
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.4, August 2012

12

Survey of Methods of Solving TSP along with its

Implementation using Dynamic Programming Approach

Chetan Chauhan
SSSIST SEHORE

India

Ravindra Gupta
SSSIST Sehore

India

Kshitij Pathak
MIT Ujjain

India

ABSTRACT

The Traveling salesperson problem is one of the problem in

mathematics and computer science which haddrown attention

as it is easy to understand and difficult to solve. In this paper,

we survey the various methods/techniques available to solve

traveling salesman problem and analyze it to make critical

evaluation of their time complexities. An implementation of

the traveling salesman problem using dynamic programming

is also presented in this paper which generates optimal answer

and tested with 25 cities and it executes in reasonable time.

Keywords

Traveling Salesman problem, Heuristic approach, Dynamic

Programming, Greedy Method, Exact Solution Approaches

1. INTRODUCTION
Traveling Salesman Problem (TSP) is classical and most

widely studied problem in Combinatorial Optimization [1]. It

has been studied intensively in both Operations Research and

Computer Science since 1950s as a result of which a large

number of techniques were developed to solve this problem.

Much of the work on TSP is not motivated by direct

applications, but rather by the fact that it provides an ideal

platform for study of general methods that can be applied to a

wide range of Discrete Optimization Problems. Indeed,

numerous direct applications of TSP bring life to research

area and help to direct future work. The idea of problem is to

find shortest route of salesman starting from a given city,

visiting n cities only once and finally arriving at origin city.

TSP is represented by complete edge-weighted graph G=(V,E)

with V being set of n=|V| nodes or vertices representing cities

and EV×V being set of directed edges or arcs. Each arc (i,

j)E is assigned value of length dijwhich is distance between

cities i and j with i, jV . TSP can be either asymmetric or

symmetric in nature. In case of asymmetric TSP, distance

between pair of nodes i, j is dependent on direction of

traversing edge or arc i.e. there is at least one arc(i, j) for

which dij≠dji. In symmetric TSP, dij=djiholds for all arcs in E.

The goal in TSP is thus to find minimum length Hamiltonian

Circuit [2]of graph, where Hamiltonian Circuit is a closed

path visiting each of n nodes of G exactly once. Thus, an

optimal solution to TSP is permutation π of node indices

{1,.......,n} such that length f(π) is minimal, where f(π)is given

by,

 () ∑ () ()

 () () [3]

2. HISTORY
The origin of the TSP and its name is somewhat obscure. It

appears to have been discussed informally among

mathematicians for many years. Surprisingly little in the way

of results has appeared in the mathematical literature. One of

the first appearances of tours and circuits in the mathematical

literature is in a 1757 paper by the great Leonard Euler. The

paper concerns a solution of the knight’s tour problem in

chess, that is, the problem of finding a sequence of knight’s

moves that will take the piece from a starting square on a

chessboard, through every other square exactly once and

returning to the start. Euler’s solution is depicted in Fig 1,

where the order of moves is indicated by the numbers on the

squares [4].

Fig 1: Knight’s tour

An Irish mathematician sir W. R. Hamilton and the English

mathematician T. P. Kirkman already treated mathematical

problems related to the TSP in the 1800’s [5].

The German handbook from 1832 by B.F. Voigt goes through

47 German cities(fig 2) and is actually of very good quality

and might even be optimal given the travel conditions of that

time[6].

Fig 2: The Commis-Voyageur tour for 47 Germancities

In 1859 Sir William Hamilton contributed to the growth of

graph theory by inventing the Icosiangame (or Hamilton’s

aroundthe world problem) (fig 3) that requires a playerto

complete a tour using only specified connectors through 20

points [7].

Icosian is the problem of finding a Hamiltonian cycle along

the edges of a dodecahedron. I.e. a path such that every vertex

is visited a single time, no edge is visited twice, and the

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.4, August 2012

13

ending point is the same as the starting point [8], a game

which clearly is not far away from the TSP formulation. The

objective is to go around the world by passing through each

city once and only once. The solution is called a “Hamilton

cycle” (fig 4). Sir Hamilton got into serious financial

difficulties trying to market his game [9].

Fig 3: The Icosian Game

Fig4: Dodecahedron

The general form of the TSP appears to have been first

studied by mathematicians during the 1930s in Vienna and at

Harvard, notably by Karl Menger, who defines the problem,

considers the obvious brute-force algorithm, and observes the

non-optimality of the nearest neighbour heuristic.

Shortly after this the TSP became popular among

mathematicians at Princeton University. There does not exist

any authoritative source for the origin of the problems name,

but according to Merrill Flood and A.W. Tucker it became

introduced by its present day name in 1934 as part of a

seminar given by HasslerWhitney at Princeton University

[10].

