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Transient MHD Natural Convection Between Two Vertical 
Walls Heated/Cooled Asymmetrically 

 
  

 

ABSTRACT 

The transient MHD natural convection flow of a viscous 

incompressible electrically conducting fluid confined between 

vertical walls heated/cooled asymmetrically has been studied. 

We have considered two different cases (i) when one of the walls 

is stationary and (ii) when one of the walls starts to move 

impulsively. The governing equations have been solved 

analytically using the Laplace transform technique. The velocity 

field and temperature distribution are being presented 

graphically. The fluid velocity decreases for both the stationary 

wall as well as for impulsive motion of one of the walls with an 

increase in either magnetic parameter or Prandtl number. An 

increase in fluid temperature occurs due to an increase in 

temperature difference ratio. Further, the shear stress increases 

for both the stationary wall as well as for impulsive motion of 

one of the walls with an increase in either Grashof number or 

temperature difference ratio or time. The rate of heat transfer at 

the wall 0   increases with an increase in Prandtl number 

while it decreases with an increase in temperature difference 

ratio. 

Keywords: Transient MHD natural convection, Prandtl 

number, Grashof number, temperature difference ratio, 

stationary wall, impulsive motion and rate of heat transfer.  

 

1. INTRODUCTION 
MHD flows with heat transfer in electrically conducting fluid 

have attracted substantial interest in the context of metallurgical 

fluid dynamics, re-entry aerothermodynamics, astronautics, 

geophysics, nuclear engineering and applied mathematics. 

Investigation of the MHD natural convection transport processes 

due to the coupling of the fluid flow and heat transfer is a 

challenging as well as interesting phenomenon. It has been 

extensively studied between vertical walls because of its 

importance in many engineering applications in the fields of 

nuclear reactors, heat exchangers, cooling appliances in 

electronic instruments. These flows have been studied by 

assuming the plates at two different constant temperatures or 

temperature of the plates varying linearly along the plates etc. 

Singer (1965) has assessed the unsteady free convection heat 

transfer with magnetohydrodynamic effects in a channel regime. 

Joshi (1988) has studied the transient effects in natural 

convection cooling of vertical parallel plates. Singh (1988) has 

investigated the effect of free convection in unsteady Couette 

motion between two vertical parallel plates. Sacheti et al. (1994) 

have discussed an exact solution for unsteady 

magnetohydrodynamic free convection flow with constant heat 

flux. The transient free convection flow between two vertical 

parallel plates has been investigated by Singh et al.(1996). An 

exact solution for transient free convection MHD Couette flow 

with impulsive motion of one of the plates has been discussed by 

Jha (2001). Chamkha (2001) has studied the unsteady laminar 

hydromagnetic flow and heat transfer in porous channel with 

temperature-dependent properties and inertial effects on the 

convection regime. Jha et al. (2003) have analyzed the transient 

free convection flow in a vertical channel due to symmetric 

heating. Singh and Paul (2006) have described the transient 

natural convection between two vertical walls heated/cooled 

asymmetrically. Thermal radiation effect on fully developed 

mixed convection flow in a vertical channel has been studied by 

Grosan and Pop (2007). The natural convection in unsteady 

Couette flow between two vertical parallel plates in the presence 

of constant heat flux and radiation has been presented by 

Narahari (2009). Narahari (2009) has presented an exact solution 

to the problem of unsteady free convective flow of dissipative 

viscous incompressible fluid between two long vertical parallel 

plates in which the temperature of one of the plates is oscillatory 

where as the temperature of the other plate is uniform. Narahari 

(2010) has investigated the effects of thermal radiation and free 

convection currents on the unsteady Couette flow between two 

vertical parallel plates with constant heat flux at one boundary. 

