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ABSTRACT 

Although the architecture description language AADL differs 

from other ADLs by  its possibility to describe both hardware 

and software aspects of a system, it does not provide a formal 

notation for describing the deployment operation which is 

crucial in systems where hardware and software components 

are tightly coupled such as embedded systems. In this paper, 

we show the relevance of bigraphical reactive systems (BRS) 

to formalize the deployment operation of AADL architectures. 

The proposed approach allows, firstly  a formal  description of 

the two structures of AADL architectures, namely the 

platform and the application scenario, and secondly a natural 

modelization of the installation and the reconfiguration of 

AADL specification thanks to composition and transformaton  

operations of BRS. To validate the obtained model, we use a 

model checker dedicated to BRS. 

General Terms 
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ADL. 

Keywords 
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1. INTRODUCTION 

The architecture description languages (ADLs) [1] have been 

defined to precisely specify a software architecture consisting 

primarily of functional components described in terms of their 

behaviour, interfaces and interconnections. The existing 

ADLs often have a specific characteristics related to their 

motivation, their use and possibly the associated formal 

semantics [2].  Due to the increasing complexity of the 

hardware/software components interactions, these languages 

become difficult to use in some aspects of the development 

cycle of software systems, especially the specification of 

deployment mechanisms and reconfiguration. In fact, the 

deployment specification of software architecture is usually 

"mistreated" despite that the consistency of the operation of 

installing software entities on those of hardware type [3], must 

be ensured for designing applications. 

AADL language is a standard promoted by the SAE [4] for 

analysis and design of the software application. It is able to 

convey within a single notation all information concerning the 

organization of the application and its runtime platform. 

Therefore, it combines the abstract and the concrete aspects of 

a software specification. Several tools are proposed around 

this language, such as Osate [5] and Ocarina [6], etc. 

Moreover, bigraphical reactive systems (BRS) introduced in 

[7] are a graphical model that can formally specify distributed 

applications with mobile code. They unify in a single model 

the two dimensions: interaction and spatial distribution [4]. 

In some previous works [8], authors show the relevance of 

this formalism to specify architectural styles and some of their 

relevant operations (reconfiguration, style conformance, etc). 

In this work we extend the use of BRS to specify deployment 

tasks declared in an AADL specification. Firstly, we give 

bigraphical formalization of the two structures: software 

application and runtime platform. Secondly, we define the 

installation and the reconfiguration tasks by respectively, a 

bigraphical composition and a transformation one. Finally, we 

prove the correctness of the proposed models by using a 

model checker for bigraphs [9]. 

This paper is organized as follows: we introduce in the next 

section the AADL language via an illustrative example. 

Section 3 is dedicated to the presentation of BRS. In Section 

4, we give the formal description of the two AADL 

architecture structures, namely the platform and the 

application scenario. We exploit, in Section 5, our proposed 

BRS based model to specify the installation and 

reconfiguration operations thanks to the composition and 

transformation operations on bigraphs. Section 6 is devoted to 

present the validation of our model by using a model Checker 

tool. Finally, a conclusion will summarize our contribution 

and give some perspectives for a future work. 

2. PRESENTATION OF AADL 

LANGUAGE 

AADL (Architecture Analysis & Design Language) [4] is a 

language for describing software architecture with a rich 

vocabulary and expressive capabilities. AADL description is a 

set of component declarations that can be instantiated to form 

the architectural description. This description can be enriched 

through properties for functional and non-functional aspects 

of a software system. Property declaration allows the 

expression of user requirements, deployment settings and 

system reconfiguration. Many tools have been developed 

around AADL language, such as Osate [5], Topcased [10] and 

Ocarina [6]. They can edit AADL architectures; build the 

application software system from an AADL description 

(Ocarina) or achieving various tests (Osate, Cheddar, etc.). To 

present the basic architectural elements of this language, we 

consider a simple example expressing a communication 

between two threads (see tab.1). 

The declaration of an AADL abstract component is divided 

into type and implementation parts (see tab.1). The declaration 

type of a component may contain clauses defining its 

interfaces (features), flows (flows), etc. The interface of a 

component defines its interaction with other components in 

the form of a port, a group of ports, access to a bus (requires / 

provider bus access). An implementation specifies the internal 

structure of a component in terms of subcomponents, 

connections between these subcomponents, or modes to 
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represent its operational states. The implementation 

The_system.impl (tab.1) is a possible implementation of the 

component The_system. Table 2 shows the declaration of sub-

components involved in this example. 