Merrill Flood (Columbia University), as early as 1937, tried to

obtain near optimal solutions in reference to routing of school

buses. Both Flood and A.W. Tucker (Princeton University)

recall that they first heard about the problem in a seminar talk

by Hassler Whitney at Princeton in 1934, who is credited with

naming the traveling salesman problem. In the 1950s and

1960s, the problem became increasingly popular in scientific

circles in Europe and the USA. California experts, George

Dantzig, Delbert Ray Fulkerson and Selmer M. Johnson, were

part of an exceptionally strong and influential center for

thenew field of mathematical programming, housed at the

RAND Corporation in Santa Monica. They expressed TSP as

an integer linear program and developed the cutting plane

method for its solution. Using these new methods they took

up the computational challenge of TSP, solving a 49-city

instance by hand to optimality by constructing a tour and

proving that no other tour could be shorter. Along the way

they set the stage for the study of integer programming. In the

following decades, the problem was studied by many

researchers from mathematics, computer science, chemistry,

physics, and other sciences. [11]

In 1972 Richard M. Karp showed that the problem of finding

a Hamiltonian cycle was NP-complete, which implies the NP-

hardness of TSP. This supplied a scientific explanation for the

apparent computational difficulty of finding optimal tours.

In 1962, the TSP became publicly known to a great extent in

the USA due to a contest by Procter & Gamble consisting of a

problem instance of 33 cities. The $ 10 000 Price for the

shortest solution was at that time enough to purchase a new

house in many parts of the country (fig 5).

Fig5: The 33 city contest from 1962.

In 1970, Held and Karp developed a one-tree (A tree

containing exactly one cycle) relaxation which provides a

lower bound within 1 % from the optimal. It achieves this by

relaxing the degree constraints using a Minimum Spanning

Tree (MST) and Lagrangian multipliers.

In 1972, Karp proved the NP-completeness of the

Hamiltonian Cycle Problem (HCP) from which the NP-

completeness of the TSP follows almost directly [12].

In 1973, Lin and Kernighan proposed a variable-depth edge

exchanging heuristic for refining an initial tour. The method,

now known as the “Lin-Kernighan” algorithm, performs

variable k-opt moves that allow intermediate tours to be

longer than the original tour. A k-opt move can be seen as the

removal of k edges from a TSP tour followed by the patching

of the resulting paths into a tour using k other edges .

In 1976, Christofides published a tour construction method,

that achieves a 3/2-approximation [i.e. guaranteeing a solution

no worse than 3/2 times the optimal solution] by using a MST

and “Perfect Matching”. Apart from the euclidean TSP this is

still the tightest approximation ratio known [13].

Other examples of using the TSP as a "guinea pig" are found

in the article [14] which introduces the random, local search

technique known as “Simulated Annealing” and in the article

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.4, August 2012

14

[15], which is one of the first publications discussing “Neural

Network” algorithms. Both articles use the TSP as a working

example.

In 1990, Bentley developed a new highly efficient variant of

the k-d tree [a binary search tree structure extended in k

dimensions] data structure, which is used for proximity

checking, while he was working on heuristics for the TSP

[16].

In 1991, Reinelt composed and published TSPLIB [17], a

library containing many of the test problems studied over the

last 50 years [18].

In 1992, David Applegate, Robert Bixby, VašekChvátal and

William Cook solved a 3038 TSP city instance to optimality

using the exact TSP solver program Concorde, on which they

started the development in 1990. Concorde has ever since

been involved in all proven optimality tour records.

In 1996, the first Polynomial Time Approximation Scheme

(PTAS) for the euclidean TSP was devised by Arora. The

PTAS finds tours with length (1 +) times the optimal and

has a running-time of nO(1/). Since it had previously been

proven that both the general as well as the Metric Traveling

Salesman Problem (MTSP) do not have a PTAS this result

was received with surprise.

In 1998 KeldHelsgaun released a highly efficient and

improved extension of the Lin-Kernighan heuristic algorithm,

called Lin-Kernighan- Helsgaun (LKH). Among other

characteristics it uses one-tree approximations for determining

candidate edge-lists (10a list containing the preferred routes

between two cities) and 5-opt moves. LKH has later been

extended and it has participated with Concorde in solving the

largest instances of the TSP to this day. Furthermore LKH has

been holding the record for the 1 904 711 city World TSP

Tour11 since 2003. It has subsequently improved the tour

three times (most recently in May 2010). Table 1 shows the

short history of Travelling Salesman Problem.

Table 1Short History of the TSP [22]

Year Milestone Contributors

1954

49-point instance

solved by LP and by

adding cutting planes

manually.

Dantzig, Fulkerson and

Johnson

1970

Lagrangian

relaxation. Error

about 1%.

