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ABSTRACT 

The Traveling salesperson problem is one of the problem in 

mathematics and computer science which haddrown attention 

as it is easy to understand and difficult to solve. In this paper, 

we survey the various methods/techniques available to solve 

traveling salesman problem and analyze it to make critical 

evaluation of their time complexities. An implementation of 

the traveling salesman problem using dynamic programming 

is also presented in this paper which generates optimal answer 

and tested with 25 cities and it executes in reasonable time. 
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1. INTRODUCTION 
Traveling Salesman Problem (TSP) is classical and most 

widely studied problem in Combinatorial Optimization [1]. It 

has been studied intensively in both Operations Research and 

Computer Science since 1950s as a result of which a large 

number of techniques were developed to solve this problem. 

Much of the work on TSP is not motivated by direct 

applications, but rather by the fact that it provides an ideal 

platform for study of general methods that can be applied to a 

wide range of Discrete Optimization Problems. Indeed, 

numerous direct applications of TSP bring life to research 

area and help to direct future work. The idea of problem is to 

find shortest route of salesman starting from a given city, 

visiting n cities only once and finally arriving at origin city. 

TSP is represented by complete edge-weighted graph G=(V,E) 

with V being set of n=|V| nodes or vertices representing cities 

and EV×V being set of directed edges or arcs. Each arc (i, 

j)E is assigned value of length dijwhich is distance between 

cities i and j with i, jV . TSP can be either asymmetric or 

symmetric in nature. In case of asymmetric TSP, distance 

between pair of nodes i, j is dependent on direction of 

traversing edge or arc i.e. there is at least one arc(i, j) for 

which dij≠dji. In symmetric TSP, dij=djiholds for all arcs in E. 

The goal in TSP is thus to find minimum length Hamiltonian 

Circuit [2]of graph, where Hamiltonian Circuit is a closed 

path visiting each of n nodes of G exactly once. Thus, an 

optimal solution to TSP is permutation π of node indices 

{1,.......,n} such that length f(π) is minimal, where f(π)is given 

by, 

 ( )  ∑   ( ) (   )
   
       ( ) ( )      [3] 

2. HISTORY 
The origin of the TSP and its name is somewhat obscure. It 

appears to have been discussed informally among 

mathematicians for many years. Surprisingly little in the way 

of results has appeared in the mathematical literature. One of 

the first appearances of tours and circuits in the mathematical 

literature is in a 1757 paper by the great Leonard Euler. The 

paper concerns a solution of the knight’s tour problem in 

chess, that is, the problem of finding a sequence of knight’s 

moves that will take the piece from a starting square on a 

chessboard, through every other square exactly once and 

returning to the start. Euler’s solution is depicted in Fig 1, 

where the order of moves is indicated by the numbers on the 

squares [4]. 

 

 
 

Fig 1: Knight’s tour 

 

An Irish mathematician sir W. R. Hamilton and the English 

mathematician T. P. Kirkman already treated mathematical 

problems related to the TSP in the 1800’s [5].  

 

The German handbook from 1832 by B.F. Voigt goes through 

47 German cities(fig 2) and is actually of very good quality 

and might even be optimal given the travel conditions of that 

time[6]. 

 
Fig 2: The Commis-Voyageur tour for 47 Germancities 

 

In 1859 Sir William Hamilton contributed to the growth of 

graph theory by inventing the Icosiangame (or Hamilton’s 

aroundthe world problem) (fig 3) that requires a playerto 

complete a tour using only specified connectors through 20 

points [7]. 

Icosian is the problem of finding a Hamiltonian cycle along 

the edges of a dodecahedron. I.e. a path such that every vertex 

is visited a single time, no edge is visited twice, and the 
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ending point is the same as the starting point [8], a game 

which clearly is not far away from the TSP formulation. The 

objective is to go around the world by passing through each 

city once and only once. The solution is called a “Hamilton 

cycle” (fig 4). Sir Hamilton got into serious financial 

difficulties trying to market his game [9]. 