Table 1. Example of an AADL specification. 

system The_system                                                          

end The_system ;  

system implementation The_system.impl  

subcomponents  

   the_processor : processor Processor1.impl;  

   the_process : process Process1.impl; 

   the_memory : memory Memory1.impl;  

   the_bus : bus Bus1.impl;  

properties  

    Actual_Memory_Binding => reference the_memory applies 

to the_process;  

    Actual_Processor_Binding => reference the_processor 

applies to the_process.thr_S;  

    Actual_Processor_Binding => reference the_processor 

applies to the_process.thr_R;  

    Actual_Connection_Binding => reference the_bus applies 

to the_process.cnx;  

end The_system.impl;  

Table 2. AADL specification of “The_system” 

subcomponents. 

process Process1  

end Process1 ;  

process implementation 
Process1.impl  

subcomponents 

thr_S : thread 

ThreadSender.impl ;   

 thr_R : thread 

ThreadReceiver.impl ;  

connections  
cnx : event port thr_S.outPort 

-> thr_R.inPort ;  

end Process1.impl ; 

Processor Processor1  

features  

busAcc : requires bus access 

Bus1.impl ;  

end Processor1 ;  

Processor implementation 
Processor1.impl  

subcomponents  
mem : memory Memory1.impl 

;  

properties  

Scheduling_Protocol => ( 

RMS );  

end Processor1.impl ; 

memory Memory1  

end Memory1;  

memory implementation 
Memory1.impl  

end Memory1.impl; 

bus Bus1  

end Bus1; 

bus implementation Bus1.impl  

properties 

Propagation_Delay => 5ms.. 

7ms;   

end Bus1.impl ; 

AADL configuration represents a graph of components and 

connections. Moreover, AADL specifications (see tab.2) 

define implementation details of the hardware components 

(the_processor, the_memory and the_bus). The properties 

bring more details on the operational aspects of these 

components. In the AADL declaration of tab.2, software 

component the_process consists of two subcomponents of 

thread type, thr_S (Sender) and thr_R (receiver). These 

threads interact through a connection cnx, defined between the 

event ports: Inport and Outport (tab. 2). Other implementation 

details of threads, contained in the process, are given by 

properties such as Period and Execution time (see tab. 3). 

 

 

Table 3. A thread Description.  

Thread ThreadSender  

features  
  outPort : out event port;  

end ThreadSender ; 

thread implementation ThreadSender.impl  

properties  
Period => 120ms;  

Compute_Execution_Time => 30ms .. 40ms;  

Dispatch_Protocol => ( Periodic );  

end ThreadSender.impl; 

 

Tools developed around AADL [6, 8] give the possibility to 

specify AADL architecture from components involved in an 

AADL model. But, they do not offer a complete graphical 

view of an operational system instance (hierarchy of 

components). Also, connections and relationships between 

software components and hardware ones are not considered in 

these tools notations. 

3. INTRODUCTION TO BRS 

The bigraphical theory of reactive systems (BRS) defined in 

[7] is based on a graphical model for the specification of 

distributed applications with mobile code. This model 

supports the two dimensions: interaction and spatial 

distribution of the application. It merges two types of graphs: 

places graph and links graph (where the name of Bigraph). 

Some works in literature have shown that bigraphs form a 

unifying framework for concurrency and mobile models, such 

as CCS, the π-calculus, the ubiquitous systems or Petri nets 

[7, 11]. 

3.1. Basic Concepts  
On the basis of a common set of nodes representing the 

physical or virtual entities of a distributed application, a 

bigraph is formed of two independent structures: the places 

graph, having the structure of a forest that shows the spatial 

distribution of the application, the links graph is an 

hypergraph establishing the model of connectivity between 

various nodes [11]. While an arc in the places graph shows the 

relationship of spaces between the nested elements of the 

application, an arc in the graph links establishes a connection 

between the ports of these elements. The two structures are 

orthogonal, so links between nodes can cross locality 

boundaries. Each tree in the places graph represents a region 

of space that can contain sites, corresponding to the leaves of 

the tree, and where other bigraphs can be hosted.  

A bigraph can interact with its environment through his 

interfaces designed by 𝐼=𝑚, X  and  𝐽=𝑛, 𝑌 , where m is 

the number of sites in the bigraph and X the set of its inner 

names. Its outer interfaces are defined by n and Y which are 

respectively the number of regions and the set of outer-names. 

Example 2: The bigraph G =(V, E, Ctrl, GP, GL) I J in Fig. 

1 inspired from [12], specifies a set of users and PCs who are 

divided between two rooms R1 and R2. All nodes of this 

bigraph are defined by  1, 2, 3, 1, 2, 3, 1, 2V U U U Pc Pc Pc R R  

and the set of hyper-edges or links  0, 1, 2, 3, 4E L L L L L  

is the network interconnection that exists between either PCs 

or between users and Pcs. The transformation Ctrl assigns to 

each node its arity (number of ports) and its dynamic behavior 

(active or passive). Ctrl of this example is given by:  
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                12 2 2 32 1 2 2 3 1 2 2 4Ctrl U :  , U :  , U : , Pc :2 , Pc :  , Pc :2  , R : , R :  

The number of sites is m = 0, i.e. no free holes in the bigraph. 

The bigraph contains two regions (n=2) numbered from 0 to 1 

and represented by dashed rectangles, it exposes an outer 

name x. So its inner and outer interfaces are respectively I = 

<0, > and J= <2, x>. 

Bigraph G = <0, >  <2 ,x> 

 

 

 

 

 

 

Places Graph  GP = 02 

 

  Links Graph GL = x 

 
 Fig 1: An Example of bigraph. 

