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ABSTRACT
Sudoku is a very popular puzzle which consists of placing sev-
eral numbers in a squared grid according to some simple rules. In
this paper, we present a Sudoku solving technique named Boolean
Sudoku Solver (BSS) using only simple Boolean algebras. Use
of Boolean algebra increases the execution speed of the Sudoku
solver. Simulation results show that our method returns the solution
of the Sudoku in minimum number of iterations and outperforms
the existing popular approaches.

Keywords:
Sudoku, Boolean algebra, Memory representation

1. INTRODUCTION
Sudoku, English pronunciation: (/su:’do U ku:/ soo-doh-koo) is a
logic-based, combinatorial number placement puzzle [2, 4, 11].
The word “Sudoku” is short for Su-ji wa dokushin ni kagiru,
which means “the numbers must be single”. The objective is to
fill a 9 × 9 grid with digits so that each column, each row, and
each of the nine 3×3 sub-grids that compose the grid (also called
“boxes”, “blocks”, “regions”, or “sub-squares”) contains all of
the digits from 1 to 9. Fig. 1 shows an example of Sudoku puzzle.
On July 6, 1895, Le Siecle’s rival, La France, refined the puzzle
so that it was almost a modern Sudoku. It simplified the 9 × 9
magic square puzzle so that each row, column and broken di-
agonals contained only the numbers 1-9, but did not mark the
sub-squares. Although they are unmarked, each 3×3 sub-square
does indeed comprise the numbers 1-9 and the additional con-
straint on the broken diagonals leads to only one solution [4].
The number of valid Sudoku solution grids for the standard 9×9
grid is 6, 670, 903, 752, 021, 072, 936, and 960. We can express
a 9 × 9 Sudoku by putting 25-30 values in a 9 × 9 grids. It can
be used in data compassion, in error checking and correction, in
data encryption and deception etc.
Boolean algebra which deals with two-valued (true / false or 1
and 0) variables and functions find its use in modern digital com-
puters since they too use two-level systems called binary sys-
tems. Boolean algebra, as developed in 1854 by George Boole in
his book, “An Investigation of the Laws of Thought”, is a variant
of ordinary elementary algebra differing in its values, operations,
and laws. Instead of the usual algebra of numbers, Boolean al-
gebra is the algebra of truth values 0 and 1, or equivalently of
subsets of a given set.
A Boolean function (or switching function) is a function of the
form f : Bk → B, where B = {0, 1} is a Boolean domain
and k is a non-negative integer called the arity of the function.
In the case where k = 0, the “function” is essentially a constant
element of B. A Boolean function describes how to determine
a Boolean value output based on some logical calculation from
Boolean inputs.

Fig. 1. Example of Sudoku puzzle.

After values, the next ingredient of any algebraic system is its
operations. Whereas elementary algebra is based on numeric op-
erations, multiplication: xy; addition: x + y; and negation: ¬x,
Boolean algebra is customarily based on logical counterparts to
those operations, namely conjunction: x∧y or Kxy (AND); dis-
junction: x ∨ y or Axy (OR); and complement or negation ¬x
or Nx (NOT). In electronics, the AND is represented as a mul-
tiplication, the OR is represented as an addition, and the NOT
is represented with an overbar: x ∧ y and x ∨ y, therefore, be-
come xy and x + y. Conjunction is the closest of these three
to its numerical counterpart: consider 0 and 1 = 0, and 1 and 1
= 1; it is multiplication. As a logical operation the conjunction
of two propositions is true when both propositions are true, and
otherwise is false. The first column of the Fig. 2 tabulates the val-
ues of x ∧ y for the four possible valuations for x and y; such a
tabulation is traditionally called a truth table. Disjunction, in the
second column of the Fig. 2, works almost like addition, with one
exception: the disjunction of 1 and 1 is neither 2 nor 0 but 1. Thus
the disjunction of two propositions is false when both proposi-
tions are false, and otherwise is true. This is just the definition
of conjunction with true and false interchanged everywhere; be-
cause of this we say that disjunction is the dual of conjunction.
Logical negation however does not work like numerical negation
at all. Instead it corresponds to incrimination: ¬x = x+ 1 mod
2. Yet it shares in common with numerical negation the property
that applying it twice returns the original value: ¬¬x = x, just
as −(−x) = x. An operation with this property is called an in-
volution. The set {0, 1} has two permutations, both involutary,
namely the identity, no movement, corresponding to numerical
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Fig. 2. Various representations of Boolean operations.