Held and Karp

1973
k-Opt heuristic. 1% to

2% above optimal.
Lin and Kernighan

1976 1:5-approximation. Christodes

1983
Simulated annealing-

based heuristic.

Kirkpatrick, Gelatt and

Vecchi

1985

Recurrent neural

network-based

heuristic.

Hopfield and Tank

1992
TSP heuristics by

using k-d trees.
Bentley

1995

7,392-point instance

solved by LP and

cutting

planes generation

(Concorde).

Applegate, Bixby,

Chv_atal and

Cook

1996

PTAS for the

Euclidean TSP. nO(1/ϵ)

time.

Arora

1998

Improved k-opt

heuristic (LKH).

Within

1% above optimal.

Helsgaun

2004

24,978-point instance

solved by LKH and

proved by Concorde.

Applegate, Bixby,

Chvatal, Cook

and Helsgaun

2006
85,900-point instance

solved by Concorde.

Applegate, Bixby,

Chvatal, Cook,

Espinoza, Goycoolea

and Helsgaun

3. TSP SOLVER

3.1Exact Solvers

There are two groups of exact solvers. One of these is solving

relaxations of the TSP Linear Programming formulation and

uses methods like Cutting Plane, Interior Point, Branch-and-

Bound and Branch-and-Cut. Another smaller group is using

Dynamic Programming. For both groups the main

characteristic is a guarantee of finding optimal solutions at the

expense of running time and space requirements.

3.1.1 Branch and Bound
Branch and bound was discovered independently by at least

three groups. Firstly Dantzig et al. [19] applied the method to

the ATSP. This extremely significant paper also introduced

several other innovations. A more general description was

provided by Land and Doig [20] in the context of solving

integer programming problems by linear programming.

Finally, the approach was described and named branch and

bound by Little et al. [21] in an application to the TSP.

The Branch and Bound method implicitly enumerates all the

feasible solutions, using calculations where the integer

constraints of the problems are relaxed. In other words the

branch and bound strategy divides a problem to be solved into

a number of sub-problems. It is a system for solving a

sequence of sub-problems each of which may have multiple

possible solutions and where the solution chosen for one sub-

problem may affect the possible solutions of later sub-

problems. To avoid the complete calculation of all partial

trees, we first try to find a practical solution and note its value

as an upper bound for the optimum. As the distance exceeds

the distance of the upper bound the calculations are done. If a

new cheaper solution was found, its value is used as the new

upper bound. This method is convenient for 40 to 60 nodes

(cities).

3.1.2 The Cutting Plane
The groundbreaking work of Dantzig, Fulkerson, and Johnson

[23] on the traveling salesman problem introduced the cutting-

plane method, which can be used to attack any problem

minimizecT x subject to x S; (1)

where S is a finite subset of some Euclidean space IRm,

provided that an efficient algorithm to recognize points of S is

available. This method is iterative; each of its iterations begins

with a linear programming relaxation of (1), meaning a

problem

minimizecT x subject to Ax≤b; (2)

where the polyhedron P defined as {x : Ax ≤ bg }contains S

and is bounded. Since P is bounded, we can find an optimal

solution x* of (2) which is an extreme point of P. If x*

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.4, August 2012

15

belongs to S, then it constitutes an optimal solution of (1);

otherwise, some linear inequality separates x* from S in the

sense of being satisfied by all the points in S and violated by

x*; such an inequality is called a cutting plane or simply a cut.

3.1.3 Branch and Cut
A primitive version of this idea was already applied to theTSP

by Hong (1972) and Miliotis (1976).Grotschel,

Junger&Reinelt (1984) applied it to the so-calledLinear

Ordering Problem.The term branch-and-cut was coined by

Padberg&Rinaldi(1987, 1991).They used it to solve very large

TSP instances (up to 2000cities or so).

The branch and cut method solves the linear program without

the integer constraint using the regular simplex algorithm.

When an optimal solution is obtained, and this solution has a

non-integer value for a variable that is supposed to be integer,

a cutting plane algorithm is used to find additional linear

constraints which are satisfied by all feasible integer points

but violated by the current fractional solution. If such an

inequality is found, it is added to the formulation, such that

resolving it will yield a different solution which is hopefully

"less fractional". This process is repeated until either an

integer solution is found (which is then known to be optimal)

or until no more cutting planes are found. We may normally

end with an optimal solution however, in practice we may not

have an exact separation algorithm and it may return no

violated inequality although there are some. If we have not

terminated with an optimal solution to IP, we branch. We

decompose the problem into two new problems, i.e., adding

upper and lower bounds to a variable whose current value is

fractional. The problem is split into two versions, one with the

additional constraint that the original variable is greater than

or equal to the next integer greater than the intermediate

result, and one where this variable is less than or equal to the

next lesser integer. Then we solve each new problem

recursively by the same method and the optimal solution to

the original problem will bethe better of these two solutions.