3.2. Bigraph Operations 
Bigraphs may undergo many operations that make them more 

dynamics. Here we present, via examples, the most important 

ones: composition and transformation. 

Composition: As in any graph type, the composition of 

bigraphs creates a new bigraph by combining two or more 

bigraphs. The composition G H F o  of two bigraphs F 

and H is a hosting operation of bigraph F (fig.2) in the 

bigraph H. Thus, it is necessary that each region of F has a 

free site in H, i.e., there are enough free sites in H to contain 

all the regions of F (one site per region). The connection of 

the two bigraphs is achieved via a matching between outer 

interfaces of F with inner interfaces of H.  

Fig. 2 shows how a region (bigraph F) can be hosted in a site 

of a contextual bigraph H. 

Transformation: Two types of transformations are possible 

on bigraphs. The transformation of the places represents the 

arrival or departure of an entity. The transformation of the 

links, expresses the connecting or disconnecting of a node 

through one of its inner or outer interfaces. This dynamic is 

defined by a bigraph transformation rules, called Reaction 

Rules [11]. A reaction rule is a couple of bigraphs: Redex and 

Reactum (before and after transformation). 

 
Fig 2:  A Composition of two bigraphs.  

 

A reaction rule is defined by a couple of bigraphs (R, R’) = 

(R: m  J; R’: m’ J; µ). R is called the Redex bigraph and 

R' is the Reactum bigraph. µ: m’m is a correspondence 

between the number of sites of Redex and Reactum bigraphs. 

 
Fig 3: Transformation of  a bigraph. 

 
 

The application of a rule allows identifying in the contextual 

bigraph, an image of the Redex bigraph, and replacing it with 

the Reactum one. Fig. 3 shows the effect of the application of 

the reaction rule (fig.3.a) on the bigraph F (fig.3.b). The result 

is the new bigraph F (fig.3.c). 

3.3. A Model Checker for BRS 
BigMC (Bigraphical Model Checker) is a model-checker 

designed to operate on BRS based models [9]. The model 

checking in this case is achieved through an exhaustive search 

of all the possible states of the system specified by a BRS.  

The main objective of a model checking is the ability to 

provide a counter-example in the event that the specification 

is shown not to hold. This means giving the system 

configuration that violates the specification, and the path 

through the transition system by which this configuration was 

reached. The full grammar for BigMC bigraph terms is given 

as [9]: 

Table 4. BigMc terms language 

M ::= E; M | E; 

E ::= % passive k : arity 

E ::= % active k : arity  

E ::= % rule n T  T 

E ::= % property n P 

E ::= T  T | T 

T ::= K:T | T | T || T | $n | K | nil 

K ::= k [names] | k 

names ::= n; names | n 

n ::= [a - zA - Z][a - zA - Z0 - 9]* | 

- 

P ::= matches(T) | terminal ()| !P 

 

By this grammar (tab.4), we can specify all bigraph elements. 

M designs a BigMc model, which may be composed from 

other models or/and expressions (E). An expression E can be 

a node declaration (dynamic and arity of a given control), a 

reaction rule, a term (T), or a property (P). A term T can 

represent a single node, site or region. But also, it can be a 

combination of all these elements. The property P is a state 

definition to check with this tool. This state is achieved by 

applying reaction rules defined in the model according to the 

algorithm cited in [9]. We will use this grammar to specify 

our model and the BigMc to verify the specification of the 

installation and the reconfiguration tasks.  

4. MODELING AN AADL 

ARCHITECTURE WITH BIGRAPHS 

Several approaches in the literature adopt the concept of 

graphs and their transformations to model the architectural 

styles and their instances [8, 13], but they have not been 

concerned by the modelling of runtime platforms which 

supports the deployment of these applications. Inspired by the 

idea of [8], modelling software architectures by bigraphs, we 

have proposed in an earlier work [14] a generic formalization 

. 
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of a software architecture deployment by exploiting the 

operation of bigraphs composition. Our purpose here, is to 

continue this work and to adapt it to the description of an 

AADL architectural instance, which is quite rich in terms of 

expressiveness, but has no formal semantic definition for the 

deployment operation. In this section, we proceed to define a 

formal framework based on bigraphs, allowing firstly, 

modelling an AADL software application and secondly the 

formalization of a target environment for deployment process. 

Table 5.  Formalizing AADL Architectural Elements  

 
AADL Architectural 
elements 

Semantic in Bigraphs terms    

Configuration 
(component system) 

Bigraph / Region 

Component (Software, 
Hardware, Connector) 

Node 

Port /Role Port / Inner-name or outer-name 
Interaction Port /Role Hyper-edge 
Hierarchy Imbrications of Nodes / Sites  
Binding Properties Deployment dependencies 
Mode  Redex/Reactum Bigraph 
Mode Transition Reaction Rule 

The main elements of an AADL architectural instance, 

summarized in Table 5 are defined in terms of some 

bigraphical concepts. Each AADL component or connector of 

a given configuration can be formally represented by a node 

in a bigraph. The tree structure of the places graph maintains 

the hierarchy of composite components or connectors in a 

given AADL configuration. Moreover, the notion of control 

associated to a node (component or connector) is used to 

define interfaces of a component (ports) or those of a 

connector (roles) and the associated behaviors. Defined 

connections between ports and roles of the components (and / 

or connectors) are formalized by the bigraph hyper-edges. 