Rajput and Pradeep (2011) have studied the effect of a uniform 

transverse magnetic field on the unsteady transient free 

convection flow of an incompressible viscous electrically 

conducting fluid between two infinite vertical parallel plates 

with constant temperature and Variable mass diffusion. Das et 

al.(2012) have studied the radiation effects on free convection 

MHD Couette flow started exponentially with variable wall 

temperature in presence of heat generation. Effect of radiation on 

transient natural convection flow between two vertical walls has 

been investigated by Mandal et al. (2012). Ahmed et al. (2012) 

have presented the magnetic field effect on an unsteady free 

convection flow of a viscous incompressible electrically 

conducting fluid with dissipative heat between two long vertical 

parallel plates where the temperature of one of the plates 

oscillates about a constant non-zero mean temperature. Recently, 

Sarkar et al.(2012) have investigated the effects of radiation on 

MHD free convective couette flow in a rotating system. 

  In this paper, we study the transient MHD natural convection 

flow of a viscous incompressible electrically conducting fluid 

confined between two infinite vertical walls heated/cooled 

asymmetrically. It is observed that the velocity 1( )u   decreases 

for both stationary walls as well as for impulsive motion of one 

of the walls with an increase in either magnetic parameter 2M  

or Prandtl number Pr . It is also observed that the velocity 

1( )u   increases with an increase in either Grashof number Gr  

or temperature difference ratio Tr  or time   for both 

stationary wall as well as for impulsive motion of one of the 

walls. The effect of the Prandtl number Pr  is very important in 

the temperature field. An increase in temperature ( )   occurs 

due to an increase in either time or temperature difference ratio. 
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Further, the shear stress x  at the wall 0   increases for 

both stationary wall as well as for impulsive motion of one of the 

walls with an increase in either Grashof number Gr  or 

temperature difference ratio Tr  or time  . The rate of heat 

transfer (0)'  at the wall 0   increases with an increase 

in Prandtl number Pr . 

 

2. FORMULATION OF THE PROBLEM  

   AND ITS SOLUTIONS 

Consider the unsteady natural convective flow of a viscous 

incompressible electrically conducting fluid between two 

infinite vertical parallel walls separated by a distance h  in the 

presence of a transverse magnetic field. Choose a cartesian 

co-ordinates system with the x - axis along one of the walls in 

the vertically upward direction and the y -axis normal to the 

walls [See Fig.1]. Initially, at time 0t  , the two walls and the 

fluid are assumed to be at the same temperature mT  and 

stationary. At time 0t  , the wall at 0y   starts moving in its 

own plane with a velocity 0u  and it is heated with temperature 

0T  whereas the wall at y h  is maintained at a constant 

temperature hT . A uniform magnetic field of strength 0B  is 

imposed perpendicular to the walls. As the walls are infinitely 

long, the velocity and temperature fields are functions of y  and 

t  only. 

        
   Figure 1 : Geometry of the problem 

 

 Under the usual Boussinesq's approximation, the fluid flow be 

governed by the following system of equations:  
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 where u  is the velocity in the x -direction, g  the 

acceleration due to gravity, T  the fluid temperature, mT  the 

initial fluid temperature,  
 the coefficient of thermal 

expansion,   the kinematic coefficient of viscosity,   the 

fluid density,   the electric conductivity, k  the thermal 

conductivity and pc  the specific heat at constant pressure. 

  The initial and the boundary conditions for velocity and 

temperature distributions are as follows:  

       
0, for 0 and 0,mu T T y h t    

      

       0 0, at 0 for > 0,u u T T y t  
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0, at for > 0,hu T T y h t    

where ( 0)   for stationary wall and ( 1)   when the wall at

( 0)y   starts to move impulsively. 

  We introduce non-dimensional variables  
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  On the use of (4), equations (1) and (2) become  
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where 
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  is the magnetic parameter, 
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the Prandtl number and 
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  the Grashof 

number. 

  The corresponding initial and boundary conditions for 1u  and 

  are  

       1 0, 0 for 0 1 and 0,u         

       1 , 1 a t 0 for 0 ,u       
                   

(7) 

       1 0, a t 1 for 0 ,Tu r       

 where 
0

h m
T

m

T T
r

T T





 is the wall temperature difference ratio. 