 

 
 

Fig 3: The Icosian Game 

 

 
 

Fig4: Dodecahedron 

The general form of the TSP appears to have been first 

studied by mathematicians during the 1930s in Vienna and at 

Harvard, notably by Karl Menger, who defines the problem, 

considers the obvious brute-force algorithm, and observes the 

non-optimality of the nearest neighbour heuristic. 

Shortly after this the TSP became popular among 

mathematicians at Princeton University. There does not exist 

any authoritative source for the origin of the problems name, 

but according to Merrill Flood and A.W. Tucker it became 

introduced by its present day name in 1934 as part of a 

seminar given by HasslerWhitney at Princeton University 

[10]. 

Merrill Flood (Columbia University), as early as 1937, tried to 

obtain near optimal solutions in reference to routing of school 

buses. Both Flood and A.W. Tucker (Princeton University) 

recall that they first heard about the problem in a seminar talk 

by Hassler Whitney at Princeton in 1934, who is credited with 

naming the traveling salesman problem. In the 1950s and 

1960s, the problem became increasingly popular in scientific 

circles in Europe and the USA. California experts, George 

Dantzig, Delbert Ray Fulkerson and Selmer M. Johnson, were 

part of an exceptionally strong and influential center for 

thenew field of mathematical programming, housed at the 

RAND Corporation in Santa Monica. They expressed TSP as 

an integer linear program and developed the cutting plane 

method for its solution. Using these new methods they took 

up the computational challenge of TSP, solving a 49-city 

instance by hand to optimality by constructing a tour and 

proving that no other tour could be shorter. Along the way 

they set the stage for the study of integer programming. In the 

following decades, the problem was studied by many 

researchers from mathematics, computer science, chemistry, 

physics, and other sciences. [11] 

 

In 1972 Richard M. Karp showed that the problem of finding 

a Hamiltonian cycle was NP-complete, which implies the NP-

hardness of TSP. This supplied a scientific explanation for the 

apparent computational difficulty of finding optimal tours. 

 

In 1962, the TSP became publicly known to a great extent in 

the USA due to a contest by Procter & Gamble consisting of a 

problem instance of 33 cities. The $ 10 000 Price for the 

shortest solution was at that time enough to purchase a new 

house in many parts of the country (fig 5). 

 

 
 

Fig5: The 33 city contest from 1962. 

 

In 1970, Held and Karp developed a one-tree (A tree 

containing exactly one cycle) relaxation which provides a 

lower bound within 1 % from the optimal. It achieves this by 

relaxing the degree constraints using a Minimum Spanning 

Tree (MST) and Lagrangian multipliers. 

 

In 1972, Karp proved the NP-completeness of the 

Hamiltonian Cycle Problem (HCP) from which the NP-

completeness of the TSP follows almost directly [12]. 

 

In 1973, Lin and Kernighan proposed a variable-depth edge 

exchanging heuristic for refining an initial tour. The method, 

now known as the “Lin-Kernighan” algorithm, performs 

variable k-opt moves that allow intermediate tours to be 

longer than the original tour. A k-opt move can be seen as the 

removal of k edges from a TSP tour followed by the patching 

of the resulting paths into a tour using k other edges . 

 

In 1976, Christofides published a tour construction method, 

that achieves a 3/2-approximation [i.e. guaranteeing a solution 

no worse than 3/2 times the optimal solution] by using a MST 

and “Perfect Matching”. Apart from the euclidean TSP this is 

still the tightest approximation ratio known [13]. 

 

Other examples of using the TSP as a "guinea pig" are found 

in the article [14] which introduces the random, local search 

technique known as “Simulated Annealing” and in the article 
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[15], which is one of the first publications discussing “Neural 

Network” algorithms. Both articles use the TSP as a working 

example.  

 

In 1990, Bentley developed a new highly efficient variant of 

the k-d tree [a binary search tree structure extended in k 

dimensions] data structure, which is used for proximity 

checking, while he was working on heuristics for the TSP 

[16]. 