The application of these correspondence rules between AADL 

configuration and bigraphs concepts (Table 5) can further 

refine the formalization of an AADL specification which may 

be rather complex. So, we consider the two aspects of an 

AADL specification separately and attribute a couple of 

bigraphs for modelling the both aspects: GS and GH (s for 

software, H for hardware). In AADL, all software entities that 

constitute the software part of the system need to be deployed 

on hardware components. Thus, we rely on values of the 

property Actual Binding to determine which software 

component is attached to which hardware one. The syntax of 

this property is as follows: 

Actual_XXXX_Binding => reference to <software-

component> applies to <hardware-component>. 

Information analysis of this property may provide two types 

of information. Firstly, it helps to build separately the two 

bigraphs (GS and GH) corresponding to an AADL 

configuration declaration and secondly to establish their 

relationship in terms of sites, regions and inner/outer names. 

The number of occurrences of this property in the AADL 

specification indicates the overall number of sites and regions 

in both bigraphs. This number can be reduced if the same 

hardware component name is referenced by several 

components of the same category. In addition, this property 

determines the inner-names and outer-names of bigraph. 

Thus, the sites represent the hardware components and 

regions are the software components. In our notation, a 

<hardware-component> denotes a numbered site having an 

inner-name. Similarly, <software-component> denotes a 

numbered region having an outer-name. In particular, we 

indicate the previous two items, if they are involved by the 

same property, by the same label and the same number. 

Obviously, if two or more elements in the same category refer 

to the same hardware component, they will be contained in 

the same region, and emit through the same hyper-edge. 

In our formalization approach, two AADL sub-specifications 

will be considered; one for the software application and the 

other for hardware specification supposed supporting this 

application. We define hence a pair of bigraphs G = (GS, GH). 

The relationship between these two types of statements, 

expressed through properties of kind Actual…Binding  is used 

to complete the definition of the structure of bigraph G. 

Example 3: Using the example of the AADL system reported 

in tables 1, 2 and 3, the first bigraph GS (Fig. 4) representing 

the software part of the system is deduced by applying our 

approach as     (              
    

 )  𝐼   𝐽 , where 

VS={the_process, thr_S, thr_R, cnx } and ES = {e0, e1}. 

For example:  vi = thr_S,  ctrls(vi)= 1, prnt (thr_S)=  

the_process. In this scenario mS = 0, i.e. GS does not have 

sites, so it emits no inner-name, for this XS = . So that GS 

inner interfaces are:  𝐼  〈   〉. GS outer interfaces are 

defined by nS = 1 and YS = {m, c, x}. Therefore 𝐽  
 〈  {𝑚    }〉. 

 

Fig 4: Example of Bigraph GS.  

 

Fig 5: Example of Bigraph GH. 

Similarly, we attribute a bigraph GH to the AADL system 

description of hardware components.  

The bigraph defining the target runtime platform given by an 

AADL declaration is     (              
    

 )  𝐼   𝐽 , 

such as: VH is a finite set of hardware components that can be 

nested inside each other.  EH is a finite set of hyper-edges. In 

particularly, we focus on the parameter mH which is the 

number of sites, i.e. locations in the bigraph representing the 

availability of hardware components for the success of the 

software components installation. XH is the set of inner-

names, which represent the interfaces of the sites.  

Example 4: The bigraph in figure 5 shows the various 

elements of the runtime platform. The component 

the_memory is supposed to contain the code for a running 

process. A processor (the-processor) is essential to execute 

threads and a bus (the_bus) for the various connections. The 

bigraph GH in this example is given by:  

- VH = {the-processor, the_memory, the_bus}. 

- EH = {e2, e3}. 

2 

1 

0 

x c m 

the_processor 

the_bus 

the_memory 

e2 e3 

thr_S cnx 
e0 

e1 

x m

- 

c 

the_process 
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We can identify the faces of communication ports such as: 

face (ctrlH (the_processeur)) = {BusAcc}, mH = 3 sites, 3 

inner-names only, for this    {𝑚    }. So, 𝐼  
〈  {𝑚    }〉. nH =1, YH = Ф (GH contains no outer names). 

Therefore, 𝐽  〈   〉 and    〈  {𝑚    }〉  〈   〉. 

5. FORMALIZATION OF 

INSTALLATION AND 

RECONFIGURATION TASKS  

Starting from the model presented above, associated to an 

AADL specification, we establish a formal description of  

software application installation on  runtime platform. 

Besides, we associate also to the reconfiguration task a BRS-

based model.  

5.1. Installation Operation 
The installation task is often described as a set of specific 

steps dictated by the software producer to install a given 

application on a particular platform, regarding a specific 

technology. This task will be defined by a composition 

operation of two or more bigraphs. It will be guided by the 

regions and sites number/labels and also by the 

correspondence between inner and outer names.  

