
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.21, August 2012

44

Model Checking BRS based AADL Specification

Nadira Benlahrache
Department of Computer

Science, Mentouri University
Constantine, Algeria

Faiza Belala
Department of Computer

Science, Mentouri University
Constantine, Algeria

Taha A. Cherfia
Department of Computer

Science, Mentouri University
Constantine, Algeria

ABSTRACT

Although the architecture description language AADL differs

from other ADLs by its possibility to describe both hardware

and software aspects of a system, it does not provide a formal

notation for describing the deployment operation which is

crucial in systems where hardware and software components

are tightly coupled such as embedded systems. In this paper,

we show the relevance of bigraphical reactive systems (BRS)

to formalize the deployment operation of AADL architectures.

The proposed approach allows, firstly a formal description of

the two structures of AADL architectures, namely the

platform and the application scenario, and secondly a natural

modelization of the installation and the reconfiguration of

AADL specification thanks to composition and transformaton

operations of BRS. To validate the obtained model, we use a

model checker dedicated to BRS.

General Terms
Software architecture, deployment, formal specification,

ADL.

Keywords

Architecture language, bigraphs, BRS, installation,

reconfiguration.

1. INTRODUCTION

The architecture description languages (ADLs) [1] have been

defined to precisely specify a software architecture consisting

primarily of functional components described in terms of their

behaviour, interfaces and interconnections. The existing

ADLs often have a specific characteristics related to their

motivation, their use and possibly the associated formal

semantics [2]. Due to the increasing complexity of the

hardware/software components interactions, these languages

become difficult to use in some aspects of the development

cycle of software systems, especially the specification of

deployment mechanisms and reconfiguration. In fact, the

deployment specification of software architecture is usually

"mistreated" despite that the consistency of the operation of

installing software entities on those of hardware type [3], must

be ensured for designing applications.

AADL language is a standard promoted by the SAE [4] for

analysis and design of the software application. It is able to

convey within a single notation all information concerning the

organization of the application and its runtime platform.

Therefore, it combines the abstract and the concrete aspects of

a software specification. Several tools are proposed around

this language, such as Osate [5] and Ocarina [6], etc.

Moreover, bigraphical reactive systems (BRS) introduced in

[7] are a graphical model that can formally specify distributed

applications with mobile code. They unify in a single model

the two dimensions: interaction and spatial distribution [4].

In some previous works [8], authors show the relevance of

this formalism to specify architectural styles and some of their

relevant operations (reconfiguration, style conformance, etc).

In this work we extend the use of BRS to specify deployment

tasks declared in an AADL specification. Firstly, we give

bigraphical formalization of the two structures: software

application and runtime platform. Secondly, we define the

installation and the reconfiguration tasks by respectively, a

bigraphical composition and a transformation one. Finally, we

prove the correctness of the proposed models by using a

model checker for bigraphs [9].

This paper is organized as follows: we introduce in the next

section the AADL language via an illustrative example.

Section 3 is dedicated to the presentation of BRS. In Section

4, we give the formal description of the two AADL

architecture structures, namely the platform and the

application scenario. We exploit, in Section 5, our proposed

BRS based model to specify the installation and

reconfiguration operations thanks to the composition and

transformation operations on bigraphs. Section 6 is devoted to

present the validation of our model by using a model Checker

tool. Finally, a conclusion will summarize our contribution

and give some perspectives for a future work.

2. PRESENTATION OF AADL

LANGUAGE

AADL (Architecture Analysis & Design Language) [4] is a

language for describing software architecture with a rich

vocabulary and expressive capabilities. AADL description is a

set of component declarations that can be instantiated to form

the architectural description. This description can be enriched

through properties for functional and non-functional aspects

of a software system. Property declaration allows the

expression of user requirements, deployment settings and

system reconfiguration. Many tools have been developed

around AADL language, such as Osate [5], Topcased [10] and

Ocarina [6]. They can edit AADL architectures; build the

application software system from an AADL description

(Ocarina) or achieving various tests (Osate, Cheddar, etc.). To

present the basic architectural elements of this language, we

consider a simple example expressing a communication

between two threads (see tab.1).

The declaration of an AADL abstract component is divided

into type and implementation parts (see tab.1). The declaration

type of a component may contain clauses defining its

interfaces (features), flows (flows), etc. The interface of a

component defines its interaction with other components in

the form of a port, a group of ports, access to a bus (requires /

provider bus access). An implementation specifies the internal

structure of a component in terms of subcomponents,

connections between these subcomponents, or modes to

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.21, August 2012

45

represent its operational states. The implementation

The_system.impl (tab.1) is a possible implementation of the

component The_system. Table 2 shows the declaration of sub-

components involved in this example.

Table 1. Example of an AADL specification.

system The_system

end The_system ;

system implementation The_system.impl

subcomponents

 the_processor : processor Processor1.impl;

 the_process : process Process1.impl;

 the_memory : memory Memory1.impl;

 the_bus : bus Bus1.impl;

properties

 Actual_Memory_Binding => reference the_memory applies

to the_process;

 Actual_Processor_Binding => reference the_processor

applies to the_process.thr_S;

 Actual_Processor_Binding => reference the_processor

applies to the_process.thr_R;

 Actual_Connection_Binding => reference the_bus applies

to the_process.cnx;

end The_system.impl;

Table 2. AADL specification of “The_system”

subcomponents.

process Process1

end Process1 ;

process implementation
Process1.impl

subcomponents

thr_S : thread

ThreadSender.impl ;

 thr_R : thread

ThreadReceiver.impl ;

connections
cnx : event port thr_S.outPort

-> thr_R.inPort ;

end Process1.impl ;

Processor Processor1

features

busAcc : requires bus access

Bus1.impl ;

end Processor1 ;

Processor implementation
Processor1.impl

subcomponents
mem : memory Memory1.impl

;

properties

Scheduling_Protocol => (

RMS);

end Processor1.impl ;

memory Memory1

end Memory1;

memory implementation
Memory1.impl

end Memory1.impl;

bus Bus1

end Bus1;

bus implementation Bus1.impl

properties

Propagation_Delay => 5ms..