Such an integration of enumeration with cutting plane is the

core of the branch and cut method. This method has been

successful in finding optimal solutions of large instances of a

closely related problem, the Symmetric Traveling Salesman

Problem (STSP). However, compare to TSP, the amount of

research carries out on branch and cut applied to CVRP is still

quite limited. Similar to in branch and bound algorithms, the

central problem of branch and cut is that the tree generated by

the branching procedure becomes too large and termination

seems unlikely within a reasonable amount of time.

3.1.4 Dynamic Programming
It is a technique for efficiently computing recurrences by

storing partial results and re-using them when needed.It is

well known that dynamic-programming recursions can be

expressed as shortest-path problems in a layered network

whose nodes correspond to the states of the dynamic program.

Accordingly, the method proposed in Balas (1996) associates

with a TSP satisfying , a network G* := (V *;A*) with n + 1

layers of nodes, one layer for each position in the tour, with

the home city (city 1) appearing at both the beginning and the

end of the tour, hence both as source node s (the only node in

layer 1) and sink node t (the only node in layer n+1) of the

network. The structure of G*, to be outlined below, is such as

to create a one-to-one correspondence between tours in G

satisfying condition (to be termed feasible) and s−t paths in

G*. Furthermore, optimal tours in G correspond to shortest s −

t paths in G*.

3.1.5 Brute-force method.

When one thinks of solving TSP, the first method that might

come to mind is a brute-force method. The brute-force method

is to simply generate all possible tours and compute their

distances. The shortest tour is thus the optimal tour.

3.2 Non-exact Solvers
These solvers offer potentially non-optimal but typically

faster solutions. In a way the opposite trade-off of the exact

solvers. Non-exact solvers can be subdivided into:

Approximation Algorithms These algorithms come with a

worst case approximation factor for the found solution. The

two traditional methods for solving the TSP are a pure MST

based algorithm, which achieves a factor 2 approximation and

a combined MST and Minimum Matching Problem (MMP)

based algorithm due to Christofides, which achieves a factor

3/2 approximation. Both methods are restricted to the MTSP

as they depend on the triangle inequality. The PTAS for

Euclidean TSP is mainly a theoretical result due to its

prohibitive running time.

Heuristic Algorithms These algorithms only promise a

feasible solution. They range from simple tour-construction

methods like Nearest Neighbour, Clarke-Wright and Multiple

Fragment1 to more complicated tour improving algorithms

like Tabu Search and Lin-Kernighan. Finally there is a group

of fascinating algorithms which unfortunately tend to combine

approximate solutions and large running-times. Here we find

methods like Simulated Annealing, Genetic Algorithms, Ant

Colony Algorithms and machine learning algorithms like

Neural Networks.

3.2.1 Christofides’ Algorithm
The goal of the Christofides algorithm (named after

NicosChristofides) is to find a solution to the instances of

the traveling salesman problem where the edge weights satisfy

the triangle inequality. Let G(V, w) be an instance of TSP,

i.e. G is a complete graph on the set V of vertices with weight

function w assigning a nonnegative real weight to every edge

of G.[24]

It works by first constructing a minimum spanning tree T for

the set ofcities, and then a minimum length matching M is

done on the vertexes with odd degree inT. Combining M with

T gives us a connected graph where every vertex has an

evendegree, this graph now holds an Euler tour [25] i.e. a

cycle that passes through each edgeexactly once. By first

identifying the Euler tour, the TSP tour is then created

bytraversing the Euler tour.

3.2.2 Clarke-Wright Algorithm
The Clarke-Wright savings heuristic (Clarke-Wright or

simply CW for short) is derived from a more general vehicle

routing algorithm due to Clarke and Wright [1964]. In terms

of the TSP, we start with a pseudo-tour in which an arbitrarily

chosen city is the hub and the salesman returns to the hub

after each visit to another city. (In other words, we start with a

multigraph in which every non-hub vertex is connected by

two edges to the hub). For each pair of non-hub cities, let the

savings be the amount by which the tour would be shortened

if the salesman went directly from one city to the other,

bypassing the hub. We now proceed analogously to the

Greedy algorithm. We go through the non-hub city pairs in

non-increasing order of savings, performing the bypass so

long as it does not create a cycle of non-hub vertices or cause

a non-hub vertex to become adjacent to more than two other

non-hub vertices. The construction process terminates when

only two non-hub cities remain connected to the hub, in which

case we have a true tour.The run time of the algorithm for a

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Traveling_salesman_problem
http://en.wikipedia.org/wiki/Triangle_inequality

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.4, August 2012

16

TSP with n cities is in O(n2 log(n)) with a space complexity in

O(n2) [26].