In order to formalize the process of installing software 

components on hardware ones in an AADL specification 

instance, we need first, to flatten the bigraph structures (both 

Gs and GH). This can be justified by the fact that the 

installation of subcomponents is done independently of the 

parent component (container).  

So, for example, a decomposition of the bigraph Gs (Example 

3) gives two bigraphs, one is dedicated to represent 

subcomponents and the other to define the context. Gs = C o 

Sc, where Sc is the subcomponents bigraph and C the 

contextual one.  

Thus, according to the AADL specification, nodes and arcs of 

bigraph Sc can be deduced from Subcomponent and 

connections clauses of the container component. The added 

outer-name (p) (fig 6.a) indicates the new regions that can be 

embedded in sites having the same label. We may keep the 

relationship between the subcomponents and the container 

component.  

Threads thr_S and thr_R are grouped in one region because 

they belong to the same sub-component category and implied 

by the same property (Actual binding) and also they refer to 

the same hardware component; the processor the_processor in 

our case. 

Having both bigraphs Gs and Sc (fig.6.a), it is then possible to 

deduce the bigraph C (fig.6.b) based on the composition 

principle. 

 
Fig 6: Representation of subcomponents and 

contextual bigraphs. 

 

 

The composition of bigraphs GH and GS will be done in two 

steps: G = GH o GS = GH   o (C o Sc) = (GH o C) o Sc. 

Thus, the inner/outer names disappear if they are satisfied (i.e. 

an outer-name of a region corresponds to an inner-name of a 

site, both having the same label). Fig 7 illustrates how the 

software components will be installed on relevant hardware 

components. The obtained bigraph offers a mathematical 

model which allows the reasoning on installation task and 

gives the possibility to check its correctness in terms of 

dependencies satisfaction.   

 

Fig 7: Bigraphs composition Result. 
 

 

 

Fig 8: Places and links graphs of G. 

Places graph (fig.8.a) shows the relationship between 

components after installation operation. Later and after 

installation task, information contained in this graph leads the 

reconfiguration choices. 

5.2.  Reconfiguration Operation 
Software reconfiguration constitutes an important activity of 

the deployment process. At architectural level, reconfiguration 

of component-based system provides a set of transformations 

preserving some properties despite system runtime changes. 

Adding, removing and refining components or interaction 

links may be some of reconfiguration examples [15]. AADL 

language offers the concept of modes to represent operational, 

alternative and predefined states of a component or a 

complete system. Thus, in AADL architectural systems may 

be reconfigured by switching from one mode to another. 

In the following, we will show how BRS based models 

formalize architectural reconfiguration of AADL specification 

thanks to modes handling. 
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Table 6. AADL Reconfiguration of “the_process”. 

process Process1 

features 

P_ev : in event port ; 

end Process1 ; 

process implementation Process1.impl 

subcomponents 
thr_S : thread ThreadSender.impl ; 

thr_R1 : thread ThreadReceiver.impl1 in modes (mode1) ; 

thr_R2 : thread ThreadReceiver.impl2 in modes (mode2) ; 

connections 
cnx1 : event port thr_S.outport -> thr_R1.inport in modes 

(mode1) ; 

cnx2 : event port thr_S.outport -> thr_R2.inport in modes 

(mode2) ; 

modes 

mode1 : initial mode ; 

mode2 : mode ; 

mode1 -[P_ev]-> mode2 ; 

mode2 -[P_ev]-> mode1 ; 

end Process1.impl ; 

thread implementation ThreadReceiver.impl1 

properties 

Compute_Execution_Time => 5 Ms .. 5 Ms ; 

Period => 10 Ms ; 

end ThreadReceiver.impl1 ; 

thread implementation ThreadReceiver.impl2 

properties 

Compute_Execution_Time => 8 Ms .. 8 Ms ; 

Period => 20 Ms ; 

end ThreadReceiver.impl2; 

We denote any system configuration by a pair (S, M) 

expressing the dynamic of a system S in a mode M. 

Reconfiguration is specified by transitions between 

configurations thanks to mode changes. To achieve its 

formalization, we exploit dynamic behavior of bigraphs. 

Reaction rules expressing various changes between bigraphs 

may be used in this context. 

Definition: Given a mode transition [(C, M)
     
→    (C, 

M’)] associated to an AADL component specification C, its 

formal semantic is defined by a reaction rule composed of two 

bigraphs (Redex, Reactum), noted r: (R, R') where: 

 R: is a bigraphical model of C in mode M; 

 R': is a bigraphical model of C in a new mode M'. 

 

 

Fig 9: Bigraphical Reconfiguration of “the_process”. 
 

Figure 9 represents a bigraphical transformation defining the 

AADL reconfiguration of the_process component. The 

purpose of this rule is to allow the toggling of the component 

the_process between two different modes associated to the 

threads Thr_R1 and Thr_R2. 

