
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

41

Bit Level Encryption Standard (BLES): Version-I

Neeraj Khanna
Department of Computer
Science & Engineering

National Institute of
Technology Calicut

Kerala, India

Dripto Chatterjee
Department of Informatics

Kings College
United Kingdom

Joyshree Nath

Jogesh Chandra Chaudhuri
College

Kolkata, India

Asoke Nath
Department of Computer

Science
St. Xavier’s College

(Autonomous), Kolkata
Kolkata, India

ABSTRACT

In the present paper the authors have introduced a new

symmetric key cryptographic method called Bit Level

Encryption Standard(BLES) which is based on bit

exchanging or bit reshuffling method. The authors have

introduced a completely new bit level encryption method.

Nath et. al has already developed bit manipulation method

called NJJSAA where the authors mainly used bit level right

shift, bit level XOR operation. In the present paper the authors

have used bit level exchange using random key generator and

also byte level exchange using random key generator. The bit

exchange was made using different block sizes such as 16

bits, 64 bits, 256 bits and 1024 bits long. To make the system

hard the authors have changed the randomization matrix each

time when data is extracted from plain text file and whenever

the size of the block is changed. After finishing bit level

exchange for the entire file the authors used the byte exchange

method. The authors have also introduced a special bit

manipulation method so the encryption algorithm will work

even for all characters with ASCII Code 0 or all characters

with ASCII Code 255. The standard encryption algorithm will

fail to encrypt a file where all characters are ASCII ‘0’ or all

characters with ASCII ‘255’ but the present method will be

able to encrypt a file where all characters are ASCII ‘0’ or all

characters are ASCII ‘255’. The present method will be

effective for encrypting short message, password, confidential

key etc. The spectral analysis in the result sections shows that

the present method is free from known plain text attack,

differential attack or any type brute force attack.

General Terms

encryption, bit exchange, byte exchange

Keywords

BLES, NJJSAA, bit exchange, XOR, random key, differential

attack

1. INTRODUCTION

With the tremendous development in internet technology in

the last few years now it is a real challenge for the sender to

send confidential data from one computer to another

computer. There is no guarantee that between the sender and

the receiver there is no one intercepting those confidential

data especially if the data is not encrypted or properly

protected. The security or the originality of data has now

become a very important issue in data communication

network. One cannot send any confidential or important

message in raw form from one computer to another computer

as any hacker can intercept that confidential message or

important message. Sending question papers or sending bank

statement is now a common practice over the mail. But this

method is not fully secured as anybody can intercept the data

from internet and misuse it. Nowadays it is not at all difficult

for a hacker to intercept an e-mail and retrieve the confidential

data especially if it is not encrypted. There are many sectors

such as Banking, E-business, E-commerce, Railway or Air

Reservation system where the data should not be tampered or

intercepted by an unauthorized person. Any confidential data

must be protected from any unwanted intruder to avoid any

disaster. The disaster may happen if a sales manager of a

company is sending some crucial data related to the sales of

the company to his Managing Director over the e-mail and

some intruder intercepts that data from the internet and passes

it on to some other rival company. This type of disaster may

happen when the data is moving from one computer to other

computer in an unprotected manner. To overcome this

problem one has to send the encrypted text or cipher text from

client to server or to another client. To protect any kind of

hacking problems nowadays network security and

cryptography is an emerging research area where the

programmers are trying to develop some strong encryption

algorithm so that no intruder can intercept the encrypted

message. This methods are called classical cryptographic

algorithm and those methods can be divided into two

categories: (i) symmetric key cryptography where one key is

used for both encryption and decryption purpose. (ii) Public

key cryptography where two different keys are used one for

encryption and the other for decryption purpose. The merit of

symmetric key cryptography is that the key management is

very simple as one key is used for both encryption as well as

for decryption purpose. In symmetric key algorithm the key is

called secret key and it should be known to sender and

receiver both and no one else. In public key cryptography

there are two keys used one key is called public key which is

used only for encryption purpose and the other is called

private key which is used only for decryption purpose. The

public key is not secret and it can be shared by anybody but

the decryption key should be kept by the receiver only and by

no one else. The public key methods have both merits as well

as demerits. The problem of Public key cryptosystem is that

one has to do massive computation for encrypting any plain

text. Moreover in some public key cryptography the size of

encrypted message may increase. Due to massive computation

the public key crypto system may not be suitable in a case like

sensor networks. So the security problem in sensor node is a

real problem. In the present work we are proposing a

symmetric key method called BLES method which can be

applied in sensor network, mobile network, ATM network.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