7ms;

end Bus1.impl ;

AADL configuration represents a graph of components and

connections. Moreover, AADL specifications (see tab.2)

define implementation details of the hardware components

(the_processor, the_memory and the_bus). The properties

bring more details on the operational aspects of these

components. In the AADL declaration of tab.2, software

component the_process consists of two subcomponents of

thread type, thr_S (Sender) and thr_R (receiver). These

threads interact through a connection cnx, defined between the

event ports: Inport and Outport (tab. 2). Other implementation

details of threads, contained in the process, are given by

properties such as Period and Execution time (see tab. 3).

Table 3. A thread Description.

Thread ThreadSender

features
 outPort : out event port;

end ThreadSender ;

thread implementation ThreadSender.impl

properties
Period => 120ms;

Compute_Execution_Time => 30ms .. 40ms;

Dispatch_Protocol => (Periodic);

end ThreadSender.impl;

Tools developed around AADL [6, 8] give the possibility to

specify AADL architecture from components involved in an

AADL model. But, they do not offer a complete graphical

view of an operational system instance (hierarchy of

components). Also, connections and relationships between

software components and hardware ones are not considered in

these tools notations.

3. INTRODUCTION TO BRS

The bigraphical theory of reactive systems (BRS) defined in

[7] is based on a graphical model for the specification of

distributed applications with mobile code. This model

supports the two dimensions: interaction and spatial

distribution of the application. It merges two types of graphs:

places graph and links graph (where the name of Bigraph).

Some works in literature have shown that bigraphs form a

unifying framework for concurrency and mobile models, such

as CCS, the π-calculus, the ubiquitous systems or Petri nets

[7, 11].

3.1. Basic Concepts
On the basis of a common set of nodes representing the

physical or virtual entities of a distributed application, a

bigraph is formed of two independent structures: the places

graph, having the structure of a forest that shows the spatial

distribution of the application, the links graph is an

hypergraph establishing the model of connectivity between

various nodes [11]. While an arc in the places graph shows the

relationship of spaces between the nested elements of the

application, an arc in the graph links establishes a connection

between the ports of these elements. The two structures are

orthogonal, so links between nodes can cross locality

boundaries. Each tree in the places graph represents a region

of space that can contain sites, corresponding to the leaves of

the tree, and where other bigraphs can be hosted.

A bigraph can interact with its environment through his

interfaces designed by 𝐼=𝑚, X  and 𝐽=𝑛, 𝑌 , where m is

the number of sites in the bigraph and X the set of its inner

names. Its outer interfaces are defined by n and Y which are

respectively the number of regions and the set of outer-names.

Example 2: The bigraph G =(V, E, Ctrl, GP, GL) I J in Fig.

1 inspired from [12], specifies a set of users and PCs who are

divided between two rooms R1 and R2. All nodes of this

bigraph are defined by  1, 2, 3, 1, 2, 3, 1, 2V U U U Pc Pc Pc R R

and the set of hyper-edges or links  0, 1, 2, 3, 4E L L L L L

is the network interconnection that exists between either PCs

or between users and Pcs. The transformation Ctrl assigns to

each node its arity (number of ports) and its dynamic behavior

(active or passive). Ctrl of this example is given by:

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.21, August 2012

46

                12 2 2 32 1 2 2 3 1 2 2 4Ctrl U : , U : , U : , Pc :2 , Pc : , Pc :2 , R : , R :

The number of sites is m = 0, i.e. no free holes in the bigraph.

The bigraph contains two regions (n=2) numbered from 0 to 1

and represented by dashed rectangles, it exposes an outer

name x. So its inner and outer interfaces are respectively I =

<0, > and J= <2, x>.

Bigraph G = <0, >  <2 ,x>

Places Graph GP = 02

 Links Graph GL = x

 Fig 1: An Example of bigraph.

3.2. Bigraph Operations
Bigraphs may undergo many operations that make them more

dynamics. Here we present, via examples, the most important

ones: composition and transformation.

Composition: As in any graph type, the composition of

bigraphs creates a new bigraph by combining two or more

bigraphs. The composition G H F o of two bigraphs F

and H is a hosting operation of bigraph F (fig.2) in the

bigraph H. Thus, it is necessary that each region of F has a

free site in H, i.e., there are enough free sites in H to contain

all the regions of F (one site per region). The connection of

the two bigraphs is achieved via a matching between outer

interfaces of F with inner interfaces of H.

Fig. 2 shows how a region (bigraph F) can be hosted in a site

of a contextual bigraph H.

Transformation: Two types of transformations are possible

on bigraphs. The transformation of the places represents the

arrival or departure of an entity. The transformation of the

links, expresses the connecting or disconnecting of a node

through one of its inner or outer interfaces. This dynamic is

defined by a bigraph transformation rules, called Reaction

Rules [11]. A reaction rule is a couple of bigraphs: Redex and

Reactum (before and after transformation).