 

 

 

 

We show in the following example (table 7, Fig. 10), how our 

approach is applied to manage the substitution of a processor 

component by a faster one, thanks to the arrival of a trigger 

event from “S_ev” port. 
Table 7. AADL reconfiguration of runtime platform.  

System the_system 

features 
  S_ev : in event port; 

end the_system; 

System implementation the_system.impl 

Subcomponents 

  the_processor1 : processor Processor1.impl1 in modes 

(normal); 

  the_processor2 : processor Processor1.impl2 in modes 

(fast); 

  the_process : process Process1.impl; 

  the_memory : memory Memory1.impl; 

  the_bus : bus Bus1.impl ; 

Properties 
  Actual_Memory_Binding => reference the_memory 

applies to the_process; 

  Actual_Processor_Binding => reference the_processor1 

applies to the_process in modes (normal); 

  Actual_Processor_Binding => reference the_processor2 

applies to the_process in modes (fast); 

  Actual_Connection_Binding => reference the_bus applies 

to the_process ; 

Modes 

  normal : initial mode; 

  fast : mode; 

  normal - [S_ev] -> fast; 

  fast- [S_ev]-> normal; 

End the_system.impl ; 

6. VALIDATION WITH BIGMC 

To validate our model, we use the BigMc tool [9]. It is a 

model checker dedicated to BRS. Checking process is based 

on applying reaction rules defined in the bigraphical model.  

In the first step, we want be sure if our model, obtained by 

composition and which may represent the application 

deployed on its runtime platform, is correct. In the second 

step, we will check the consistency of the reconfiguration 

task, expressed by reaction rules. 

6.1. Installation Checking 
Table 8 summarizes our bigraphical model expressed in the 

appropriate grammar (of the BigMc tool). We specify some 

reaction rules to simulate the operation of bigraphical 

composition. These rules are specified exploiting disjoint 

bigraphs of figures 4 and 5, we obtain a new bigraph 

modelling the installation task.  

 

 
                   Redex                                 Reactum 

Fig 10: Bigraphical Reconfiguration of “the_system”. 
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Table 8. The model of Sender/Receiver system in BigMc  

#Nodes 

%active the_processor : 2; 

%passive thr_S : 3; 

%passive thr_R : 3; 

%active the_bus : 3; 

%passive cnx : 4; 

%active the_memory : 2; 

%active the_process : 2; 

 

#Links 

%name x; 

%name m; 

%name p; 

%name c; 

%name e0; 

%name e1; 

%name e2; 

%name e3; 

#Sender/Receiver model 

the_processor[x,e3] | the_bus[c,e2,e3] | the_memory[m,e2] | 

the_process[m,-].(thr_R[x,e1,-] | thr_S[x,e0,-] | cnx[c,e0,e1,-]; 

 

#Reaction rules 

 

the_process[m,-].(thr_R[x,e1,-] | thr_S[x,e0,-] | cnx[c,e0,e1,-

])-> the_process[m,p] || (thr_R[x,e1,p] | thr_S[x,e0,p]) || 

cnx[c,e0,e1,p] 

 

the_memory[m,e2].$0 || the_process[m,p] -> the_memory[-

,e2].the_process[-,p].($1 | $2) || nil; 

the_processor[x,e3].$2 || (thr_R[x,e1,p] | thr_S[x,e0,p]) -> 

the_processor[-,e3].(thr_R[-,e1,p] | thr_S[-,e0,p]) || nil; 

the_bus[c,e2,e3].$1 || cnx[c,e0,e1,p] -> the_bus[-,e2,e3].cnx[-

,e0,e1,p] || nil; 

 

%property consistency  (the_processor[-,e3].(thr_R[-

,e0,p]|thr_S[-,e1,p]) | the_bus[-,e2,e3].cnx[-,e1,e0,p]| 

the_memory[-,e2].the_process[-,p].($1 | $2)); 

 

%check 

We choose to check the consistency and the correctness of the 

installation task. This must be verified by the satisfaction of 

all software-hardware components dependencies. In respect to 

our model, this may be ensured when bigraphs names 

disappear as x, m and c and software components are well 

deployed on hardware one. The property of consistency 

expressed in table 8 must be analyzed by the application of 

rules, expressed above in the same table. Table 9 shows the 

checking process steps. We can note that the successful state 

is achieved after 9 steps. This means that the consistency of 

installation task is valid. 

Table 9. The checking results of the installation task. 

Welcome to BigMC! 