42

The present method uses bit exchange and byte exchange

methods with complements and xor operation. The key

element is the bit exchange depending on the randomized

matrix which is generated every time and each one is unique.

With different levels of extractions such as 2 bytes, 8bytes, 32

bytes and 128 bytes, the data finally gets shuffled to such an

extent that without knowing the process and key, it would be

impossible to decrypt. We have implemented the bit-wise

exchange method as follows:

Firstly, we begin with initial transformation where the data is

broken down to its corresponding bits and are then xored and

complemented. These bits are stored in a reverse manner into

a new file and this new file is now worked with.

Secondly, randomization number and encryption number is

calculated.

Thirdly, first 2 bytes of data is extracted till the end of the file

is read and is worked with, then 8 bytes, then 32 bytes and

then 128 bytes. This process is executed till encryption

number is reached.

The multiple encryptions make our system very secure.

2. ALGORITHM OF BLES VERSION-I

The present method is fully dependent on the text-key which

is any string of maximum length 16 characters long. From the

text-key we calculate two important parameters (i)

Randomization number and (ii) Encryption number. To

calculate this two parameters we use the method developed by

Nath et al(1). We are giving below how we calculate the

above two parameters and then the algorithm of BLES:

A. To calculate randomization number and encryption

number:

The bit-manipulation may be applied multiple times to make

the encryption process hard. The number of times the bit-

manipulation will be repeated to be calculated from user

entered text-key. The algorithm to calculate different

parameters will be almost same as the method described in

MSA algorithm by Nath et. al.

Suppose the user entered a key=”ABCD”

Therefore the length of the key=4

Step-1: Now calculate a sum from the given text key as

follows:

 Sum= basepostion * ASCII value of character

 Here for ASCII code of A=65, B=66, C=67, D=68

 Base=5

 Therefore s1=51 * 65 + 52 * 66 + 53 * 67 + 54 *

68=325+1650+8375+42500

 =51365

 (i) To calculate randomization number we proceed

as follows:

Calculate again sum of the digits in s1 as s2=5+1+3+6+5=20

 Find the modulo with s1 to obtain randomization

number:

 Nrand=s1 % s2=51365 % 20= 5

 If nrand=0 or nrand>32 then set nrand=32.

 (ii) To calculate encryption number we proceed as

follows:

 Calculate a sum as follows:

S3=51*68+52*67+53*66+54*65=340+1675+8250+40625=508

90

 Sum of digits in s3 is s4=5+0+8+9+0=22

 Therefore encryption number nencrypt=s3 % s4=50890

% 22 =4

If nencrypt=0 or >32 then set nencrypt=32.

Now we begin with the Algorithm of BLES Version-I

B. Algorithm for Encryption method : Bit Exchange

Algorithm :

 The algorithm will be divided into several modules where

each module gives the pseudo code of the function that is

implemented.

Module 1

Main Block:

1. Enter file to be encoded i.e. file4

2. Enter file to be saved to i.e. file1

3. Run ini_trans()

4. Run keygen()

5. for t = 1 to times

a. do

b. fp1 -> fopen(file1)

c. l -> ftell(fp1)

d. for i1 = 1

i. do

ii. if (l-sh) >=0 && i1 <=4 then

1. sh -> sh<<2

2. i1 -> i1+1

iii. else

1. i1 -> i1-1

2. break

e. sh -> 2

f. sh1 -> 2

g. fclose(fp1)