Fig 2: A Composition of two bigraphs.

A reaction rule is defined by a couple of bigraphs (R, R’) =

(R: m  J; R’: m’ J; µ). R is called the Redex bigraph and

R' is the Reactum bigraph. µ: m’m is a correspondence

between the number of sites of Redex and Reactum bigraphs.

Fig 3: Transformation of a bigraph.

The application of a rule allows identifying in the contextual

bigraph, an image of the Redex bigraph, and replacing it with

the Reactum one. Fig. 3 shows the effect of the application of

the reaction rule (fig.3.a) on the bigraph F (fig.3.b). The result

is the new bigraph F (fig.3.c).

3.3. A Model Checker for BRS
BigMC (Bigraphical Model Checker) is a model-checker

designed to operate on BRS based models [9]. The model

checking in this case is achieved through an exhaustive search

of all the possible states of the system specified by a BRS.

The main objective of a model checking is the ability to

provide a counter-example in the event that the specification

is shown not to hold. This means giving the system

configuration that violates the specification, and the path

through the transition system by which this configuration was

reached. The full grammar for BigMC bigraph terms is given

as [9]:

Table 4. BigMc terms language

M ::= E; M | E;

E ::= % passive k : arity

E ::= % active k : arity

E ::= % rule n T  T

E ::= % property n P

E ::= T  T | T

T ::= K:T | T | T || T | $n | K | nil

K ::= k [names] | k

names ::= n; names | n

n ::= [a - zA - Z][a - zA - Z0 - 9]* |

-

P ::= matches(T) | terminal ()| !P

By this grammar (tab.4), we can specify all bigraph elements.

M designs a BigMc model, which may be composed from

other models or/and expressions (E). An expression E can be

a node declaration (dynamic and arity of a given control), a

reaction rule, a term (T), or a property (P). A term T can

represent a single node, site or region. But also, it can be a

combination of all these elements. The property P is a state

definition to check with this tool. This state is achieved by

applying reaction rules defined in the model according to the

algorithm cited in [9]. We will use this grammar to specify

our model and the BigMc to verify the specification of the

installation and the reconfiguration tasks.

4. MODELING AN AADL

ARCHITECTURE WITH BIGRAPHS

Several approaches in the literature adopt the concept of

graphs and their transformations to model the architectural

styles and their instances [8, 13], but they have not been

concerned by the modelling of runtime platforms which

supports the deployment of these applications. Inspired by the

idea of [8], modelling software architectures by bigraphs, we

have proposed in an earlier work [14] a generic formalization

.

Pc2

U

1

x

U2

Bigraph F c.

Pc1 Pc2

U1

x

U2

b. Bigraph F

Reaction Rule a R

Pc

U

Pc

U

R’

Redex Reactum

Pc1

R

Pc1 Pc2
U1

U2

x

0

x

y

y

H
F

R

Pc1
Pc2

U1 U2

G = H o F

R1

Pc2

U2

R2

Pc1

x

U3

L0

L2

L4

L1
Pc3

U1
L3

0

R1

Pc1 Pc3

R2

1

R2

Pc1

0 1

Pc3

U3

L0

L1

L4

L2 L3

R1

Pc2

U2 U1

U3 U2 Pc2 U1

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.21, August 2012

47

of a software architecture deployment by exploiting the

operation of bigraphs composition. Our purpose here, is to

continue this work and to adapt it to the description of an

AADL architectural instance, which is quite rich in terms of

expressiveness, but has no formal semantic definition for the

deployment operation. In this section, we proceed to define a

formal framework based on bigraphs, allowing firstly,

modelling an AADL software application and secondly the

formalization of a target environment for deployment process.

Table 5. Formalizing AADL Architectural Elements

AADL Architectural
elements

Semantic in Bigraphs terms

Configuration
(component system)

Bigraph / Region

Component (Software,
Hardware, Connector)

Node

Port /Role Port / Inner-name or outer-name
Interaction Port /Role Hyper-edge
Hierarchy Imbrications of Nodes / Sites
Binding Properties Deployment dependencies
Mode Redex/Reactum Bigraph
Mode Transition Reaction Rule

The main elements of an AADL architectural instance,

summarized in Table 5 are defined in terms of some

bigraphical concepts. Each AADL component or connector of

a given configuration can be formally represented by a node

in a bigraph. The tree structure of the places graph maintains

the hierarchy of composite components or connectors in a

given AADL configuration. Moreover, the notion of control

associated to a node (component or connector) is used to

define interfaces of a component (ports) or those of a

connector (roles) and the associated behaviors. Defined

connections between ports and roles of the components (and /

or connectors) are formalized by the bigraph hyper-edges.

The application of these correspondence rules between AADL

configuration and bigraphs concepts (Table 5) can further

refine the formalization of an AADL specification which may

be rather complex. So, we consider the two aspects of an

AADL specification separately and attribute a couple of

bigraphs for modelling the both aspects: GS and GH (s for

software, H for hardware). In AADL, all software entities that

constitute the software part of the system need to be deployed

on hardware components. Thus, we rely on values of the

property Actual Binding to determine which software

component is attached to which hardware one. The syntax of

this property is as follows:

Actual_XXXX_Binding => reference to <software-

component> applies to <hardware-component>.

Information analysis of this property may provide two types

of information. Firstly, it helps to build separately the two

bigraphs (GS and GH) corresponding to an AADL

configuration declaration and secondly to establish their

relationship in terms of sites, regions and inner/outer names.