 

In 1991, Reinelt composed and published TSPLIB [17], a 

library containing many of the test problems studied over the 

last 50 years [18].  

 

In 1992, David Applegate, Robert Bixby, VašekChvátal and 

William Cook solved a 3038 TSP city instance to optimality 

using the exact TSP solver program Concorde, on which they 

started the development in 1990. Concorde has ever since 

been involved in all proven optimality tour records. 

 

In 1996, the first Polynomial Time Approximation Scheme 

(PTAS) for the euclidean TSP was devised by Arora. The 

PTAS finds tours with length (1 + ) times the optimal and 

has a running-time of nO( 1/ ). Since it had previously been 

proven that both the general as well as the Metric Traveling 

Salesman Problem (MTSP) do not have a PTAS this result 

was received with surprise. 

 

In 1998 KeldHelsgaun released a highly efficient and 

improved extension of the Lin-Kernighan heuristic algorithm, 

called Lin-Kernighan- Helsgaun (LKH). Among other 

characteristics it uses one-tree approximations for determining 

candidate edge-lists (10a list containing the preferred routes 

between two cities) and 5-opt moves. LKH has later been 

extended and it has participated with Concorde in solving the 

largest instances of the TSP to this day. Furthermore LKH has 

been holding the record for the 1 904 711 city World TSP 

Tour11 since 2003. It has subsequently improved the tour 

three times (most recently in May 2010). Table 1 shows the 

short history of Travelling Salesman Problem. 

 

Table 1Short History of the TSP [22] 

Year Milestone Contributors 

1954 

49-point instance 

solved by LP and by 

adding cutting planes 

manually. 

Dantzig, Fulkerson and 

Johnson 

1970 

Lagrangian 

relaxation. Error 

about 1%. 

Held and Karp 

 

1973 
k-Opt heuristic. 1% to 

2% above optimal. 
Lin and Kernighan 

1976 1:5-approximation. Christodes 

1983 
Simulated annealing-

based heuristic. 

Kirkpatrick, Gelatt and 

Vecchi 

1985 

Recurrent neural 

network-based 

heuristic. 

Hopfield and Tank 

1992 
TSP heuristics by 

using k-d trees. 
Bentley 

1995 

7,392-point instance 

solved by LP and 

cutting 

planes generation 

(Concorde). 

Applegate, Bixby, 

Chv_atal and 

Cook 

1996 

PTAS for the 

Euclidean TSP. nO(1/ϵ) 

time. 

Arora 

1998 

Improved k-opt 

heuristic (LKH). 

Within 

1% above optimal. 

Helsgaun 

2004 

24,978-point instance 

solved by LKH and 

proved by Concorde. 

Applegate, Bixby, 

Chvatal, Cook 

and Helsgaun 

2006 
85,900-point instance 

solved by Concorde. 

Applegate, Bixby, 

Chvatal, Cook, 

Espinoza, Goycoolea 

and Helsgaun 

 

3. TSP SOLVER 

3.1Exact Solvers  

There are two groups of exact solvers. One of these is solving 

relaxations of the TSP Linear Programming formulation and 

uses methods like Cutting Plane, Interior Point, Branch-and-

Bound and Branch-and-Cut. Another smaller group is using 

Dynamic Programming. For both groups the main 

characteristic is a guarantee of finding optimal solutions at the 

expense of running time and space requirements. 

3.1.1 Branch and Bound  
Branch and bound was discovered independently by at least 

three groups. Firstly Dantzig et al. [19] applied the method to 

the ATSP. This extremely significant paper also introduced 

several other innovations. A more general description was 

provided by Land and Doig [20] in the context of solving 

integer programming problems by linear programming. 

Finally, the approach was described and named branch and 

bound by Little et al. [21] in an application to the TSP. 