h. for m = 1 to i1

i. do

ii. open file1 in read mode

iii. open file2 in write mode

iv. sh1 -> sh1<<1

v. siz -> sh1

vi. l -> ftell(fp1)

vii. n1 -> l/sh

viii. n2 -> l%sh;

ix. n1 -> 0

x. for i = 0 to sh1-1

1. do

2. for j = 0 to sh1-1

a. do

b. mat[i][j] ->

nl++

c. j -> j+1

3. i -> i+1

xi. for q = 1 to n1

1. do

2. nl -> 0

3. for i = 0 to sh1-1

a. do

i. for j = 0 to sh1-1

ii. do

iii. mat[i][j] -> nl++

iv. j -> j+1

b. i -> i+1

4. if secure>500 then

a. secure ->

secure -488

b. tem -> 2

5. for i = 1 to secure

a. do

b. randomization()

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

43

c. i -> i+1

6. if sh=2 then

a. read 2 bytes data from

file1

b. bit_stream()

c. encrypt_bit()

7. if sh=8 then

a. read 8 bytes data from

file1

b. bit_stream()

c. encrypt_bit()

8. if sh=32 then

a. read 32 bytes data from

file1

b. bit_stream()

c. encrypt_bit()

9. else

a. read 128 bytes from file1

b. bit_stream()

c. encrypt_bit()

10. secure -> secure + tem

11. tem -> tem +2

12. q -> q+1

xii. if n2 ! 0 then

1. for i = 0 to n2-1

2. do

3. extract first residual

byte

4. bit_stream1()

5. for j = 0 to 7

a. do

b. write bit to

file file2

c. j -> j+1

6. I -> i+1

xiii. sh -> sh<<2

xiv. close all files

xv. open file2 in read mode(file2 is

the bit file)

xvi. open file1 in write mode

xvii. n -> ftell(fp1)

xviii. /* Now we read the file in

reverse direction

xix. while n>0

1. do

2. n -> n-8

3. read 8 bytes from

file2

4. convert it to

corresponding

character

5. write it to file1

xx. close all files

xxi. byte_exchange()

xxii. m -> m+1

i. t -> t+1

6. end

Module 2

bit_stream()

The above function is used to break down character to its

corresponding bits and store in data[]. The use of this function

is that it coverts 2 bytes, 8 bytes, 32 bytes and 128 bytes at

once.

Module 3

bit_stream1()

This function breaks the residual characters to corresponding

bits. The use of this function is to convert each character at a

time.

Module 4

encrypt_bit()

1. Complement every position in the bit array (data[])

which is divisible by the corresponding bytes being

extracted.

2. s1 -> 0

3. for i = 0 to sh1-1

a. do

b. for j = 0 to sh1-1

i. do

ii. x -> mat[i][j]

iii. temp -> data[s1]

iv. data[s1] -> data[x]

v. data[x] -> temp;

vi. s1 -> s1+1

vii. x -> 0

viii. j -> j+1

c. i -> i+1

4. store elements in the bit array (data[]) into file2.

Module 5

byte_exchange()

1. open file1 in read mode

2. open file2 in write mode

3. l -> ftell(fp1)

4. n1 -> l/16

5. n2 -> l%16

6. nl -> 0

7. for j = 0 to 3

a. do

b. for k = 0 to 3

i. mat[j][k] -> nl++

ii. k -> k+1

c. j -> j+1

8. if secure > 500 then

a. secure -> secure – 488

b. tem -> 2

9. for i = 1 to secure

a. do

b. randomization()

c. i -> i+1

10. for i = 1 to n1

a. do

b. read 16 bytes data from file1

c. encrypt_byte()

d. i -> i+1

11. if n2 <> 0 then

a. for i = 1 to n2

i. do

ii. read one character from file1

iii. write it to file2

iv. i -> i+1

12. close all files

13. copy file2 to file1

Module 6

encrypt_byte()

This function is similar to encrypt_bit()

Module 7

ini_trans()

Step-1: Open plain_text_file in input mode

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

44

Step-2: Open output1 in output mode

Step-3: Read one byte from plain_text_file

Step-4: Convert the byte into 8 bits

Step-5: Reverse all bits

Step-6: Take 1-s complement of all 8-bits

Step-7: Perform XOR operations among the bits as follows:

Step-7.1: Compute Bit-1 xor Bit-8 and substitute the new bit

in bit-8 position.