The number of occurrences of this property in the AADL

specification indicates the overall number of sites and regions

in both bigraphs. This number can be reduced if the same

hardware component name is referenced by several

components of the same category. In addition, this property

determines the inner-names and outer-names of bigraph.

Thus, the sites represent the hardware components and

regions are the software components. In our notation, a

<hardware-component> denotes a numbered site having an

inner-name. Similarly, <software-component> denotes a

numbered region having an outer-name. In particular, we

indicate the previous two items, if they are involved by the

same property, by the same label and the same number.

Obviously, if two or more elements in the same category refer

to the same hardware component, they will be contained in

the same region, and emit through the same hyper-edge.

In our formalization approach, two AADL sub-specifications

will be considered; one for the software application and the

other for hardware specification supposed supporting this

application. We define hence a pair of bigraphs G = (GS, GH).

The relationship between these two types of statements,

expressed through properties of kind Actual…Binding is used

to complete the definition of the structure of bigraph G.

Example 3: Using the example of the AADL system reported

in tables 1, 2 and 3, the first bigraph GS (Fig. 4) representing

the software part of the system is deduced by applying our

approach as (

) 𝐼 𝐽 , where

VS={the_process, thr_S, thr_R, cnx } and ES = {e0, e1}.

For example: vi = thr_S, ctrls(vi)= 1, prnt (thr_S)=

the_process. In this scenario mS = 0, i.e. GS does not have

sites, so it emits no inner-name, for this XS = . So that GS

inner interfaces are: 𝐼 〈 〉. GS outer interfaces are

defined by nS = 1 and YS = {m, c, x}. Therefore 𝐽
 〈 {𝑚 }〉.

Fig 4: Example of Bigraph GS.

Fig 5: Example of Bigraph GH.

Similarly, we attribute a bigraph GH to the AADL system

description of hardware components.

The bigraph defining the target runtime platform given by an

AADL declaration is (

) 𝐼 𝐽 ,

such as: VH is a finite set of hardware components that can be

nested inside each other. EH is a finite set of hyper-edges. In

particularly, we focus on the parameter mH which is the

number of sites, i.e. locations in the bigraph representing the

availability of hardware components for the success of the

software components installation. XH is the set of inner-

names, which represent the interfaces of the sites.

Example 4: The bigraph in figure 5 shows the various

elements of the runtime platform. The component

the_memory is supposed to contain the code for a running

process. A processor (the-processor) is essential to execute

threads and a bus (the_bus) for the various connections. The

bigraph GH in this example is given by:

- VH = {the-processor, the_memory, the_bus}.

- EH = {e2, e3}.

2

1

0

x c m

the_processor

the_bus

the_memory

e2 e3

thr_S cnx
e0

e1

x m

-

c

the_process

thr_R

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.21, August 2012

48

We can identify the faces of communication ports such as:

face (ctrlH (the_processeur)) = {BusAcc}, mH = 3 sites, 3

inner-names only, for this {𝑚 }. So, 𝐼
〈 {𝑚 }〉. nH =1, YH = Ф (GH contains no outer names).

Therefore, 𝐽 〈 〉 and 〈 {𝑚 }〉 〈 〉.

5. FORMALIZATION OF

INSTALLATION AND

RECONFIGURATION TASKS

Starting from the model presented above, associated to an

AADL specification, we establish a formal description of

software application installation on runtime platform.

Besides, we associate also to the reconfiguration task a BRS-

based model.

5.1. Installation Operation
The installation task is often described as a set of specific

steps dictated by the software producer to install a given

application on a particular platform, regarding a specific

technology. This task will be defined by a composition

operation of two or more bigraphs. It will be guided by the

regions and sites number/labels and also by the

correspondence between inner and outer names.

In order to formalize the process of installing software

components on hardware ones in an AADL specification

instance, we need first, to flatten the bigraph structures (both

Gs and GH). This can be justified by the fact that the

installation of subcomponents is done independently of the

parent component (container).

So, for example, a decomposition of the bigraph Gs (Example

3) gives two bigraphs, one is dedicated to represent

subcomponents and the other to define the context. Gs = C o

Sc, where Sc is the subcomponents bigraph and C the

contextual one.

Thus, according to the AADL specification, nodes and arcs of

bigraph Sc can be deduced from Subcomponent and

connections clauses of the container component. The added

outer-name (p) (fig 6.a) indicates the new regions that can be

embedded in sites having the same label. We may keep the

relationship between the subcomponents and the container

component.

Threads thr_S and thr_R are grouped in one region because

they belong to the same sub-component category and implied

by the same property (Actual binding) and also they refer to

the same hardware component; the processor the_processor in

our case.

Having both bigraphs Gs and Sc (fig.6.a), it is then possible to

deduce the bigraph C (fig.6.b) based on the composition

principle.

Fig 6: Representation of subcomponents and

contextual bigraphs.

The composition of bigraphs GH and GS will be done in two

steps: G = GH o GS = GH o (C o Sc) = (GH o C) o Sc.

Thus, the inner/outer names disappear if they are satisfied (i.e.

an outer-name of a region corresponds to an inner-name of a

site, both having the same label). Fig 7 illustrates how the

software components will be installed on relevant hardware

components. The obtained bigraph offers a mathematical

model which allows the reasoning on installation task and

gives the possibility to check its correctness in terms of

dependencies satisfaction.

Fig 7: Bigraphs composition Result.

Fig 8: Places and links graphs of G.