  Taking Laplace transformation of the equations (5) and (6), we 

get  
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 where  
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The corresponding boundary conditions for 1u  and   are  
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The solution of the equations (8) and (9) subject to the boundary 

conditions (11) are easily obtained and given by     
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The inverse Laplace transforms of (12) and (13) give the solutions for the temperature distribution and velocity field as  
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With the help of residue theorem, the steady state solutions 

( )   for the temperature and velocity distributions are 

given by  
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In the absence of magnetic field 
2( 0)M   the steady state 

solution for velocity distributions is given by  
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 Equations (17) and (19) are identical with the equations (2.12) 

and (2.13) obtained by Singh and Paul (2006). 

 

3.  RESULTS AND DISCUSSION 
We have presented the non-dimensional fluid velocity and fluid 

temperature distributions for several values of magnetic 

parameter 2M , Prandtl number Pr , Grashof number Gr , 

wall temperature difference ratio Tr  and time   in Figs.2-9. 

Figs.2-6 represent the velocity 1u  against   for several values 

of 2M , Pr , Gr , Tr  and  . It is seen from Fig.2 that the 

fluid velocity 1u  decreases for both the stationary wall as well 

as for the impulsive motion of one of the walls with an increase 

in magnetic parameter 2M . The presence of a magnetic field 

normal to the flow in an electrically conducting fluid introduces 

a Lorentz force which acts against the flow. This resistive force 

tends to slow down the flow and hence the fluid velocity 

decreases with the increase of the magnetic field parameter as 

observed in Fig.2. This trend is consistent with many classical 

studies on magneto-convection flow. Fig.3 shows that the fluid 

velocity 1u  decreases for both the stationary wall as well as for 

the impulsive motion of one of the walls with an increase in 

Prandtl number Pr . Physically, this is true because the increase 

in the Prandtl number is due to increase in the viscosity of the 

fluid which makes the fluid thick and hence causes a decrease in 

the velocity of the fluid. It is observed from Fig.4 that an increase 

in Grashof number Gr , leads to rise in the values of fluid 

velocity 1u  for both the stationary wall as well as for the 

impulsive motion of one of the walls due to enhancement in 

buoyancy force. Figs.5 and 6 show that the fluid velocity 1u  

increases for both the stationary wall as well as for the impulsive 

motion of one of the walls with an increase in either temperature 

difference ratio Tr  or time  . It is seen from Fig.7 that the fluid 

 

 

 

 

 

 

 temperature   decreases with an increase in Prandtl number 

Pr . The effect of the Prandtl number is very important in the 

temperature field. A fall in fluid temperature occurs due to an 

increasing value of the Prandtl number. This is in agreement with 

the physical fact that the thermal boundary layer thickness 

decreases with an increase in Pr . It is observed from Figs.8 and 

9 that the fluid temperature   increases with an increase in in 

either Tr  or time  . 

 

 
Figure 2: Velocity for the variation of 2M  when 3Pr  ,  

5Gr  , 0.5Tr   and 0.5  :   for the stationary 

wall ( 0)   and                     when one of the walls 

starts impulsively ( 1)  .  

 

  
Figure 3: Velocity for the variation of Pr  when 2 5M  ,  

5Gr  , 0.5Tr   and 0.5  :   for the stationary 

wall ( 0)   and                 when one of the walls 

starts impulsively ( 1)  .  
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Figure 4: Velocity for the variation of Gr  when 2 5M  ,  

3Pr  , 0.5Tr   and 0.5   :   for the stationary 

wall ( 0)   and                     when one of the walls 

starts impulsively ( 1)  .  

  
 Figure 5: Velocity for the variation of Tr  when 2 5M  , 

3Pr  , 5Gr   and 0.5   :   for the stationary 

wall ( 0)   and                 when one of the walls 

starts impulsively ( 1)  .  

 
Figure 6: Velocity for the variation of   when 2 5M  , 

3Pr  , 5Gr   and 0.5Tr   :   for the stationary 

wall ( 0)   and                when one of the walls 

starts impulsively ( 1)   .  