>  C:\Progra~1\BigMC/bin/bigmc -m 1000 -r 50 -p C:\...\ 

\bigmc_AADLmodel.bgm  

1: (the_processor[x,e3].nil | the_bus[c,e2,e3].nil | 

the_memory[m,e2].nil | the_process[m,-].(thr_R[x,e1,-].nil | 

thr_S[x,e0,-].nil | cnx[c,e0,e1,-].nil)) 

2:  (the_processor[x,e3].nil | the_bus[c,e2,e3].nil | 

the_memory[m,e2].nil | the_process[m,p].nil || 

(thr_R[x,e1,p].nil | thr_S[x,e0,p].nil) || cnx[c,e0,e1,p].nil) 

3: (nil || (thr_R[x,e1,p].nil | thr_S[x,e0,p].nil) || 

cnx[c,e0,e1,p].nil | the_processor[x,e3].nil | 

the_bus[c,e2,e3].nil | the_memory[-,e2].the_process[-,p]) 

4: (the_processor[-,e3].(thr_R[-,e1,p].nil | thr_S[-,e0,p].nil) | 

the_bus[c,e2,e3].nil | the_memory[m,e2].nil | 

the_process[m,p].nil || nil || cnx[c,e0,e1,p].nil) 

5: (the_processor[x,e3].nil | the_bus[-,e2,e3].cnx[-

,e0,e1,p].nil | the_memory[m,e2].nil | the_process[m,p].nil || 

(thr_R[x,e1,p].nil | thr_S[x,e0,p].nil) || nil) 

6: (nil || nil || cnx[c,e0,e1,p].nil | the_processor[-,e3].(thr_R[-

,e1,p].nil | thr_S[-,e0,p].nil) | the_bus[c,e2,e3].nil | 

the_memory[-,e2].the_process[-,p]) 

7: (nil || (thr_R[x,e1,p].nil | thr_S[x,e0,p].nil) || nil | 

the_processor[x,e3].nil | the_bus[-,e2,e3].cnx[-,e0,e1,p].nil | 

the_memory[-,e2].the_process[-,p] ) 

8: (the_processor[-,e3].(thr_S[-,e0,p].nil | thr_R[-,e1,p].nil) | 

the_bus[-,e2,e3].cnx[-,e0,e1,p].nil | the_process[m,p].nil || nil 

|| nil | the_memory[m,e2].nil) 

9: (the_memory[-,e2].the_process[-,p].() | the_bus[-

,e2,e3].cnx[-,e0,e1,p].nil | the_processor[-,e3].(thr_S[-

,e0,p].nil | thr_R[-,e1,p].nil) | nil || nil || nil) 
[mc::step] Complete! 

[mc::report] [q: 0 / g: 9] @ 10 
 

6.2.  Reconfiguration Checking 
In the following table (Table 10), we present a bigraphical 

specification of the_process reconfiguration (having two 

threads thr_R1 and thr_R2). The rule expressed in the table 

10, may permit to the_process  component switching from 

thr_R1 to  thr_R2. The purpose of the new added reaction rule 

(last one in table 10) is to allow the reconfiguration of the 

software component the_process as it is defined in AADL 

specification (table 6). 

The BigMc tool tries to apply these reaction rules and reaches 

the state specified in the property clause.  In our case, the 

reconfiguration property (reconf) is analyzed after 13 steps 

(see table 11).  

Table 10. The BigMc reconfiguration property 

#Nodes 

%active the_processor : 2; 

%passive thr_S : 3; 

%passive thr_R1 : 3; 

%passive thr_R2 : 3; 

%................... 

#Links 

%name x; 

%name m; 

%name p; 

%name c; 

%............. 

#Sender/Receiver model 

 

the_processor[x,e3] | the_bus[c,e2,e3] | the_memory[m,e2] | 

the_process[m,-].(thr_R1[x,e1,-] | thr_S[x,e0,-] | cnx[c,e0,e1,-]; 

 

#Reaction rules 

 

the_process[m,-].(thr_R[x,e1,-] | thr_S[x,e0,-] | cnx[c,e0,e1,-])-

> the_process[m,p] || (thr_R[x,e1,p] | thr_S[x,e0,p]) || 

cnx[c,e0,e1,p;] 

the_memory[m,e2].$0 || the_process[m,p] -> the_memory[-

,e2].the_process[-,p].($1 | $2) || nil; 

the_processor[x,e3].$2 || (thr_R[x,e1,p] | thr_S[x,e0,p]) -> 

the_processor[-,e3].(thr_R[-,e1,p] | thr_S[-,e0,p]) || nil; 

the_bus[c,e2,e3].$1 || cnx[c,e0,e1,p] -> the_bus[-,e2,e3].cnx[-

,e0,e1,p] || nil; 

the_processor[-,e3].(thr_R[-,e1,p].nil | thr_S[-,e0,p].nil) -> 

the_processor[-,e3].(thr_R2[-,e1,p].nil | thr_S[-,e0,p].nil);  

 

%property reconf (the_processor[-,e3].(thr_R2[-,e1,p].nil | 

thr_S[-,e0,p].nil) | the_bus[-,e2,e3].cnx[-,e0,e1,p].nil | 

the_memory[-,e2].the_process[-,p]; 

%check 

 The bigraphical model proposed in this work is generic 

enough and can be applied to architectural specifications 

independently of a particular technology. Its graphical aspect 

makes the description of the deployment process very 

expressive. In addition, the BigMc model checker developed 

recently for bigraphs, is used to formally verify some possible 

constraints of deployment tasks. Compared to other existing 

works [16, 17, 18] for describing formally the process of 

deploying a component-based application on an execution 

platform, these remain specific to a particular technology and 

in more they often use several formalisms (at least two) to 
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specify and analyze deployment activities. Redundancies and 

inconsistencies caused by this diversity of formalisms may 

lead with difficulties in software application analysis and 

installation. 