Step-7.2: Compute Bit-2 xor Bit-7 and substitute the new bit

in bit-7 position.

Step-7.3: Compute Bit-3 xor Bit-6 and substitute the new bit

in bit-6 position.

Step-7.4: Compute Bit-4 xor Bit-5 and substitute the new bit

in bit-8 position.

 Table-1(i) Plain Text=ASCII 1=000000012

Original 0 0 0 0 0 0 0 1

Reverse 1 0 0 0 0 0 0 0

1-s Comp 0 1 1 1 1 1 1 1

Xor=Final

pattern
0 1 1 1 0 0 0 1

Table-1(ii) Plain Text=ASCII 2=000000102

Original 0 0 0 0 0 0 1 0

Reverse 0 1 0 0 0 0 0 0

1-s Comp 1 0 1 1 1 1 1 1

Xor=Final

pattern
1 0 1 1 0 0 1 0

Table-1(iii) Plain Text=ASCII 3=000000112

Original 0 0 0 0 0 0 1 1

Reverse 1 1 0 0 0 0 0 0

1-s Comp 0 0 1 1 1 1 1 1

Xor=Final

pattern
0 0 1 1 0 0 1 1

Step-8 : Convert 8 bits to corresponding byte and write to

output1 file.

Step-9: Read next byte from the same input file and repeat

step-4 to step-8.

Step-10 : Repeat Step-9 till the end of file.

Step-11 : Close output1 file

The entire process above can be repeated n number of times

depending on the value generated by the keygen function.

Decryption Algorithm

The functions used in Decryption Module are :

1.keygen();

2. rev();

3. char_convert();

4. char_convert2();

5. bit_wise_xor(int []);

6. final_trans();

7. randomization();

8. leftshift();

9. cycling();

10. upshift();

11. rightshift();

12. downshift();

13. decrypt_bit();

14. decrypt_byte();

15. byte_exchange();

16. bit_stream(char s[]);

17. bit_stream1(char s,int i1);

18. bit_stream2(char s);

The above functions have been described in out encryption

module. The only difference is that decryption methods will

work in reverse order of the encryption process. It means the

last operation in encryption process should be the first

operation in decryption process.

Functions 7 to 12 are described in MSA algorithm.

RANDOMIXZATION OF MATRIX USING MEHEBOOB,

SAIMA & ASOKE(MSA) RANDOMIZATION METHOD

We first create a square matrix of size n x n where n can be 4,

8, 16 and 32. First we store numbers 0 to (n*n-1). We apply

the following randomization techniques to create a random

key matrix. The detail description of randomization methods

is given by Nath et.al[1].

The following Randomization methods were applied on initial

key matrix to obtain a randomized key matrix:

Step-1: call Function cycling()

Step-2: call Function upshift()

Step-3: call Function downshift()

Step-4:call Function leftshift()

Step-5:call Function rightshift()

3. RESULTS AND DISCUSSION

Ascii 0(255bytes)

0

1

2

3

4

5

6

1 8

1
7

2
3

3
0

3
7

4
4

5
7

6
5

7
1

8
0

8
8

9
4

1
0
2

1
1
1

1
1
8

1
2
6

1
3
3

1
3
9

1
4
5

1
5
4

1
6
5

1
7
3

1
8
6

1
9
4

2
0
2

2
0
8

2
1
3

2
2
2

2
2
8

2
3
3

2
3
9

2
5
0

Ascii

F
r
e
q

u
e
n

c
y

Ascii 0(255bytes)

 Fig-1: Frequency Spectral analyses of Plain Text file

containing 255 ASCII ‘0’.