Places graph (fig.8.a) shows the relationship between

components after installation operation. Later and after

installation task, information contained in this graph leads the

reconfiguration choices.

5.2. Reconfiguration Operation
Software reconfiguration constitutes an important activity of

the deployment process. At architectural level, reconfiguration

of component-based system provides a set of transformations

preserving some properties despite system runtime changes.

Adding, removing and refining components or interaction

links may be some of reconfiguration examples [15]. AADL

language offers the concept of modes to represent operational,

alternative and predefined states of a component or a

complete system. Thus, in AADL architectural systems may

be reconfigured by switching from one mode to another.

In the following, we will show how BRS based models

formalize architectural reconfiguration of AADL specification

thanks to modes handling.

the_process

thr_R

thr_S

cnx

P

 b. Links graph of G

the_process

0

thr_R

the_memory the_bus

a. Places graph of G

the_processor

thr_S cnx
the_processor

the_bus
the_memory 2 1

the_processor

the_bus

the_memory

p

e2

e3 thr_S

e0
e1 cnx

thr_R
the_process

c x
p

cnx

Thr_R

0 1

a. Bigraph Sc

Thr_S

e0

e1

p

m

1 0
the_process

b. Bigraph C

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.21, August 2012

49

Table 6. AADL Reconfiguration of “the_process”.

process Process1

features

P_ev : in event port ;

end Process1 ;

process implementation Process1.impl

subcomponents
thr_S : thread ThreadSender.impl ;

thr_R1 : thread ThreadReceiver.impl1 in modes (mode1) ;

thr_R2 : thread ThreadReceiver.impl2 in modes (mode2) ;

connections
cnx1 : event port thr_S.outport -> thr_R1.inport in modes

(mode1) ;

cnx2 : event port thr_S.outport -> thr_R2.inport in modes

(mode2) ;

modes

mode1 : initial mode ;

mode2 : mode ;

mode1 -[P_ev]-> mode2 ;

mode2 -[P_ev]-> mode1 ;

end Process1.impl ;

thread implementation ThreadReceiver.impl1

properties

Compute_Execution_Time => 5 Ms .. 5 Ms ;

Period => 10 Ms ;

end ThreadReceiver.impl1 ;

thread implementation ThreadReceiver.impl2

properties

Compute_Execution_Time => 8 Ms .. 8 Ms ;

Period => 20 Ms ;

end ThreadReceiver.impl2;

We denote any system configuration by a pair (S, M)

expressing the dynamic of a system S in a mode M.

Reconfiguration is specified by transitions between

configurations thanks to mode changes. To achieve its

formalization, we exploit dynamic behavior of bigraphs.

Reaction rules expressing various changes between bigraphs

may be used in this context.

Definition: Given a mode transition [(C, M)

→ (C,

M’)] associated to an AADL component specification C, its

formal semantic is defined by a reaction rule composed of two

bigraphs (Redex, Reactum), noted r: (R, R') where:

 R: is a bigraphical model of C in mode M;

 R': is a bigraphical model of C in a new mode M'.

Fig 9: Bigraphical Reconfiguration of “the_process”.

Figure 9 represents a bigraphical transformation defining the

AADL reconfiguration of the_process component. The

purpose of this rule is to allow the toggling of the component

the_process between two different modes associated to the

threads Thr_R1 and Thr_R2.

We show in the following example (table 7, Fig. 10), how our

approach is applied to manage the substitution of a processor

component by a faster one, thanks to the arrival of a trigger

event from “S_ev” port.
Table 7. AADL reconfiguration of runtime platform.

System the_system

features
 S_ev : in event port;

end the_system;

System implementation the_system.impl

Subcomponents

 the_processor1 : processor Processor1.impl1 in modes

(normal);

 the_processor2 : processor Processor1.impl2 in modes

(fast);

 the_process : process Process1.impl;

 the_memory : memory Memory1.impl;

 the_bus : bus Bus1.impl ;

Properties
 Actual_Memory_Binding => reference the_memory

applies to the_process;

 Actual_Processor_Binding => reference the_processor1

applies to the_process in modes (normal);

 Actual_Processor_Binding => reference the_processor2

applies to the_process in modes (fast);

 Actual_Connection_Binding => reference the_bus applies

to the_process ;

Modes

 normal : initial mode;

 fast : mode;

 normal - [S_ev] -> fast;

 fast- [S_ev]-> normal;

End the_system.impl ;

6. VALIDATION WITH BIGMC

To validate our model, we use the BigMc tool [9]. It is a

model checker dedicated to BRS. Checking process is based

on applying reaction rules defined in the bigraphical model.

In the first step, we want be sure if our model, obtained by

composition and which may represent the application

deployed on its runtime platform, is correct. In the second

step, we will check the consistency of the reconfiguration

task, expressed by reaction rules.

6.1. Installation Checking
Table 8 summarizes our bigraphical model expressed in the

appropriate grammar (of the BigMc tool). We specify some

reaction rules to simulate the operation of bigraphical

composition. These rules are specified exploiting disjoint

bigraphs of figures 4 and 5, we obtain a new bigraph

modelling the installation task.