Table 11. The checking result of the reconfiguration task 

Welcome to BigMC! 

> C:\Progra~1 \bigmc_model.bgm 

1: (the_processor[x,e3].nil | the_bus[c,e2,e3].nil | 

the_memory[m,e2].nil | the_process[m,-].(thr_R1[x,e1,-].nil | 

thr_S[x,e0,-].nil | cnx[c,e0,e1,-].nil)) 

2: (the_processor[x,e3].nil | the_bus[c,e2,e3].nil | 

the_memory[m,e2].nil | the_process[m,p].nil || (thr_R1[x,e1,p].nil 

| thr_S[x,e0,p].nil) || cnx[c,e0,e1,p].nil) 

3: (nil || (thr_R1[x,e1,p].nil | thr_S[x,e0,p].nil) || cnx[c,e0,e1,p].nil 

| the_processor[x,e3].nil | the_bus[c,e2,e3].nil | the_memory[-

,e2].the_process[-,p].()) 

4: (the_processor[x,e3].nil | the_bus[-,e2,e3].cnx[-,e0,e1,p].nil | 

the_memory[m,e2].nil | the_process[m,p].nil || (thr_R1[x,e1,p].nil 

| thr_S[x,e0,p].nil) || nil) 

5: (the_processor[-,e3].(thr_R1[-,e1,p].nil | thr_S[-,e0,p].nil) | 

the_bus[c,e2,e3].nil | the_memory[m,e2].nil | the_process[m,p].nil 

|| nil || cnx[c,e0,e1,p].nil) 

6: (nil || (thr_R1[x,e1,p].nil | thr_S[x,e0,p].nil) || nil | 

the_processor[x,e3].nil | the_bus[-,e2,e3].cnx[-,e0,e1,p].nil | 

the_memory[-,e2].the_process[-,p].()) 

7: (nil || nil || cnx[c,e0,e1,p].nil | the_processor[-,e3].(thr_R1[-

,e1,p].nil | thr_S[-,e0,p].nil) | the_bus[c,e2,e3].nil | the_memory[-

,e2].the_process[-,p].()) 

8: (the_processor[-,e3].(thr_S[-,e0,p].nil | thr_R1[-,e1,p].nil) | 

the_process[m,p].nil || nil || nil | the_memory[m,e2].nil | the_bus[-

,e2,e3].cnx[-,e0,e1,p].nil) 

9: (the_bus[c,e2,e3].nil | the_processor[-,e3].(thr_S[-,e0,p].nil | 

thr_R2[-,e1,p].nil) | the_process[m,p].nil || nil || cnx[c,e0,e1,p].nil 

| the_memory[m,e2].nil) 

10: (the_processor[-,e3].(thr_S[-,e0,p].nil | thr_R2[-,e1,p].nil) | 

the_memory[-,e2].the_process[-,p].() | the_bus[-,e2,e3].cnx[-

,e0,e1,p].nil | nil || nil || nil) 

11: (the_processor[-,e3].(thr_S[-,e0,p].nil | thr_R2[-,e1,p].nil) | nil 

|| nil || cnx[c,e0,e1,p].nil | the_memory[-,e2].the_process[-,p].() | 

the_bus[c,e2,e3].nil) 

12: (the_processor[-,e3].(thr_S[-,e0,p].nil | thr_R2[-,e1,p].nil) | 

the_process[m,p].nil || nil || nil | the_memory[m,e2].nil | the_bus[-

,e2,e3].cnx[-,e0,e1,p].nil) 

13: (the_memory[-,e2].the_process[-,p].() | the_bus[-,e2,e3].cnx[-

,e0,e1,p].nil | the_processor[-,e3].(thr_S[-,e0,p].nil | thr_R2[-

,e1,p].nil) | nil || nil || nil) 

[mc::step] Complete! 

[mc::report] [q: 0 / g: 13] @ 14 

7. CONCLUSION 
The deployment of a software application on a specific 

execution environment is crucial and delicate stage that can 

guarantee its efficiency.  In this paper, we proposed a 

mathematical model, based on BRS, allowing the modelling 

of the two deployment tasks, installation and reconfiguration 

of an AADL architectural application. 

We have first defined a mapping between the architectural 

elements of AADL and those of bigraphs, offering generic 

transformation rules (meta-rules). Then, we have formalized 

the two AADL structures, application and runtime platform, 

contained in an AADL configuration declaration, by two 

distinct bigraphs  GS and GH. These are composed to produce 

a new bigraph showing the installation of the application on 

the runtime platform. AADL system reconfiguration was also 

formalized thanks to our BRS-based model, exploiting 

bigraphical reaction rules. Various and promising results were 

obtained while validating our developed BRS-based model by 

the BigMc model checker. 

In a subsequent work, we intend to automate the checking 

process of the installation and the reconfiguration of any 

AADL software application. We project also to enrich the 

properties set to check dynamically. 
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