Ascii 255(255bytes)

0

1

2

3

4

5

6

0 7

1
3

2
4

3
0

3
7

4
2

4
8

5
8

6
7

7
8

8
7

9
6

1
0
4

1
1
1

1
1
9

1
2
7

1
3
2

1
4
2

1
4
7

1
5
8

1
6
7

1
7
3

1
7
8

1
8
5

1
9
1

1
9
6

2
0
5

2
1
5

2
2
1

2
3
1

2
3
9

2
4
8

2
5
5

Ascii

F
r
e
q

u
e
n

c
y

Ascii 255(255bytes)

Fig-2: Frequency Spectral analyses of Plain Text file

containing 255 ASCII ‘255
Ascii 8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 11 23 35 56 66 80 95 10
8

12
0

13
2

14
5

16
4

17
4

18
6

19
9

20
9

22
0

23
3

24
2

Ascii

F
re

q
u

en
cy

Ascii 8

 Fig-4: Frequency Spectral analyses of Plain Text file

containing 255 ASCII ‘8’.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

45

Ascii 32

0

1

2

3

4

5

6

7

2

1
0

2
4

3
5

4
7

6
0

6
9

7
7

8
5

9
6

1
1
2

1
2
4

1
3
7

1
4
8

1
6
8

1
7
9

1
9
1

2
0
1

2
1
3

2
2
6

2
3
4

2
4
3

Ascii

F
re

q
u

e
n

c
y

Ascii 32

Fig-6: Frequency Spectral analyses of Plain Text file

containing 255 ASCII ‘32’

Ascii 128

0

1

2

3

4

5

6

0

1
0

2
5

3
7

5
0

6
4

7
2

8
4

9
5

1
0
8

1
1
8

1
3
6

1
4
7

1
5
7

1
7
4

1
9
1

2
0
3

2
1
4

2
2
4

2
3
5

2
4
9

Ascii

F
re

q
u

e
n

c
y

Ascii 128

Fig-8: Frequency Spectral analyses of Plain Text file

containing 255 ASCII ‘128’.

Ascii 1 (255bytes)

0

1

2

3

4

5

0 10 20 29 37 49 58 67 79 96 10
5

11
6

12
9

14
0

15
1

16
0

17
5

18
4

19
4

20
5

21
9

23
1

24
4

25
3

Ascii

F
r
e
q

u
e
n

c
y

Ascii 1 (255bytes)

Fig-9: Frequency Spectral analyses of Plain Text file

containing 255 ASCII ‘1’.

Pattern1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5

1
6

2
8

3
6

5
0

6
1

6
8

7
3

7
9

8
8

9
4

1
0
6

1
1
1

1
1
8

1
2
4

1
3
5

1
4
2

1
4
9

1
6
2

1
7
3

1
8
1

1
8
9

1
9
4

2
0
1

2
0
7

2
1
4

2
2
1

2
2
9

2
3
7

2
4
7

2
5
4

Ascii

F
r
e
q

u
e
n

c
y

Pattern1

Fig-10: Frequency Spectral analyses of Plain Text file

containing 254 ASCII ‘1’ and 1 ASCII ‘2’.

Pattern2

0

1

2

3

4

5

6

0 5

1
2

1
8

2
4

3
1

3
9

5
2

5
9

6
4

7
3

7
9

8
6

9
3

9
9

1
0
7

1
2
2

1
3
4

1
4
7

1
5
2

1
6
3

1
7
4

1
8
1

1
8
7

1
9
6

2
0
5

2
1
3

2
1
9

2
2
5

2
3
2

2
3
8

2
4
6

2
5
4

Ascii

F
r
e
q

u
e
n

c
y

Pattern2

Fig-11: Frequency Spectral analyses of Plain Text file

containing 1 ASCII ‘2’ and 254 ASCII ‘1’.

Table 1: A Plain Text file contain a paragraph and its

encrypted file.

St.Xavier's College is
owned and managed by
the Jesuits
of the Calcutta Province
of the Society of Jesus.
With the
registrarion of Catholic
Mission of West Bengal
(also known
as Calcutta Province of
the Society of Jesus)
under the Societies
Registration Act 1961,
the ownership of St.
Xavier's College was
vested with this said
society from its
registration in 1972,
and it
was administered by a
Governing Body
constituted as per
statutes of Calcutta
University.