3.2.3 NearestNeighbour
This method is a natural strategy for the TSP, because it

mimics the way the traveling salesman selects a travel route.

It selects a starting point and then always selects the nearest

city to be added to the tour, it then “walks” to that city and

repeats by choosing a new non-selected city, until all cities is

in the tour. To complete the tour, an edge is added between

the last selected city and the starting city. A general version of

this heuristic has running time of Θ(N2) [27]. However, if the

distnce metric satisfies the triangle inequality, then the best

guarantee, in terms of tour quality, is NN(I)/OPT(I) ≤ (0. 5)(

log2N + 1). However, Rosenkrantz et al. [28] found instances

for which the ratio grows as Θ(logN).

3.2.4 Insertion Heuristics
Insertion heuristics are quite straight forward, and there are

many variants to choose from. The basics of insertion

heuristics is to start with a tour of a subset of all cities, and

then inserting the rest by some heuristic. The initial subtour is

often a triangle or the convex hull. One can also start with a

single edge as subtour.

Reinelt [29] lists nine insertion heuristics. Most have run time

O(n2) with two variants having run time O(n2 log(n)). The

initial path typically consists of between 0 and 2 vertices.

3.2.5 The Greedy Heuristic
The greedy heuristic constructs a tour iteratively, by inserting

an edge of lowest cost into a set T, consistent with the

requirement to eventually result in a tour. The arrangement is

given in Algorithm .Reinelt [30] reports a proof by Frieze that

where the triangular inequality holds, the greedy heuristic is

ratio bound by log(n).

To solve TSP using Greedy Approach, we look at all the arcs

coming out of the city (node) and choose the n cheapest arcs.

If those n cheapest arcs forms a Hamiltonian cycle than we

have an optimal solution.

This algorithm can be implemented with running time

Θ(N2logN). As you may have noticed, this algorithm is slower

than the nearest neighbor algorithm. Like the nearest neighbor

algorithm, it can be shown that for all instances satisfying

triangle inequality, worst-case tour quality is Greedy(I)/OPT

(I) ≤ (0.5)(log2N + 1) however, the worst examples known

for Greedy only make the ratio grow as (log N)/(3 log logN)

[31].

The Greedy algorithm normally keeps within 15-20% of the

Held-Karp lower bound [32]

3.2.6 Gutin and Yeo Algorithm
More recently Gutin and Yeo [33] have provided an

approximation heuristic they term the greedy expectation

heuristic. The authors provide details for both the ATSP and

quadratic assignment problems.

For the ATSP, the algorithm operates by recursively

constructing a tour. The algorithm starts with an empty tour

and a complete directed graph K. At each step in the process

an edge, e, is selected from the incumbent K such that the

average cost of tours containing e is minimised. This edge is

added to the partially completed tour. The recursion repeats

with a modified K (excluding e and certain associated edges).

It terminates when a complete tour is constructed.

3.2.7 Hill Climbing (HC)
In computer science, hill climbing is a mathematical

optimization technique which belongs to the family of local

search. It is an iterative algorithm that starts with an arbitrary

solution to a problem, then attempts to find a better solution

by incrementally changing a single element of the solution. If

the change produces a better solution, an incremental change

is made to the new solution, repeating until no further

improvements can be found[34].

3.2.8 Lin-Kernighan
The Lin-Kernighan (LK) algorithm [35] is generally

considered to be one of the mosteffective methods for

generating optimal or near-optimal solutions for the

TSP.However, the design and implementation of LK is not

simple. There are many designsand implementation decisions

to be made, and most decisions have great influence on

theperformance. The creation of the LK was inspired by the

observation that a static K in theK-Opt method is not

necessary the best solution. Designers wanted to use a

different K-Optin different stages in the execution of the

heuristic. In practice it has been shown thatit is difficult to

know what K to use to achieve the best compromise between

running time and quality of the solution [3]. Lin and

Kernighan removed this drawback by introducinga powerful

variable-Opt algorithm. The algorithm changes the value of K

during its execution [3].

3.2.9 The Metropolis Algorithm
In its original form, the Metropolis algorithm simulates the

behaviour of systems governed by statistical mechanics [36].

In the context of optimization, the algorithm is similar to

iterative improvement, but utilizes two stochastic

mechanisms. These mechanisms allow local minima to be

escaped [37].

3.2.10 Simulated Annealing (SA)
Simulated annealing is a well-known meta-heuristic search

method that has been used successfully in solving many

combinatorial optimization problems. It is a hill climbing

algorithm with the added ability to escape from local optima

in the search space. However, although it yields excellent

solutions, it is very slow compared to a simple hill climbing

procedure.