The Branch and Bound method implicitly enumerates all the 

feasible solutions, using calculations where the integer 

constraints of the problems are relaxed. In other words the 

branch and bound strategy divides a problem to be solved into 

a number of sub-problems. It is a system for solving a 

sequence of sub-problems each of which may have multiple 

possible solutions and where the solution chosen for one sub-

problem may affect the possible solutions of later sub-

problems. To avoid the complete calculation of all partial 

trees, we first try to find a practical solution and note its value 

as an upper bound for the optimum. As the distance exceeds 

the distance of the upper bound the calculations are done. If a 

new cheaper solution was found, its value is used as the new 

upper bound. This method is convenient for 40 to 60 nodes 

(cities). 

3.1.2 The Cutting Plane 
The groundbreaking work of Dantzig, Fulkerson, and Johnson 

[23] on the traveling salesman problem introduced the cutting-

plane method, which can be used to attack any problem 

minimizecT x subject to x  S;   (1) 

where S is a finite subset of some Euclidean space IRm, 

provided that an efficient algorithm to recognize points of S is 

available. This method is iterative; each of its iterations begins 

with a linear programming relaxation of (1), meaning a 

problem 

minimizecT x subject to Ax≤b;   (2) 

where the polyhedron P defined as {x : Ax ≤ bg }contains S 

and is bounded. Since P is bounded, we can find an optimal 

solution x* of (2) which is an extreme point of P. If x* 
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belongs to S, then it constitutes an optimal solution of (1); 

otherwise, some linear inequality separates x* from S in the 

sense of being satisfied by all the points in S and violated by 

x*; such an inequality is called a cutting plane or simply a cut. 

 

3.1.3 Branch and Cut  
A primitive version of this idea was already applied to theTSP 

by Hong (1972) and Miliotis (1976).Grotschel, 

Junger&Reinelt (1984) applied it to the so-calledLinear 

Ordering Problem.The term branch-and-cut was coined by 

Padberg&Rinaldi(1987, 1991).They used it to solve very large 

TSP instances (up to 2000cities or so). 

The branch and cut method solves the linear program without 

the integer constraint using the regular simplex algorithm. 

When an optimal solution is obtained, and this solution has a 

non-integer value for a variable that is supposed to be integer, 

a cutting plane algorithm is used to find additional linear 

constraints which are satisfied by all feasible integer points 

but violated by the current fractional solution. If such an 

inequality is found, it is added to the formulation, such that 

resolving it will yield a different solution which is hopefully 

"less fractional". This process is repeated until either an 

integer solution is found (which is then known to be optimal) 

or until no more cutting planes are found. We may normally 

end with an optimal solution however, in practice we may not 

have an exact separation algorithm and it may return no 

violated inequality although there are some. If we have not 

terminated with an optimal solution to IP, we branch. We 

decompose the problem into two new problems, i.e., adding 

upper and lower bounds to a variable whose current value is 

fractional. The problem is split into two versions, one with the 

additional constraint that the original variable is greater than 

or equal to the next integer greater than the intermediate 

result, and one where this variable is less than or equal to the 

next lesser integer. Then we solve each new problem 

recursively by the same method and the optimal solution to 

the original problem will bethe better of these two solutions. 

Such an integration of enumeration with cutting plane is the 

core of the branch and cut method. This method has been 

successful in finding optimal solutions of large instances of a 

closely related problem, the Symmetric Traveling Salesman 

Problem (STSP). However, compare to TSP, the amount of 

research carries out on branch and cut applied to CVRP is still 

quite limited. Similar to in branch and bound algorithms, the 

central problem of branch and cut is that the tree generated by 

the branching procedure becomes too large and termination 

seems unlikely within a reasonable amount of time. 

3.1.4 Dynamic Programming 
It is a technique for efficiently computing recurrences by 

storing partial results and re-using them when needed.It is 

well known that dynamic-programming recursions can be 

expressed as shortest-path problems in a layered network 

whose nodes correspond to the states of the dynamic program. 