negation mod 2 (since +1 = -1 mod 2), and SWAP, correspond-
ing to logical negation.
Using negation, we can formalize the notion that conjunction is
dual to disjunction via De Morgan’s laws, ¬(x ∨ y) = ¬x ∧ ¬y
and ¬(x ∧ y) = ¬x ∨ ¬y. These can also be construed as def-
initions of conjunction in terms of disjunction and vice versa:
x ∨ y = ¬(¬x ∧ ¬y) and x ∧ y = ¬(¬x ∨ y). Fig. 2 shows the
symbols used in digital electronics for conjunction and disjunc-
tion; the input ports are on the left and the signals flow through to
the output port on the right. Inverters negating the input signals
on the way in, or the output signals on the way out, are repre-
sented as circles on the port to be inverted.
In this paper, we provide a strategy to solve the Sudoku puzzle
using the concepts of Boolean algebra.

2. RELATED WORK
The connection between decoding and Sudoku has been previ-
ously noted. In [7], Moon et al. give an explicit formulation of
the BP algorithm for solving Sudoku. BP appears to work only
for easier puzzles, with the probable cause being the “loopy”
nature of the Tanner graph associated with the puzzle (all cells
are in cycles of length four). The author of [6] also discusses
BP. Other related works such as Sinkhorn balancing [8, 14] is
a means of obtaining a unique doubly stochastic matrix from a
(nearly) arbitrary matrix. Extensions to produce matrices with ar-
bitrary row and column sums appear in [13]. Sinkhorn balancing
(sometimes called Sinkhorn scaling) has been widely studied,
and makes its appearance in a variety of applications (See [3]).
The Sudoku is solved with genetic operations in [1, 10]. Solution
of the Sudoku puzzle with membrane computing is discussed in
[5]. The authors of [12] introduced solution of the Sudoku using
graphs with deriving Constraint Satisfaction Problem (CSP).
In this paper, we present a solution algorithm based on basic
Boolean algebra, which has both lower computational complex-
ity (per iteration) than BP and does not apparently suffer from
cycles in the graph.

3. PUZZLE DESCRIPTION AND
REPRESENTATION

In this paper, we consider the most popular format of Sudoku
puzzle. It is a 9 × 9 grid with nine rows and nine columns and
the 9× 9 grid is divided into nine 3× 3 sub-grid.

3.1 Memory Representation
Bitwise operation is much faster than arithmetic operation. We
use Boolean operation to determine the possible value of a cell.
For this reason, we use a new approach to represent the values of

Fig. 3. Memory representation.

Fig. 4. Primary initialization.

the Sudoku. We use 9 variables that represent the values required
in a sub-grid, 9 variables to represent the rows and 9 variables to
represent the columns.
In our proposed method, we use 3× 3× 3× 3 integer type vari-
able, Sudoku[3][3][3][3] to store the values of the Sudoku puz-
zle. We represent the Sudoku in a 4D (four dimensions) view
and divide the Sudoku into 9 boxes. Each box has 3 box-row, 3
box-column and two suffix called box row number (BR) and
box column number (BC). Each box has 3× 3 matrix, 3 rows
and 3 columns. Fig. 3 shows the memory representation of a
9 × 9 Sudoku. We consider 27 integer type variables named
row[3][3],column[3][3] and box[3][3] to store the values re-
quired in every row, column and box respectively in Boolean
form.