┤;qⁿcs}╬º┤Uk┌╞#→RR╢å◘RÇ╔☻≈
Ö•Θ╬÷X╧▀±≤→╕á>]ny╔┬╧uß▬\Ü
╒╟y▄U╘╘╚è]═nΩì┘@╤7╒╢Nó▄■
↕
Ü±₧)L█αBM\╚≤=U@²┬½É╡╕Mëy^
φd♪ò╜'♦ä♫╒° í╗~↑c∙R╒ò
♀¬╓↓¢H≤v╛rWTJ %∙C▼╕º↔fr_á
►♠≥ê╖;╥→Æ♫Du▬i☻ⁿ|£╩α☼§c→
δ
↕╕à▼à█\N⌡ilin8ô╙,τ@`s╥ªOoε
ε σ!~Σ∩ïW╚ÿ◄│╝↔Ω╘╚◘
┼ºƒ⌂ê#KH(☼═↑O Θ;┬☻
ÿ°m┘ò÷{b┬üFI⌠☺ß└¿h
lO@■π═└Jî═qZ9╘τ\ÿ=£8%☺╓Ω╡
‼^á∩g¼→èoQ┘╘☺S│ⁿZ├HC┤Ñτt
áαº_L←VX£▼ó≥o▲░Üa╦▀ΣI√9♣╡
ßδ▓ƒφc;ÿù<Φ2÷¶b#u*÷%╖IDT♪aôZ╞
Dælfú/lX[ⁿÑ■═ªë∙Φ<f¥╠•ε±↨ε╦@⌡╙
Ü;XX↓←ë┬kú╤m☻IΩƒh⌐üΓ$ε-
▓q╠¿]2sσ?╔gx╩
(xòAÜ¶¿C→_ª ΩM X┘≥╛q+A╠W
∟~!∟→t*Ω÷↑═ò╬╡H♣i╜mN

4. CONCLUSION AND FUTURE SCOPE

The maximum randomization number we have used is 500

and encryption number 32. The encrypted text cannot be

decrypted without knowing the exact initial random matrix.

The size of random matrices is 4x4, 8x8, 16x16, 32x32. The

numbers may be arranged in 16! Ways in 4x4 matrix. The

numbers in 8x8 matrix may be arranged in 64! Ways. The

numbers in 16x16 may be arranged in 256! Ways. The

numbers in 32x32 may be arranged in 1024! ways. To

complete the whole process we choose any of the random

matrix to perform bit exchange method and there is no

similarity between any two matrices and even if there is then

it is very hard to find out the similar ones. The spectral

analysis shows that our present method is free from standard

cryptography attacks namely brute force attack, known plain

text attack and differential attack. The present method will be

most effective to encrypt short message such as SMS in

mobile phone, password encryption and any type of

confidential message. If the file size is large then the present

method will take more time to encrypt. So therefore BLES

may be used in defence systems, Banking systems, Sensor

networks, Mobile computing etc. BLES may be further

upgraded by introducing generalized modified vernam cipher

method with feedback introduced by Nath et al[7,8].

5. ACKNOWLEDGMENTS

We are very much grateful to the Department of Computer

Science to give us this opportunity to work on symmetric key

Cryptography. One of the authors (AN) sincerely expresses

his gratitude to Fr. Dr. Felix Raj, Principal of St. Xavier’s

College(Autonomous) for giving constant encouragement in

doing research in cryptography. NK is grateful to Mr.

Biswanath Chakraborty for his support and inspiration.

6. REFERENCES

[1] Symmetric Key Cryptography using Random Key

generator : Asoke Nath, Saima Ghosh, Meheboob Alam

Mallik: “Proceedings of International conference on

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

46

security and management(SAM’10” held at Las Vegas,

USA Jull 12-15, 2010), Vol-2, Page: 239-244(2010).