Accordingly, the method proposed in Balas (1996) associates 

with a TSP satisfying , a network G* := (V *;A*) with n + 1 

layers of nodes, one layer for each position in the tour, with 

the home city (city 1) appearing at both the beginning and the 

end of the tour, hence both as source node s (the only node in 

layer 1) and sink node t (the only node in layer n+1) of the 

network. The structure of G*, to be outlined below, is such as 

to create a one-to-one correspondence between tours in G 

satisfying condition  (to be termed feasible) and s−t paths in 

G*. Furthermore, optimal tours in G correspond to shortest s − 

t paths in G*. 

3.1.5 Brute-force method.  

When one thinks of solving TSP, the first method that might 

come to mind is a brute-force method. The brute-force method 

is to simply generate all possible tours and compute their 

distances. The shortest tour is thus the optimal tour. 

 

3.2 Non-exact Solvers 
These solvers offer potentially non-optimal but typically 

faster solutions. In a way the opposite trade-off of the exact 

solvers. Non-exact solvers can be subdivided into: 

Approximation Algorithms These algorithms come with a 

worst case approximation factor for the found solution. The 

two traditional methods for solving the TSP are a pure MST 

based algorithm, which achieves a factor 2 approximation and 

a combined MST and Minimum Matching Problem (MMP) 

based algorithm due to Christofides, which achieves a factor 

3/2 approximation. Both methods are restricted to the MTSP 

as they depend on the triangle inequality. The PTAS for 

Euclidean TSP is mainly a theoretical result due to its 

prohibitive running time. 

Heuristic Algorithms These algorithms only promise a 

feasible solution. They range from simple tour-construction 

methods like Nearest Neighbour, Clarke-Wright and Multiple 

Fragment1 to more complicated tour improving algorithms 

like Tabu Search and Lin-Kernighan. Finally there is a group 

of fascinating algorithms which unfortunately tend to combine 

approximate solutions and large running-times. Here we find 

methods like Simulated Annealing, Genetic Algorithms, Ant 

Colony Algorithms and machine learning algorithms like 

Neural Networks. 

3.2.1 Christofides’ Algorithm  
The goal of the Christofides  algorithm (named after 

NicosChristofides) is to find a solution to the instances of 

the traveling salesman problem where the edge weights satisfy 

the triangle inequality. Let G(V, w) be an instance of TSP, 

i.e. G is a complete graph on the set V of vertices with weight 

function w assigning a nonnegative real weight to every edge 

of G.[24] 

It works by first constructing a minimum spanning tree T for 

the set ofcities, and then a minimum length matching M is 

done on the vertexes with odd degree inT. Combining M with 

T gives us a connected graph where every vertex has an 

evendegree, this graph now holds an Euler tour [25] i.e. a 

cycle that passes through each edgeexactly once. By first 

identifying the Euler tour, the TSP tour is then created 

bytraversing the Euler tour. 

3.2.2 Clarke-Wright Algorithm 
The Clarke-Wright savings heuristic (Clarke-Wright or 

simply CW for short) is derived from a more general vehicle 

routing algorithm due to Clarke and Wright [1964]. In terms 

of the TSP, we start with a pseudo-tour in which an arbitrarily 

chosen city is the hub and the salesman returns to the hub 

after each visit to another city. (In other words, we start with a 

multigraph in which every non-hub vertex is connected by 

two edges to the hub). For each pair of non-hub cities, let the 

savings be the amount by which the tour would be shortened 

if the salesman went directly from one city to the other, 

bypassing the hub. We now proceed analogously to the 

Greedy algorithm. We go through the non-hub city pairs in 

non-increasing order of savings, performing the bypass so 

long as it does not create a cycle of non-hub vertices or cause 

a non-hub vertex to become adjacent to more than two other 

non-hub vertices. The construction process terminates when 

only two non-hub cities remain connected to the hub, in which 

case we have a true tour.The run time of the algorithm for a 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Traveling_salesman_problem
http://en.wikipedia.org/wiki/Triangle_inequality
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TSP with n cities is in O(n2 log(n)) with a space complexity in 

O(n2 ) [26]. 

3.2.3 NearestNeighbour 
This method is a natural strategy for the TSP, because it 

mimics the way the traveling salesman selects a travel route. 