 Redex Reactum

Fig 10: Bigraphical Reconfiguration of “the_system”.

x C
 m

0
1

2

the_processor1

the_bus
the_memory

e2 e3

x c m

0
1

2

the_processor2

the_bus
the_memory

e2 e3

S_ev

m c

thr_S cnx1

e0
e1

x
m c

the_process

thr_R1
thr_S cnx2

e0
e1

x

the_process

thr_R2

S_ev S_ev

S_ev

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.21, August 2012

50

Table 8. The model of Sender/Receiver system in BigMc

#Nodes

%active the_processor : 2;

%passive thr_S : 3;

%passive thr_R : 3;

%active the_bus : 3;

%passive cnx : 4;

%active the_memory : 2;

%active the_process : 2;

#Links

%name x;

%name m;

%name p;

%name c;

%name e0;

%name e1;

%name e2;

%name e3;

#Sender/Receiver model

the_processor[x,e3] | the_bus[c,e2,e3] | the_memory[m,e2] |

the_process[m,-].(thr_R[x,e1,-] | thr_S[x,e0,-] | cnx[c,e0,e1,-];

#Reaction rules

the_process[m,-].(thr_R[x,e1,-] | thr_S[x,e0,-] | cnx[c,e0,e1,-

])-> the_process[m,p] || (thr_R[x,e1,p] | thr_S[x,e0,p]) ||

cnx[c,e0,e1,p]

the_memory[m,e2].$0 || the_process[m,p] -> the_memory[-

,e2].the_process[-,p].($1 | $2) || nil;

the_processor[x,e3].$2 || (thr_R[x,e1,p] | thr_S[x,e0,p]) ->

the_processor[-,e3].(thr_R[-,e1,p] | thr_S[-,e0,p]) || nil;

the_bus[c,e2,e3].$1 || cnx[c,e0,e1,p] -> the_bus[-,e2,e3].cnx[-

,e0,e1,p] || nil;

%property consistency (the_processor[-,e3].(thr_R[-

,e0,p]|thr_S[-,e1,p]) | the_bus[-,e2,e3].cnx[-,e1,e0,p]|

the_memory[-,e2].the_process[-,p].($1 | $2));

%check

We choose to check the consistency and the correctness of the

installation task. This must be verified by the satisfaction of

all software-hardware components dependencies. In respect to

our model, this may be ensured when bigraphs names

disappear as x, m and c and software components are well

deployed on hardware one. The property of consistency

expressed in table 8 must be analyzed by the application of

rules, expressed above in the same table. Table 9 shows the

checking process steps. We can note that the successful state

is achieved after 9 steps. This means that the consistency of

installation task is valid.

Table 9. The checking results of the installation task.

Welcome to BigMC!

> C:\Progra~1\BigMC/bin/bigmc -m 1000 -r 50 -p C:\...\

\bigmc_AADLmodel.bgm

1: (the_processor[x,e3].nil | the_bus[c,e2,e3].nil |

the_memory[m,e2].nil | the_process[m,-].(thr_R[x,e1,-].nil |

thr_S[x,e0,-].nil | cnx[c,e0,e1,-].nil))

2: (the_processor[x,e3].nil | the_bus[c,e2,e3].nil |

the_memory[m,e2].nil | the_process[m,p].nil ||

(thr_R[x,e1,p].nil | thr_S[x,e0,p].nil) || cnx[c,e0,e1,p].nil)

3: (nil || (thr_R[x,e1,p].nil | thr_S[x,e0,p].nil) ||

cnx[c,e0,e1,p].nil | the_processor[x,e3].nil |

the_bus[c,e2,e3].nil | the_memory[-,e2].the_process[-,p])

4: (the_processor[-,e3].(thr_R[-,e1,p].nil | thr_S[-,e0,p].nil) |

the_bus[c,e2,e3].nil | the_memory[m,e2].nil |

the_process[m,p].nil || nil || cnx[c,e0,e1,p].nil)

5: (the_processor[x,e3].nil | the_bus[-,e2,e3].cnx[-

,e0,e1,p].nil | the_memory[m,e2].nil | the_process[m,p].nil ||

(thr_R[x,e1,p].nil | thr_S[x,e0,p].nil) || nil)

6: (nil || nil || cnx[c,e0,e1,p].nil | the_processor[-,e3].(thr_R[-

,e1,p].nil | thr_S[-,e0,p].nil) | the_bus[c,e2,e3].nil |

the_memory[-,e2].the_process[-,p])

7: (nil || (thr_R[x,e1,p].nil | thr_S[x,e0,p].nil) || nil |

the_processor[x,e3].nil | the_bus[-,e2,e3].cnx[-,e0,e1,p].nil |

the_memory[-,e2].the_process[-,p])

8: (the_processor[-,e3].(thr_S[-,e0,p].nil | thr_R[-,e1,p].nil) |

the_bus[-,e2,e3].cnx[-,e0,e1,p].nil | the_process[m,p].nil || nil

|| nil | the_memory[m,e2].nil)

9: (the_memory[-,e2].the_process[-,p].() | the_bus[-

,e2,e3].cnx[-,e0,e1,p].nil | the_processor[-,e3].(thr_S[-

,e0,p].nil | thr_R[-,e1,p].nil) | nil || nil || nil)
[mc::step] Complete!

[mc::report] [q: 0 / g: 9] @ 10

6.2. Reconfiguration Checking
In the following table (Table 10), we present a bigraphical

specification of the_process reconfiguration (having two

threads thr_R1 and thr_R2). The rule expressed in the table

10, may permit to the_process component switching from

thr_R1 to thr_R2. The purpose of the new added reaction rule

(last one in table 10) is to allow the reconfiguration of the

software component the_process as it is defined in AADL

specification (table 6).

The BigMc tool tries to apply these reaction rules and reaches

the state specified in the property clause. In our case, the

reconfiguration property (reconf) is analyzed after 13 steps

(see table 11).