    

 
Figure 7: Temperature for the variation of Pr  when 

0.5Tr   and 0.5  .  

Figure 8: Temperature for the variation of Tr  when 3Pr   

and 0.5  .  

 Figure 9: Temperature for the variation of   when 

3Pr   and 0.5Tr  .  

The rate of heat transfer (0)'  at the wall ( 0)   is given 

by  
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Numerical results of the rate of heat transfer (0)'  at the wall 

( 0)   against the temperature difference ratio Tr  are 

presented in the Table-I for several values of Prandtl number 

Pr  and time  . Table-I shows that the rate of heat transfer 

(0)'  increases with an increase in Prandtl number Pr  

while it decreases with an increase in time   for the fixed 

values of Tr . Further, it is seen that for fixed value of Pr  and 

 , the rate of heat transfer (0)'  decreases with an increase 

in temperature difference ratio Tr . 

 

Table-I. Rate of heat transfer (0)'  at the wall ( 0)   
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Numerical results of the non-dimensional shear stress at the wall 

( 0)   are presented in Figs.10-13 against magnetic parameter 
2M  for several values of Prandtl number Pr , Grashof number 

Gr , temperature difference ratio Tr  and time  . Fig.10 

displays that the shear stress x  decreases for both stationary 

wall as well as for the impulsive motion of one of the walls with 

an increase in either Prandtl number Pr  or magnetic parameter 
2M . Physically, it is possible because fluids with Prandtl 

numbers move slowly and hence there is more friction at the 

walls. Figs.11-13 show that the shear stress x  increases for 

both the stationary wall as well as for the impulsive motion of 

one of the walls with an increase in either Grashof number Gr  

or temperature difference ratio Tr  or time  . These results are 

in agrement with the fact that the velocity increases with an 
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increase in either Gr  or Tr  or   while it decreases with an 

increase in either 2M  or Pr . Further, it is observed from 

Figs.10-13 that the shear stress x  at the wall 0   in case of 

impulsive motion of one of the walls is less than that of the 

stationary wall. 

 

Figure 10: Shear stress x  for the variation of Pr  when  

5Gr  , 0.5Tr   and 0.5   :   for the stationary 

wall ( 0)   and                  when one of the walls 

starts impulsively ( 1)  .  

 
Figure 11: Shear stress x  for the variation of Gr  when  

3Pr  , 0.5Tr   and 0.5   :   for the stationary 

wall ( 0)   and                  when one of the walls 

starts impulsively ( 1)  .  

 

 
Figure 12: Shear stress x  for the variation of Tr  when 

3Pr  , 5Gr   and 0.5   :   for the stationary 

wall ( 0)   and                     when one of the walls 

starts impulsively ( 1)  .  

  

Figure 13: Shear stress x  for the variation of   when 

3Pr  , 5Gr   and 0.5Tr   :   for the stationary 

wall ( 0)   and                  when one of the walls 

starts impulsively ( 1)  .  

 

4. CONCLUSION  
We have studied the transient MHD natural convection flow of a 

viscous incompressible electrically conducting fluid confined 

between two infinitely long vertical walls heated/cooled 

asymmetrically. It is observed that magnetic field has a retarding 

influence whereas buoyancy force has an accelerating influence 

on the fluid velocity 1u  for both stationary wall as well as for 

impulsive motion of one of the walls. It is seen that the effect of 

the Prandtl number Pr  is very important in the temperature 

field. An increase in fluid temperature   occurs due to an 

increase in time. Further, the shear stress x  at the wall 0   

increases for both the stationary wall as well as for impulsive 

motion of one of the walls with an increase in either Grashof 

number Gr  or temperature difference ratio Tr  or time  . 

Prandtl number Pr  tends to enhance the rate of heat transfer 

(0)'  while temperature difference ratio Tr  as well as time 

  tend to reduce the rate of heat transfer (0)'  at the wall 

( 0)  . 
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