It selects a starting point and then always selects the nearest 

city to be added to the tour, it then “walks” to that city and 

repeats by choosing a new non-selected city, until all cities is 

in the tour. To complete the tour, an edge is added between 

the last selected city and the starting city. A general version of 

this heuristic has running time of Θ(N2) [27]. However, if the 

distnce metric satisfies the triangle inequality, then the best 

guarantee, in terms of tour quality, is NN(I)/OPT(I) ≤ (0. 5)( 

log2N + 1 ). However, Rosenkrantz et al. [28] found instances 

for which the ratio grows as Θ(logN). 

3.2.4 Insertion Heuristics 
Insertion heuristics are quite straight forward, and there are 

many variants to choose from. The basics of insertion 

heuristics is to start with a tour of a subset of all cities, and 

then inserting the rest by some heuristic. The initial subtour is 

often a triangle or the convex hull. One can also start with a 

single edge as subtour. 

Reinelt [29] lists nine insertion heuristics. Most have run time 

O(n2 ) with two variants having run time O(n2 log(n)). The 

initial path  typically consists of between 0 and 2 vertices. 

3.2.5 The Greedy Heuristic  
The greedy heuristic constructs a tour iteratively, by inserting 

an edge of lowest cost into a set T, consistent with the 

requirement to eventually result in a tour. The arrangement is 

given in Algorithm .Reinelt [30] reports a proof by Frieze that 

where the triangular inequality holds, the greedy heuristic is 

ratio bound by log(n). 

To solve TSP using Greedy Approach, we look at all the arcs 

coming out of the city (node) and choose the n cheapest arcs. 

If those n cheapest arcs forms a Hamiltonian cycle than we 

have an optimal solution. 

This algorithm can be implemented with running time 

Θ(N2logN). As you may have noticed, this algorithm is slower 

than the nearest neighbor algorithm. Like the nearest neighbor 

algorithm, it can be shown that for all instances satisfying 

triangle inequality, worst-case tour quality is Greedy(I)/OPT 

(I) ≤ (0.5)( log2N + 1)  however, the worst examples known 

for Greedy only make the ratio grow as (log N)/( 3 log logN) 

[31]. 

The Greedy algorithm normally keeps within 15-20% of the 

Held-Karp lower bound [32] 

3.2.6 Gutin and Yeo Algorithm  
More recently Gutin and Yeo [33] have provided an 

approximation heuristic they term the greedy expectation 

heuristic. The authors provide details for both the ATSP and 

quadratic assignment problems.  

For the ATSP, the algorithm operates by recursively 

constructing a tour. The algorithm starts with an empty tour 

and a complete directed graph K. At each step in the process 

an edge, e, is selected from the incumbent K such that the 

average cost of tours containing e is minimised. This edge is 

added to the partially completed tour. The recursion repeats 

with a modified K (excluding e and certain associated edges). 

It terminates when a complete tour is constructed.  

3.2.7 Hill Climbing (HC) 
In computer science, hill climbing is a mathematical 

optimization technique which belongs to the family of local 

search. It is an iterative algorithm that starts with an arbitrary 

solution to a problem, then attempts to find a better solution 

by incrementally changing a single element of the solution. If 

the change produces a better solution, an incremental change 

is made to the new solution, repeating until no further 

improvements can be found[34]. 

3.2.8 Lin-Kernighan 
The Lin-Kernighan (LK) algorithm [35] is generally 

considered to be one of the mosteffective methods for 

generating optimal or near-optimal solutions for the 

TSP.However, the design and implementation of LK is not 

simple. There are many designsand implementation decisions 

to be made, and most decisions have great influence on 

theperformance. The creation of the LK was inspired by the 

observation that a static K in theK-Opt method is not 

necessary the best solution. Designers wanted to use a 

different K-Optin different stages in the execution of the 

heuristic. In practice it has been shown thatit is difficult to 

know what K to use to achieve the best compromise between 

running time and quality of the solution [3]. Lin and 

Kernighan removed this drawback by introducinga powerful 

variable-Opt algorithm. The algorithm changes the value of K 

during its execution [3]. 