3.2 Indexing
The indexes used for suduko[I][J ][K][L] are Box indexing
(box[3][3]), Row indexing (row[3][3]) and Column indexing
(column[3][3]). As each integer variable takes 2 bytes of mem-
ory, total allocated memory to solve a 9 × 9 sudoku is 3 × 3 ×
3× 3× 2 + 3× 9× 2 = 216 bytes. Space complexity is O(n2)
for a n× n Sudoku puzzle.

3.3 Solving Technique
At first, we need initialization to the arrays row[I][K],
column[J ][L] and box[I][J ]. Primarily initialization with value
1 for 9 x 9 Sudoku is shown in Fig. 4. We calculate all the values
of each array using the following equations.
For box[I][J ]:

box[I][J ] = box[I][J ]−
2∑

I,J,K,L=0

2suduko[I][J][K][L]−1 (1)
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Fig. 5. Update of a variable.

Fig. 6. Update of all variables.

For row[I][K]:

row[I][K] = row[I][K]−
2∑

I,J,K,L=0

2suduko[I][J][K][L]−1(2)

For column[J ][L]:

column[J ][L] = column[J ][L]−
2∑

I,J,K,L=0

2suduko[I][J][K][L]−1

(3)

When a value is entered as input, changes are shown in Fig.s 5
and 6.

4. SOLVING TECHNIQUES
Two basic techniques are used in solving Sudoku described as
follows.

4.1 Technique 1: Naked Single
We select a blank cell randomly and count from 1 to 9. Reject the
value which are available in that sub-grid plus row and column,
where it is situated. In this approach, the arrays box[][], row[][]
and column[][] represent the values between 1 to 9 which can be
set along with their related rows, columns, and boxes for any cell
of suduko[I][J ][K][L]. We have to find out what can be set in
row[I][K], column[J ][L] and box[I][J ]. So, the required value

for cell suduko[I][J ][K][L] is-

Rv = row[I][K] & column[J ][L] & box[I][J ] (4)

If log2 Rv is an integer value, it indicates that the possible num-
ber for the cell suduko[I][J ][K][L] have only one and it is
log2 Rv+1 As for example, referring Figure 1, 1st value is found
in 6th iteration when Rv = 32. Hence, log2 32 = 5 and I = 0, J
= 1, K = 1, L = 0. In this situation, the suduko[I][J ][K][L] up-
dated as follows-
suduko[0][1][1][0] = 5 + 1 = 6.

4.2 Technique 2: Hidden Single
During playing Sudoku, sometime we may have no such a blank
cell and we can not define a value. In that case, we try to find
out a blank cell and a value, which is not suitable for the other
blank cells either in the row or in the column or in the box. Using
Boolean algebra, we can implement such a technique. We can
determine the required value of a cell (except for a selected cell
in a row or in a column or in a box) using OR operation basis
on the blank cell requirements. If the requirement of our selected
cell is A, the requirement of other cells that are also blank and in
a same row or in a same column or in a same box is B then A.B
is either 0 or log2 A.B is a integer number between 0 to 8 and
log2 A.B + 1 is the value for our selected cell.
• For a box:
Let suduko[3][3][3][3] is 9 × 9 Sudoko puzzle. Possible value
for suduko[I][J ][K][L] is Equation 4. Required value for other
blank cell is -

Rv = Rv& ∼ (box[I][J ]&((row[I][K]&(column[J ][(L+ 1)

%3]∗!(sudoku[I][J ][K][(L+ 1)%3])|column[J ][(L

+2)%3]∗!(sudoku[I][J ][K][(L+ 2)%3])))|(row[I][(K

+1)%3]&(column[J ][(L+ 1)%3]∗!(sudoku[I][J ][(K
+1)%3][(L+ 1)%3])|column[J ][(L+ 2)%3]∗!
(sudoku[I][J ][(K + 1)%3][(L+ 2)%3])|column[J ][L]∗!
(sudoku[I][J ][(K + 1)%3][L])))|(row[I][(K + 2)%3]&