Table 10. The BigMc reconfiguration property

#Nodes

%active the_processor : 2;

%passive thr_S : 3;

%passive thr_R1 : 3;

%passive thr_R2 : 3;

%...................

#Links

%name x;

%name m;

%name p;

%name c;

%.............

#Sender/Receiver model

the_processor[x,e3] | the_bus[c,e2,e3] | the_memory[m,e2] |

the_process[m,-].(thr_R1[x,e1,-] | thr_S[x,e0,-] | cnx[c,e0,e1,-];

#Reaction rules

the_process[m,-].(thr_R[x,e1,-] | thr_S[x,e0,-] | cnx[c,e0,e1,-])-

> the_process[m,p] || (thr_R[x,e1,p] | thr_S[x,e0,p]) ||

cnx[c,e0,e1,p;]

the_memory[m,e2].$0 || the_process[m,p] -> the_memory[-

,e2].the_process[-,p].($1 | $2) || nil;

the_processor[x,e3].$2 || (thr_R[x,e1,p] | thr_S[x,e0,p]) ->

the_processor[-,e3].(thr_R[-,e1,p] | thr_S[-,e0,p]) || nil;

the_bus[c,e2,e3].$1 || cnx[c,e0,e1,p] -> the_bus[-,e2,e3].cnx[-

,e0,e1,p] || nil;

the_processor[-,e3].(thr_R[-,e1,p].nil | thr_S[-,e0,p].nil) ->

the_processor[-,e3].(thr_R2[-,e1,p].nil | thr_S[-,e0,p].nil);

%property reconf (the_processor[-,e3].(thr_R2[-,e1,p].nil |

thr_S[-,e0,p].nil) | the_bus[-,e2,e3].cnx[-,e0,e1,p].nil |

the_memory[-,e2].the_process[-,p];

%check

 The bigraphical model proposed in this work is generic

enough and can be applied to architectural specifications

independently of a particular technology. Its graphical aspect

makes the description of the deployment process very

expressive. In addition, the BigMc model checker developed

recently for bigraphs, is used to formally verify some possible

constraints of deployment tasks. Compared to other existing

works [16, 17, 18] for describing formally the process of

deploying a component-based application on an execution

platform, these remain specific to a particular technology and

in more they often use several formalisms (at least two) to

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.21, August 2012

51

specify and analyze deployment activities. Redundancies and

inconsistencies caused by this diversity of formalisms may

lead with difficulties in software application analysis and

installation.

Table 11. The checking result of the reconfiguration task

Welcome to BigMC!

> C:\Progra~1 \bigmc_model.bgm

1: (the_processor[x,e3].nil | the_bus[c,e2,e3].nil |

the_memory[m,e2].nil | the_process[m,-].(thr_R1[x,e1,-].nil |

thr_S[x,e0,-].nil | cnx[c,e0,e1,-].nil))

2: (the_processor[x,e3].nil | the_bus[c,e2,e3].nil |

the_memory[m,e2].nil | the_process[m,p].nil || (thr_R1[x,e1,p].nil

| thr_S[x,e0,p].nil) || cnx[c,e0,e1,p].nil)

3: (nil || (thr_R1[x,e1,p].nil | thr_S[x,e0,p].nil) || cnx[c,e0,e1,p].nil

| the_processor[x,e3].nil | the_bus[c,e2,e3].nil | the_memory[-

,e2].the_process[-,p].())

4: (the_processor[x,e3].nil | the_bus[-,e2,e3].cnx[-,e0,e1,p].nil |

the_memory[m,e2].nil | the_process[m,p].nil || (thr_R1[x,e1,p].nil

| thr_S[x,e0,p].nil) || nil)

5: (the_processor[-,e3].(thr_R1[-,e1,p].nil | thr_S[-,e0,p].nil) |

the_bus[c,e2,e3].nil | the_memory[m,e2].nil | the_process[m,p].nil

|| nil || cnx[c,e0,e1,p].nil)

6: (nil || (thr_R1[x,e1,p].nil | thr_S[x,e0,p].nil) || nil |

the_processor[x,e3].nil | the_bus[-,e2,e3].cnx[-,e0,e1,p].nil |

the_memory[-,e2].the_process[-,p].())

7: (nil || nil || cnx[c,e0,e1,p].nil | the_processor[-,e3].(thr_R1[-

,e1,p].nil | thr_S[-,e0,p].nil) | the_bus[c,e2,e3].nil | the_memory[-

,e2].the_process[-,p].())

8: (the_processor[-,e3].(thr_S[-,e0,p].nil | thr_R1[-,e1,p].nil) |

the_process[m,p].nil || nil || nil | the_memory[m,e2].nil | the_bus[-

,e2,e3].cnx[-,e0,e1,p].nil)

9: (the_bus[c,e2,e3].nil | the_processor[-,e3].(thr_S[-,e0,p].nil |

thr_R2[-,e1,p].nil) | the_process[m,p].nil || nil || cnx[c,e0,e1,p].nil

| the_memory[m,e2].nil)

10: (the_processor[-,e3].(thr_S[-,e0,p].nil | thr_R2[-,e1,p].nil) |

the_memory[-,e2].the_process[-,p].() | the_bus[-,e2,e3].cnx[-

,e0,e1,p].nil | nil || nil || nil)

11: (the_processor[-,e3].(thr_S[-,e0,p].nil | thr_R2[-,e1,p].nil) | nil

|| nil || cnx[c,e0,e1,p].nil | the_memory[-,e2].the_process[-,p].() |

the_bus[c,e2,e3].nil)

12: (the_processor[-,e3].(thr_S[-,e0,p].nil | thr_R2[-,e1,p].nil) |

the_process[m,p].nil || nil || nil | the_memory[m,e2].nil | the_bus[-

,e2,e3].cnx[-,e0,e1,p].nil)

13: (the_memory[-,e2].the_process[-,p].() | the_bus[-,e2,e3].cnx[-

,e0,e1,p].nil | the_processor[-,e3].(thr_S[-,e0,p].nil | thr_R2[-

,e1,p].nil) | nil || nil || nil)

[mc::step] Complete!