3.2.9 The Metropolis Algorithm  
In its original form, the Metropolis algorithm simulates the 

behaviour of systems governed by statistical mechanics [36]. 

In the context of optimization, the algorithm is similar to 

iterative improvement, but utilizes two stochastic 

mechanisms. These mechanisms allow local minima to be 

escaped [37]. 

3.2.10 Simulated Annealing (SA) 
Simulated annealing is a well-known meta-heuristic search 

method that has been used successfully in solving many 

combinatorial optimization problems. It is a hill climbing 

algorithm with the added ability to escape from local optima 

in the search space. However, although it yields excellent 

solutions, it is very slow compared to a simple hill climbing 

procedure. 

The term simulated annealing is adopted from the annealing 

of solids, where we try to minimize the energy of the system 

using slow cooling until the atoms reach a stable state. The 

slow cooling technique allows atoms of the metal to line 

themselves up and to form a regular crystalline structure that 

has high density and low energy. The initial temperature and 

the rate at which the temperature is reduced is called the 

annealing schedule. 

The theoretical foundation of SA was led by Kirkpatrick et al. 

in 1983 [38], where they applied the Metropolis algorithm 

[39] from statistical mechanics to combinatorial optimization 

problems. The Metropolis algorithm in statistical mechanics 

provides a generalization of iterative improvement, where 

controlled uphill moves (moves that do not lower the energy 

of the system) are probabilistically accepted in the search for 

obtaining a better organization and escaping local optima. In 

each step of the Metropolis algorithm, an atom is given a 

small random displacement. If the displacement results in a 

decrease in the system energy, the displacement is accepted 

and used as a starting point for the next step. If on the other 

hand the energy of the system is not lowered, the new 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Local_search_%28optimization%29
http://en.wikipedia.org/wiki/Local_search_%28optimization%29
http://en.wikipedia.org/wiki/Incremental_heuristic_search
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displacement is accepted with a certain probability exp(−E/kbT) 

where E is the change in energy resulting from the 

displacement, T is the current temperature, and kb is a 

constant called a Boltzmann constant . Depending on the 

value returned by this probability either the new displacement 

is accepted or the old state is retained. For any given T, a 

sufficient number of iterations always leads to thermal 

equilibrium. The SA algorithm has also been shown to 

possess a formal proof of convergence using the theory of 

Markov Chains [40]. 

3.2.11 Tabu Search (TS) 
Glover in 1977 [41]. Since then, it has been widely used for 

solving combinatorial optimization problems. Its name is 

derived from the word ‘taboo’ meaning forbidden or 

restricted. The central feature of the approach is the use of 

memory in the search in the process. At the simplest level, 

tabu search operates much like interactive improvement, but 

with additional restrictions on which solutions in the 

neighborhood of some solution s may be visited. At the 

conceptual level, the restrictions are enforced by maintenance 

of a set of tabu solutions, T . These are only moved to if there 

is good reason to do so, with the decision to explore these 

dependent on the aspiration criterion. At the practical level, 

the tabu set is maintained as a combination of previously 

visited moves, a history set, and/or set of rules governing 

which moves are valid given the current solution, its 

neighborhood and the history set.  

3.2.12 Ant Colony Optimization (ACO) 
Ant Colony Optimization is a meta-heuristic technique that is 

inspired by the behavior of real ants. Its principles were 

established by Dorigoet al. in 1991 [42]. Real ants cooperate 

to find food resources by laying a trail of a chemical 

substance called ‘pheromone’ along the path from the nest to 

the food source. Depending on the amount of pheromone 

available on a path, new ants are encouraged, with a high 

probability, to follow the same path, resulting in even more 

pheromone being placed on this path. Shorter routes to food 

sources have higher amounts of pheromone. Thus, over time, 

the majority of ants are directed to use the shortest path. This 

type of indirect communication is called ‘stigmergy’ [43], in 

which the concept of positive feedback is exploited to find the 

best possible path, based on the experience of previous ants.  