The term simulated annealing is adopted from the annealing

of solids, where we try to minimize the energy of the system

using slow cooling until the atoms reach a stable state. The

slow cooling technique allows atoms of the metal to line

themselves up and to form a regular crystalline structure that

has high density and low energy. The initial temperature and

the rate at which the temperature is reduced is called the

annealing schedule.

The theoretical foundation of SA was led by Kirkpatrick et al.

in 1983 [38], where they applied the Metropolis algorithm

[39] from statistical mechanics to combinatorial optimization

problems. The Metropolis algorithm in statistical mechanics

provides a generalization of iterative improvement, where

controlled uphill moves (moves that do not lower the energy

of the system) are probabilistically accepted in the search for

obtaining a better organization and escaping local optima. In

each step of the Metropolis algorithm, an atom is given a

small random displacement. If the displacement results in a

decrease in the system energy, the displacement is accepted

and used as a starting point for the next step. If on the other

hand the energy of the system is not lowered, the new

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Local_search_%28optimization%29
http://en.wikipedia.org/wiki/Local_search_%28optimization%29
http://en.wikipedia.org/wiki/Incremental_heuristic_search

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.4, August 2012

17

displacement is accepted with a certain probability exp(−E/kbT)

where E is the change in energy resulting from the

displacement, T is the current temperature, and kb is a

constant called a Boltzmann constant . Depending on the

value returned by this probability either the new displacement

is accepted or the old state is retained. For any given T, a

sufficient number of iterations always leads to thermal

equilibrium. The SA algorithm has also been shown to

possess a formal proof of convergence using the theory of

Markov Chains [40].

3.2.11 Tabu Search (TS)
Glover in 1977 [41]. Since then, it has been widely used for

solving combinatorial optimization problems. Its name is

derived from the word ‘taboo’ meaning forbidden or

restricted. The central feature of the approach is the use of

memory in the search in the process. At the simplest level,

tabu search operates much like interactive improvement, but

with additional restrictions on which solutions in the

neighborhood of some solution s may be visited. At the

conceptual level, the restrictions are enforced by maintenance

of a set of tabu solutions, T . These are only moved to if there

is good reason to do so, with the decision to explore these

dependent on the aspiration criterion. At the practical level,

the tabu set is maintained as a combination of previously

visited moves, a history set, and/or set of rules governing

which moves are valid given the current solution, its

neighborhood and the history set.

3.2.12 Ant Colony Optimization (ACO)
Ant Colony Optimization is a meta-heuristic technique that is

inspired by the behavior of real ants. Its principles were

established by Dorigoet al. in 1991 [42]. Real ants cooperate

to find food resources by laying a trail of a chemical

substance called ‘pheromone’ along the path from the nest to

the food source. Depending on the amount of pheromone

available on a path, new ants are encouraged, with a high

probability, to follow the same path, resulting in even more

pheromone being placed on this path. Shorter routes to food

sources have higher amounts of pheromone. Thus, over time,

the majority of ants are directed to use the shortest path. This

type of indirect communication is called ‘stigmergy’ [43], in

which the concept of positive feedback is exploited to find the

best possible path, based on the experience of previous ants.

3.2.13 Genetic Algorithms (GAs)
The idea of simulation of biological evolution and the natural

selection of organisms dates back to the 1950’s. One of the

early pioneers in this area was Alex Fraser with his research

published in 1957 [44,45]. Nevertheless, the theoretical

foundation of GAs were established by John Holland in 1975

[46], after which GAs became popular as an intelligent

optimization technique that may be adopted for solving many

difficult problems.

The theme of a GA is to simulate the processes of biological

evolution, natural selection and survival of the fittest in living

organisms. In nature, individuals compete for the resources of

the environment, and they also compete in selecting mates for

reproduction. Individuals who are better or fitter in terms of

their genetic traits survive to breed and produce offspring.

Their offspring carry their parents’ basic genetic material,

which leads to their survival and breeding. Over many

generations, this favorable genetic material propagates to an

increasing number of individuals. The combination of good

characteristics from different ancestors can sometimes

produce ‘super fit’ offspring who out-perform their parents. In

this way, species evolve to become better suited to their

environment.

4. PROPOSED SOLUTION
This paper implements a Dynamic Programming method for

finding an optimal solution to the traveling salesman

problem.This method givescorrectresult in reasonable time.

The dynamic programming method proceeds as follows.