[mc::report] [q: 0 / g: 13] @ 14

7. CONCLUSION
The deployment of a software application on a specific

execution environment is crucial and delicate stage that can

guarantee its efficiency. In this paper, we proposed a

mathematical model, based on BRS, allowing the modelling

of the two deployment tasks, installation and reconfiguration

of an AADL architectural application.

We have first defined a mapping between the architectural

elements of AADL and those of bigraphs, offering generic

transformation rules (meta-rules). Then, we have formalized

the two AADL structures, application and runtime platform,

contained in an AADL configuration declaration, by two

distinct bigraphs GS and GH. These are composed to produce

a new bigraph showing the installation of the application on

the runtime platform. AADL system reconfiguration was also

formalized thanks to our BRS-based model, exploiting

bigraphical reaction rules. Various and promising results were

obtained while validating our developed BRS-based model by

the BigMc model checker.

In a subsequent work, we intend to automate the checking

process of the installation and the reconfiguration of any

AADL software application. We project also to enrich the

properties set to check dynamically.

8. REFERENCES
[1] Medvidovic, N. and Taylor, R. N. 2000. A Classification

and Comparison Framework for Software Architecture

Description Languages. IEEE Tran. on Soft. Eng.

26(1):70-93.

[2] Zhang, P. Muccini, H. and Li, B. 2010. A classification

and comparison of model checking software architecture

techniques. Journal of Syst. Software. doi:10.1016/j.jss.

[3] Parrish, A. Dixon, B. and Cordes, D. 2001. A Conceptual

Foundation for Component-Based Software Deployment.

Journal of Systems and Software. 57(3): 193-200.

[4] SAE. International Avionics Systems Division (ASD).

2004. Avionics Architecture Description Language

Standard. Available: http://www.sae.org.

[5] SEI. 2004. OSATE: An extensible Source AADL Tool

Environment. SEI AADL Team technical Report.

[6] Lasnier, G. Zalila, B. Pautet, L. and Hugues, J. 2009.

OCARINA: An Environment for AADL Models

Analysis and Automatic Code Generation for High

Integrity Applications. In Reliable Soft. Tech.’09 LNCS

- Ada Europe, France. 237–250.

[7] Jensen, O.H. and Milner, R. 2004. Bigraphs and mobiles

processes (revised). Technical Report 580, University of

Cambridge, ISSN: 1476-2986.

[8] Chang, Z. X. M. and Qi, Z. 2007. An Approach based on

Bigraphical Reactive Systems to Check Architectural

Instance Conforming to its Style. First Joint IEEE/IFIP

Symposium on Theoretical Aspects of Software

Engineering (TASE'07). 57-66.

[9] Perrone, G. and Hildebrandt, T. 2012. A Model Checker

for Bigraphs. In proceedings of the 27th ACM Sym. in

Applied Computing ACM-SAC'12.

[10] Farail, P. Gaufillet, P. Canals, A. Camus, C. L.

Sciamma, D. Michel, P. Crégut, X. and Pantel, M. 2006.

TOPCASED: An Open Source Development

Environment for Embedded Systems. MDD Concepts to

Experiments and Illustrations, ISTE Editor.

[11] Milner, R. 2008. Bigraphs: a space for interaction.

Available on web site: http://www.cl.cam.ac.uk.

[12] Conforti, G. Macedonio, D. and Sassone, V. 2005,

BiLog: Spatial Logics for Bigraphs. In Proc. of the 32th

ICALP’05, LNCS, Springer Verlag editor. 3580. 766-

778.

[13] Bruni, R. Lafuente, A. L. Montanari,U. and Tuosto, E.

2007. Style-Based Architectural Reconfigurations.

Bulletin of the European Association for Theoretical

Computer Science, EATCS. 94:161-180.

[14] Benlahrache, N. Belala, F. Barkaoui, K. 2011.

Description formelle du déploiement d’architectures

AADL basée sur les systèmes réactifs bigraphiques

(BRS). CAL’2011, 5ème Conférence Francophone sur

les Architectures Logicielles, Lille, France. 65-75.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.21, August 2012

52

[15] Allen, R. Douence R., and Garlan, D. 1998. Specifying

and Analyzing Dynamic Software Architectures. In

Proceedings of the 1998 Conf. on Fundamental

Approaches to Soft. Eng. Lisbon, Portugal. 21-37. 11-79.

[16] Bures, T., Hnetynka, P. and Plasil, F. 2006. SOFA 2.0:

Balancing Advanced Features in a Hierarchical

Component Model. SERA, pp. 40-48.

[17] Belguidoum, M. and Dagnat, F. 2007. Dependency

Management in Software Component Deployment.

Electr. Notes Theor. Comput. Sci. (ENTCS) Vol. 182,

pp.17-32.

[18] Liu, Y. D. and Smith, S. F. 2006. A formal framework

for component deployment. OOPSLA, pp. 325-344.