3.2.13 Genetic Algorithms (GAs) 
The idea of simulation of biological evolution and the natural 

selection of organisms  dates back to the 1950’s. One of the 

early pioneers in this area was Alex Fraser with his research 

published in 1957 [44,45]. Nevertheless, the theoretical 

foundation of GAs were established by John Holland in 1975 

[46], after which GAs became popular as an intelligent 

optimization technique that may be adopted for solving many 

difficult problems. 

The theme of a GA is to simulate the processes of biological 

evolution, natural selection and survival of the fittest in living 

organisms. In nature, individuals compete for the resources of 

the environment, and they also compete in selecting mates for 

reproduction. Individuals who are better or fitter in terms of 

their genetic traits survive to breed and produce offspring. 

Their offspring carry their parents’ basic genetic material, 

which leads to their survival and breeding. Over many 

generations, this favorable genetic material propagates to an 

increasing number of individuals. The combination of good 

characteristics from different ancestors can sometimes 

produce ‘super fit’ offspring who out-perform their parents. In 

this way, species evolve to become better suited to their 

environment. 

4. PROPOSED SOLUTION 
This paper implements a Dynamic Programming method for 

finding an optimal solution to the traveling salesman 

problem.This method givescorrectresult in reasonable time. 

The dynamic programming method proceeds as follows. 

Traveling salesman problem using Dynamic Programming 

//S=set of all cities, n=number of cities 

1. Pick a random node (city) as a initial starting node 

IS   

2. 𝒳=Power set of all city except ISor 2S-IS 

3. for k=2 to n do//making all combination of cities 

g(k,∅)=Ck1  //initializing  

4. for all iϵS-{1} do 

for all element E in 𝒳do 

if i not in E then 

g(i,E)=minjϵE(Cij+g(j1,E-{j})) //add to g 

shortest distance 

5. g(1,S-{1})=minjϵ S-{1}(Cij+g(j,S-{1}-j))       //shortest 

distance calculated in g(1,S-{1}) 

Example 4.1 

 To 

  A   B   C   D 

A   0   2    5   4 

FromB 1    0    9    6 

C   3   21   0   25 

             D   1   1    2    0 

By applying the improved dynamic programming method we 

get:- 

 Let IS=A 

 g(B, ∅)= CBA=1 

 g(C, ∅)= CCA=3 

 g(D, ∅)= CDA=1 

g(B, {C, D})=min(CBC + g(C, D),CBD + g(D, C)) 

{ since g(C, D)= CCD + g(D,∅)=25+1=26 

g(D, C)=CDC + g(C,∅)=2+3=5 } 

 

g(B, {C, D})=min(9+26,6+5) 

     =min(35, 11) 

    =11 

Similarly, we get 

g(C, {B, D})=28  

g(D, {B, C})=13  

g(A, {B, C, D})=min(CAB + gBDC,CAC+ gCBD , CAD + gDBC) 

        =min(2+11,5+ 28,4+13) 

 =13 

The shortest path starting from city A is as follows:- 



International Journal of Computer Applications (0975 – 8887) 

Volume 52– No.4, August 2012 

18 

 A→B→D→C→A 

4.1 Snapshots  

 

Fig 6 Cost matrix 

Figure 6 shows the cost matrix of TSP for 4 cities. In this 

figure first column and second column represent the city 

denoted by C1, C2, C3 and C4. In third column we have 

distance between two cities, for example, first row represent 

the distance between city C1 and C2 is 2. 

 

Fig 7 shortest distance with path 

Figure 7 represents the result of dynamic programming 

approach. This shows the shortest distance and suggested  

path for traveling salesman.  

5. CONCLUSION 
This paper discusses the survey of various available methods 

for solving the symmetric or asymmetric TSP. An algorithm 

and implementation of TSP using dynamic programming is 

presented. The advantageous of this approach is that it gives 

correct and optimal solution with complexity Ο(n22n). In 

future we use heuristic as a intermediate step to find the 

optimal solution using dynamic programming approach. 
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