(column[J ][(L+ 1)%3]∗!
(sudoku[I][J ][(K + 2)%3][(L+ 1)%3])|
column[J ][(L+ 2)%3]∗!
(sudoku[I][J ][(K + 2)%3][(L+ 2)%3])|column[J ][L]∗!
(sudoku[I][J ][(K + 2)%3][L]))))) (5)

• For a column:
Let suduko[3][3][3][3] is 9 × 9 Sudoko puzzle. Possible value
for suduko[I][J ][K][L] is Equation 4. Required value for other
blank cell is -

Rv = Rv& ∼ (column[J ][L]&((box[I][J ]&(row[I][(K + 1)

%3]∗!(sudoku[I][J ][(K + 1)%3][L])|row[I][(K + 2)

%3]∗!(sudoku[I][J ][(K + 2)%3][L])))|(box[(I + 1)

%3][J ]&(row[(I + 1)%3][(K + 1)%3]∗!(sudoku[(I +
1)%3][J ][(K + 1)%3][L])|row[(I + 1)%3][(K + 2)%3]

∗!(sudoku[(I + 1)%3][J ][(K + 2)%3][L])|row[(I + 1)

%3][K]∗!(sudoku[(I + 1)%3][J ][K][L])))|(box[(I + 2)

%3][J ]&(row[(I + 2)%3][(K + 1)%3]∗!(sudoku[(I
+2)%3][J ][(K + 1)%3][L])|row[(I + 2)%3][(K + 2)

%3]∗!(sudoku[(I + 2)%3][J ][(K + 2)%3][L])|row[(I

+2)%3][K]∗!(sudoku[(I + 2)%3][J ][K][L]))))) (6)

• For a Row:
Let suduko[3][3][3][3] is 9 × 9 Sudoko puzzle. Possible value
for suduko[I][J ][K][L] is Equation 4. Required value for other
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Fig. 7. A typical scenario.

blank cell is -

Rv = Rv& ∼ (row[I][K]&((box[I][J ]&(column[J ][(L+ 1)

%3]∗!(sudoku[I][J ][K][(L+ 1)%3])|column[J ][(L+ 2)

%3]∗!(sudoku[I][J ][K][(L+ 2)%3])))|(box[I][(J + 1)

%3]&(column[(J + 1)%3][(L+ 1)%3]∗!(sudoku[I][(J
+1)%3][K][(L+ 1)%3])|column[(J + 1)%3][(L+ 2)

%3]∗!(sudoku[I][(J + 1)%3][K][(L+ 2)%3])|column[

(J + 1)%3][L]∗!(sudoku[I][(J + 1)%3][K][L])))|
(box[I][(J + 2)%3]&(column[(J + 2)%3][(L+ 1)%3]

∗!(sudoku[I][(J + 2)%3][K][(L+ 1)%3])|column[(J

+2)%3][(L+ 2)%3]∗!(sudoku[I][(J + 2)%3][K][(L

+2)%3])|column[(J + 2)%3][L]∗!(sudoku[I][(J + 2)

%3][K][L]))))) (7)

Considering the fig. 7, Possible values are-

sudoku[1][2][1][2] = 000001001 (8)
sudoku[1][2][1][3] = 000010001 (9)
sudoku[1][2][2][2] = 100001000 (10)
sudoku[1][2][3][1] = 010000010 (11)
sudoku[1][2][3][2] = 011000011 (12)
sudoku[1][2][3][3] = 011010011 (13)
sudoku[1][2][2][1] = 000101000 (14)

Using equations 8-13, we get,

(Eqn.(8) ∨Eqn.(9) ∨Eqn.(10) ∨Eqn.(11) ∨Eqn.(12) ∨
Eqn.(13) =

111011011 (15)

Now by AND-ing the value of Equation 14 and complement
value of equation 15, we find the value- 000100000 = 32(10)
and log2 32 = 5. Therefore, sudoku[1][2][2][1] = 5 + 1 = 6.