Traveling salesman problem using Dynamic Programming

//S=set of all cities, n=number of cities

1. Pick a random node (city) as a initial starting node

IS

2. 𝒳=Power set of all city except ISor 2S-IS

3. for k=2 to n do//making all combination of cities

g(k,∅)=Ck1 //initializing

4. for all iϵS-{1} do

for all element E in 𝒳do

if i not in E then

g(i,E)=minjϵE(Cij+g(j1,E-{j})) //add to g

shortest distance

5. g(1,S-{1})=minjϵ S-{1}(Cij+g(j,S-{1}-j)) //shortest

distance calculated in g(1,S-{1})

Example 4.1

 To

 A B C D

A 0 2 5 4

FromB 1 0 9 6

C 3 21 0 25

 D 1 1 2 0

By applying the improved dynamic programming method we

get:-

 Let IS=A

 g(B, ∅)= CBA=1

 g(C, ∅)= CCA=3

 g(D, ∅)= CDA=1

g(B, {C, D})=min(CBC + g(C, D),CBD + g(D, C))

{ since g(C, D)= CCD + g(D,∅)=25+1=26

g(D, C)=CDC + g(C,∅)=2+3=5 }

g(B, {C, D})=min(9+26,6+5)

 =min(35, 11)

 =11

Similarly, we get

g(C, {B, D})=28

g(D, {B, C})=13

g(A, {B, C, D})=min(CAB + gBDC,CAC+ gCBD , CAD + gDBC)

 =min(2+11,5+ 28,4+13)

 =13

The shortest path starting from city A is as follows:-

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.4, August 2012

18

 A→B→D→C→A

4.1 Snapshots

Fig 6 Cost matrix

Figure 6 shows the cost matrix of TSP for 4 cities. In this

figure first column and second column represent the city

denoted by C1, C2, C3 and C4. In third column we have

distance between two cities, for example, first row represent

the distance between city C1 and C2 is 2.

Fig 7 shortest distance with path

Figure 7 represents the result of dynamic programming

approach. This shows the shortest distance and suggested

path for traveling salesman.

5. CONCLUSION
This paper discusses the survey of various available methods

for solving the symmetric or asymmetric TSP. An algorithm

and implementation of TSP using dynamic programming is

presented. The advantageous of this approach is that it gives

correct and optimal solution with complexity Ο(n22n). In

future we use heuristic as a intermediate step to find the

optimal solution using dynamic programming approach.

6. REFERENCES
[1] Applegate, D. L., Bixby, R. E., Chvảtal, V. & Cook, W.

J. (2006). The Traveling Salesman Problem:

AComputational Study, Princeton University Press,

Princeton, New Jersey.

[2] CormenT. H., Leiserson, C. E., Rivest, R. L. & Stein, C.

(2001). Introduction to Algorithms, Second Edition, MIT

Press Cambridge, Massachusetts.

[3] The Traveling Salesman Problem: A case study in local

optimization by David S. Johnson and Lyle A. McGeoch

1995

[4] D.L. Applegate, R.E. Bixby, V.Chv´atal, W.J. Cook, The

Traveling Salesman Problem, A Computational Study,

Princeton University Press, Princeton and Oxford, 2006.

[5] http://en.wikipedia.org/wiki/Traveling_salesman_probl-

em.

[6] Applegate, D. L., R. E. Bixby, V. Chvátal, and W. J.

Cook (2007). The Traveling Salesman Problem: A

Computational Study (Princeton Series in Applied

Mathematics)., Chapter 1–5,12–17. Princeton, NJ, USA:

Princeton University Press.

[7] Cook, William. "History of the TSP." The Traveling

Salesman Problem. Oct 2009. Georgia Tech, 22 Jan

2010. <http://www.tsp.gatech.edu/index.html>.

[8] A Multilevel Scheme for the Traveling Salesman

Problem Øystein M. Hjertenes University of Bergen

2002.

[9] V. Chachra, P.M. Ghare, J.M. Moore, Applications of

Graph Theory Algorithms, Elsevier North Holland, Inc.,

1979.

[10] Dantzig, G., R. Fulkerson, and S. Johnson (1954).

Solution of a large scale traveling salesman problem.

Technical Report P-510, RAND Corporation, Santa

Monica, California, USA.

[11] Cook, William. "History of the TSP." The Traveling

Salesman Problem. Oct 2009. Georgia Tech, 22 Jan

2010. <http://www.tsp.gatech.edu/index.html>.

[12] Karp, R. M. (1972). Reducibility among combinatorial

problems. In R. Miller and J. Thatcher (Eds.),

Complexity of Computer Computations, New York,

USA., pp. 85–103. Plenum Press.

[13] Christofides, N. (1976). Worst-case analysis of a new

heuristic for the traveling salesman problem. Technical

Report Report 388, Graduate School of Industrial

Administration, Carnegie-Mellon University, Pittsburg.

