of

soft computing.

6. REFERENCES
[1] M. Jørgensen, “A Review of Studies on Expert Estimation

of Software Development Effort,” J. Systems and

Software, vol. 70, nos. 1-2, pp. 37-60, 2004.Suresh

Nageswaran. Test effort estimation using use case points.

Technology, (June), 2001

[2] Suresh Nageswaran. Test effort estimation using use case

points. Technology, (June), 2001.

[3] Boehm, B. W.,Software Engineering Economics. Prentice-

Hall: Englewood Cliffs, N. J., 1981.

[4] Putnam, L.H., “A General Empirical Solution to the

Macro Software Sizing and Estimating Problem,” IEEE

Transactions on Software Engineering, vol. se-4, no. 4,

pp. 345–361, July 1978.

[5] Albrecht, A.J. and J.R. Gaffney, ‘Software function,

source lines of code, and development effort prediction a

software science validation’, IEEE Trans. on Softi. Eng.,

9(6), pp639-648, 1983.

[6] Boetticher G, Menzies T, Ostrand T (2007) PROMISE

Repository of empirical software engineering data

http://promisedata.org/ repository, West Virginia

University, Department of Computer Science.

[7] L.C. Briand, V.R. Basili, and W.M. Thomas, “A Pattern

Recognition Approach for Software Engineering Data

Analysis,” IEEE Trans. Software Eng., vol. 18, no. 11,

pp. 931-942, 1992.

[8] K. Molokken and M. Joorgensen, “A Review of Software

Surveys on Software Effort Estimation,” Proc. Intl Symp.

Empirical Software Eng., pp. 223-230, 2003.

[9] M. J. Shepperd, C. Schofield, and B. A. Kitchenham,

“Effort Estimation Using Analogy,” Proc. 18th Int’l

Conf. Software Eng., Berlin: IEEE CS Press, 1996.

[10] T. Mukhopadhyay, S.S. Vicinanza, and M.J. Prietula,

“Examining the Feasibility of a Case-Based Reasoning

Model for Software Effort Estimation,” MIS Quarterly,

vol. 16, pp. 155-171, June, 1992.

[11] Azzeh, M., Neagu, D., Cowling, P., 2009. Fuzzy grey

relational analysis for software effort estimation, Journal

of Empirical software engineering.

[12] Mendes E, Mosley N, Counsell S (2003) A replicated

assessment of the use of adaptation rules to improve Web

cost estimation, International Symposium on Empirical

Software Engineering, pp. 100-109.

[13] V. Vapnik, S. Golowich, and A. Smola. Support vector

method for function approximation, regression

estimation, and signal processing. In M. Mozer, M.

Jordan, and T. Petsche, editors, Advances in Neural

Information Processing Systems 9, pages 281–287,

Cambridge, MA, 1997. MIT Press.

[14] C.-C. Chang and C.-J. Lin, LIBSVM: a library for

support vector machines, 2001.

[15] Platt, J. C.,” Fast training of support vector machines

using sequential minimal optimization”. Advances in

kernel methods: Support vector machines, B. Schokopf

et al. (ed.), MIT Press, 1999.