5. BOOLEAN SUDOKU SOLVER (BSS)
The algorithm, Boolean Sudoku Solver (BSS), for solving Su-
doku with Boolean algebra is given in Algorithm 1. Let us ex-
plain how the algorithm works.
The Sudoko is inputted to the array Sudoku[][][][] and initial-
ization is done for box[][], row[][] and column[][]. Then, the al-
gorithm looks for the empty cell. If any empty cell found then
it checks whether Technique 1 or Technique 2 will be applied.
Otherwise, the algorithm is terminated.

Algorithm 1 Boolean Sudoku Solver (BSS)
Input:Sudoku[BR][BC][R][C], box[BR][BC],
row[BR][R] and column[BC][C].
Jump1:
Find a empty cell;
if not found then

go to Jump3;
end if
Check for Technique 1;
if found then

go to Jump2;
end if
Check for Technique 2;
if no value found then

go to Jump1;
end if
Jump2:
Set the value;
Update box[BR][BC], row[BR][R], column[BC][C];
Go to Jump1;
Jump3:
Terminate;

6. SIMULATION RESULTS AND ANALYSIS
The objectives of the experimental work are to verify the feasi-
bility and efficiency of Boolean Sudoku Solver (BSS). The ex-
perimental evaluation has been performed with 200 Sudoku puz-
zles. Our aim is to find out the solving rate, number of itera-
tions and execution time, and compare BSS with other existing
popular techniques. The BSS has been implemented over Bor-
land c++ 5.02, 32 bit compiler, running on 2.13 GHz Core-i3
2nd generation processor with 2GB main memory. The operat-
ing system used is windows 7 ultimate. The results for various
solving techniques are compared at the same hardware config-
uration. We have chosen Sudoku from newspaper. There are 4
categories of Sudoku- Very difficult level Sudoku, Difficult level
Sudoku Medium level Sudoku, and Easy level Sudoku.

Fig. 8. No. of blank cells remaining with No. of iterations.

Number of iterations depends on the complexity and the number
of free cells. Fig. 8 shows that the easy Sudoku takes 35 iter-
ations to find out 33 values. The number of iterations increases
with increase in difficulty level. Form the figure, we see that very
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Fig. 9. Number of Iteration vs. number of empty cell for a very
difficult Sudoku using BSS and SSS.

Fig. 10. The number of iteration vs. difficulty level between
different methods of Sudoku solver.

Fig. 11. Average solving rate of BSS, SSS and BP.

difficult Sudoku takes about 140 iterations to find out first 15 val-
ues and takes more 40 iterations to find out 37 values.
We solve a very difficult Sudoku using our proposed BSS, and
the existing popular approach- Sinkhorn Sudoku Solution (SSS)
[8] and count iterations and number of empty cells as shown in
Fig. 9. BSS solves that Sudoku in 179 iterations, but SSS takes
234 iterations. Therefore, BSS takes less number of iterations
than SSS.
Fig. 10 shows the number of iteration vs. difficulty level between
different methods of Sudoku solver. Sudoku solved by Genetic
Algorithm (GA) [1] can solve very difficult level Sudoku by tak-
ing 400 (average) iterations and SSS can solve it by taking 190
(average) iterations but BSS can solve it by taking only 140 (av-
erage) iterations. This also indicates the superiority of our ap-
proach.

Fig. 11 shows the solving rate of Sudoku using BSS, SSS and
Belief Propagation (BP) [7]. The solving rates of BSS, SSS and
BP are 97%, 95% and 40% respectively for our given Sudoku.
7. CONCLUSION AND FUTURE WORK
We present a new strategy to solve Sudoku using Boolean alge-
bra. The main contribution of this paper is the solution of Su-
doku with a reduction in consumption of memory and execution
time. Our Boolean Sudoku solver (BSS) outperforms the existing
popular approach with better accuracy. Simulation results depict
that BSS is more faster in solving Sudoku due to usage of bit-
wise operation instead of arithmetic operation. The implemented
strategy is enough to find the solution of many Sudoku problems.
Parts of our future works are adding features of artificial intelli-
gence to solve super difficult level Sudoku.
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