[14] S. Kirkpatrick, C. D. G. J. and M. P. Vecchi (1983,

May). Optimization by simulated annealing. Science

220(4598), 671–680.

[15] Hopfield, J. J. and D. W. Tank (1985). “Neural”

computation of decisions in optimization problems.

Biological Cybernetics 52, 141–152.

10.1007/BF00339943.

[16] Bentley, J. L. (1992). Fast algorithms for geometric

traveling salesman problems. ORSA Journal on

Computing 4(4), 387–411.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.4, August 2012

19

[17] http://www.iwr.uniheidelberg.de/groups/comopt/softwar-

e/TSPLIB95/

[18] Reinelt, G. (1991, Fall). Tsplib - a traveling salesman

problem library. ORSA, Journal On Computing 3(4),

376–384.

[19] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a

large scale traveling salesman problem. Operations

Research, 2:393–410, 1954.

[20] A. H. Land and A. Doig. An automatic method for

solving discrete programming problems. Econometrica,

28:497–520, 1960.

[21] J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel.

An algorithm for the traveling salesman problem.

Operations Research, 11(6):972– 989, 1963.

[22] Okano, H. (2009). Study of Practical Solutions for

Combinatorial Optimization Problems. Ph. D. thesis,

School of Information Sciences, Tohoku University.

[23] Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a

large-scale traveling salesman problem. Operations

Research 2, 393{410, 1954.

[24] http://en.wikipedia.org/wiki/Christofides_algorithm

[25] The Traveling Salesman Problem: A case study in local

optimization by David S. Johnson and Lyle A. McGeoch

1995

[26] D. S. Johnson and L. A. McGeoch. The Traveling

Salesman Problem: A Case Study. In E. H. Aarts and J.

K. Lenstra, editors, Local Search in Combinatorial

Optimization. Wiley and Sons, New York, NY, USA,

1997.

[27] The Traveling Salesman Problem: A case study in local

optimization by David S. Johnson and Lyle A. MuGeoch

1995

[28] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II, An

analysis of several heuristics for the traveling salesman

problem, SIAM J. Comput. 6 (1977), 563-581.

[29] G. Reinelt. The traveling salesman: Computational

solutions for TSP applications. Springer Verlag, Berlin,

Germany, 1994. LNCS 840.

[30] G. Reinelt. The traveling salesman: Computational

solutions for TSP applications. Springer Verlag, Berlin,

Germany, 1994. LNCS 840.

[31] A. M. Frieze, Worst-case analysis of algorithms for

traveling salesman problems, Methods of Operations

Research 32 (1979), 97-112.

[32] D.S. Johnson and L.A. McGeoch, “The

TravelingSalesman Problem: A Case Study in Local

Optimization”,November 20, 1995.

[33] G. Gutin and A. Yeo. Polynomial approximation

algorithms for the TSP and the QAP with a factorial

domination number. Discrete Applied Mathematics,

119(1-2):107–116, 2002.

[34] http://en.wikipedia.org/wiki/Hill_climbing

[35] S. Lin and B. Kernighan. An effective heuristic algorithm

for the traveling-salesman problem. Operations Research,

21:498–516, 1973.

[36] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi.

Optimization by simulated annealing. Science,

220(4598):671–680, 1983.

[37] I. A. Wood and T. Downs. Fast optimization by demon

algorithms. In T. Downs, M. Frean, and M. Gallagher,

editors, Proceedings of the Ninth Australian Conference

on Neural Networks (ACNN98), Queensland, Australia,

pages 245–249, 1989.

[38] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization

by simulated annealing. Science, 220(4598):671–680,

1983.

[39] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller,

and E. Teller. Equation of state calculations by fast

computing machines. Journal of Chemical Physics,

21(6):1087–1092, 1953.

[40] R. W. Eglese. Simulated annealing: A tool for

operational research. European Journal of Operational

Research, 46(3):271–281, 1990.

[41] F. Glover. Heuristics for integer programming using

surrogate constraints. Decision Sciences, 8(1):156–166,

1977.

[42] M. Dorigo, V. Maniezzo, and A. Colorni. The ant

system: Ant autocatalytic optimizing process. Technical

Report TR91-016, Politenico di Milano, 1991.

[43] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant

algorithms for discrete optimization.Artificial Life,

5(2):137–172, 1999

[44] A. Fraser. Simulation of genetic systems by automatic

digital computers. I. introduction. Australian Journal of

Biological Science, 10:484–491, 1957.

[45] A. Fraser. Simulation of genetic systems by automatic

digital computers. II. Effects of linkage on rates of

advanced under-selection. Australian Journal of

Biological Science, 10:492–499, 1957.

[46] J. H. Holland. Adaptation in Natural and Artificial

Systems. MIT Press, 1975.