[2] Advanced Symmetric key Cryptography using extended

MSA method: DJSSA symmetric key algorithm: Dripto

Chatterjee, Joyshree Nath, Soumitra Mondal, Suvadeep

Dasgupta and Asoke Nath, Jounal of Computing, Vol 3,

issue-2, Page 66-71,Feb(2011).

[3] A new Symmetric key Cryptography Algorithm using

extended MSA method :DJSA symmetric key algorithm,

Dripto Chatterjee, Joyshree Nath, Suvadeep Dasgupta

and Asoke Nath : Proceedings of IEEE

International Conference on Communication Systems

and Network Technologies, held at SMVDU(Jammu) 03-

06 June,2011, Page-89-94(2011).

[4] New Symmetric key Cryptographic algorithm using

combined bit manipulation and MSA encryption

algorithm: NJJSAA symmetric key algorithm :Neeraj

Khanna, Joel James,Joyshree Nath, Sayantan

Chakraborty, Amlan Chakrabarti and Asoke Nath :

Proceedings of IEEE CSNT-2011 held at

SMVDU(Jammu) 03-06 June 2011, Page 125-

130(2011).

[5] Symmetric key Cryptography using modified DJSSA

symmetric key algorithm, Dripto Chatterjee, Joyshree

Nath, Sankar Das, Shalabh Agarwal and Asoke Nath,

Proceedings of International conference Worldcomp

2011 held at LasVegas 18-21 July 2011, Page-306-311,

Vol-1(2011).

[6] An Integrated symmetric key cryptography algorithm

using generalized vernam cipher method and DJSA

method: DJMNA symmetric key algorithm : Debanjan

Das, Joyshree Nath, Megholova Mukherjee, Neha

Chaudhury and Asoke Nath: Proceedings of IEEE

International conference : World Congress WICT-2011

to be held at Mumbai University 11-14 Dec, 2011, Page

No.1203-1208(2011).

[7] Symmetric key cryptosystem using combined

cryptographic algorithms- generalized modified vernam

cipher method, MSA method and NJJSAA method:

TTJSA algorithm – Trisha Chatterjee, Tamodeep Das,

Joyshree Nath, Shayan Dey and Asoke Nath,

Proceedings of IEEE International conference : World

Congress WICT-2011 t held at Mumbai University 11-14

Dec, 2011, Page No. 1179-1184(2011).

[8] Symmetric key Cryptography using two-way updated –

Generalized Vernam Cipher method: TTSJA algorithm,

International Journal of Computer Applications(IJCA,

USA), Vol 42, No.1, March, Pg: 34 -39(2012).

[9] Ultra Encryption Standard(UES) Version-I: Symmetric

Key Cryptosystem using generalized modified Vernam

Cipher method, Permutation method and Columnar

Transposition method, Satyaki Roy, Navajit Maitra,

Joyshree Nath,Shalabh Agarwal and Asoke Nath,

Proceedings of IEEE sponsored National Conference on

Recent Advances in Communication, Control and

Computing Technology-RACCCT 2012, 29-30 March

held at Surat, Page 81-88(2012).

[10] An Integrated Symmetric Key Cryptographic Method –

Amalgamation of TTJSA Algorithm,

Adbvanced Caeser Cipher Algorithm, Bit Rotation and

reversal Method : SJA Algorithm., International Journal

of Modern Education and Computer Science, Somdip

Dey, Joyshree Nath, Asoke Nath,(IJMECS), ISSN: 2075-

0161 (Print), ISSN: 2075-017X (Online), Vol-4, No-5,

Page 1-9,2012.

[11] An Advanced Combined Symmetric Key Cryptographic

Method using Bit manipulation, Bit Reversal,

Modified Caeser Cipher(SD-REE), DJSA method,

TTJSA method: SJA-I Algorithm, Somdip dey, Joyshree

Nath, Asoke Nath, International Journal of Computer

Applications(IJCA 0975-8887, USA), Vol. 46, No.20,

Page- 46-53,May, 2012.

[12] Cryptography and Network Security, William Stallings,

Prectice Hall of India.

