
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

19

CIDT: Detection of Malicious Code Injection Attacks on
Web Application

Atul S. Choudhary

Vishwakarma Institute of Technology, Pune, India.

M. L. Dhore
Vishwakarma Institute of Technology, Pune, India.

ABSTRACT
Security is one of the major concerns in communication

networks and other online Internet based services, which are

becoming pervasive in all kinds of domains like business,

government, and society. Network security involves activities

that all organizations, enterprises, and institutions undertake

to protect the value and usability of their assets and to

maintain the integrity and continuity of operations that are

performed at their end. Network security exists on all the

different layers of an OSI model, Application-level web

security comes at the application layer and it refers to

vulnerabilities inherent in the code of a web-application itself

irrespective of the technologies in which it is implemented.

Security in web applications is becoming very important

because of the real time transactions that are required over the

internet these days. Various attacks are carried out on the web

applications and behind every attack; there is vulnerability of

some types or the other. Now-a-days application-level

vulnerabilities have been exploited with serious

consequences: E-commerce sites are tricked by attackers and

they lead into shipping goods for no charge, usernames and

passwords have been cracked, and confidential and important

credentials of users have been leaked. SQL Injection attacks

and Cross-Site Scripting attacks are the two most common

attacks on web application. Proposed method is a new policy

based Proxy Agent, which classifies the request as a scripted

request, or query based request, and then, detects the

respective type of attack, if any in the request. This method

detects both SQL injection attack as well as the Cross-Site

Scripting attacks.

General Terms
Pattern Recognition, Regular Expression, Sanitization.

Keywords

Code Injection, SQL Injection, Cross Site Scripting, HTTP

Protocol

1. INTRODUCTION
With the evolution of internet over the years, it has become an

integral part of virtually every aspect in the business process

cycle. Internet is a widespread information infrastructure and

an insecure channel for exchanging information. Of course, as

the usefulness and complexity of Internet grew through

increased use of Web applications, the security risks involved

also grew proportionately. Web security is the set of rules and

measures taken against web security threats and Web privacy

is the ability of hiding end user’s information. Mostly, web

applications have the vulnerability (weakness) which makes a

threat possible. An attack may be possible due to poor design,

configuration mistakes, or poorly written code of the web

application. A threat can be harmful for database, control of

web application, and other components of web application,

which are needed to be protected from all types of threat.

Web application security relies on the ability to inspect HTTP

packets to handle threats at Layer-7 of the OSI model.

Attackers are all too familiar with the fact that traditional

perimeter security methods do not stop attacks against Web

applications that are, by nature, designed to allow visitors to

access data that drives the Website. By exploiting simple

vulnerabilities in Web applications, an attacker can pass

through the perimeter security even when the traditional

firewall and IDS systems are in place to protect the

application. Web applications contain rich content to be

transferred from web application to the server site, which

makes the website vulnerable to various types of code

injection attacks. Injection attacks are the result of a Web

application sending untrusted data to the server. The most

common attack occurs from malicious code being inserted

into a string which is sent to the SQL Server for execution [1,

4]. This attack, known as SQL Injection, allows the attacker to

access data from the database, which can be stolen or

manipulated. Cross-Site Scripting, or XSS, is another

prevailing security flaw that Web applications are vulnerable

to. In an XSS attack, the attacker is able to insert malicious

code into a website. When this code is executed in a visitor’s

browser it can manipulate the browser to do whatever it

wants. Typical attacks include installing malware, hijacking a

user’s session, or redirecting users to another site.

According to the survey sponsored by AcrSight and carried

out by Ponemon Institute is based on the study of Frequency

of Cyber Attacks and Annual Cost of Cyber Crimes in the top

50 US based companies [3]. The statistics shows that

malicious code and web based attacks together comprise a

considerable frequency of occurrences and code injection

attacks has the highest percentage of investment done by the

companies to overcome the loss caused by the attacks.

Therefore, a secure way of communication should be

maintained between client and server, which would prevent

the users from various cyber attacks while performing any

online transactions. This paper addresses some of these

problems and proposes a Code Injection Detection Tool

(CIDT), which successfully detects all type of SQL Injection

and Cross site scripting attacks in order to maintain a secure

channel between user’s browser and web server.

2. BACKGROUND
Code Injection is a type of attack in a web application, in

which the attackers inject or provide some malicious code in

the input data field to gain unauthorized and unlimited access,

or to steal credentials from the users account. The injected

malicious code executes as a part of the application. This

results in either damage to the database, or an undesirable

operation on the internet. Attacks can be performed within

software, web application etc, which is vulnerable to such

type of injection attacks. Vulnerability is a kind of lacuna or

weakness in the application which can be easily exploited by

attackers to gain unintended access to the data [2]. Some

common code injection attacks are HTTP Request Splitting

Attacks, SQL Injection Attacks, HTML Injection Attacks,

Cross-Site Scripting, Spoofing, DNS Poisoning etc.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

20

2.1 Types of Code Injection Attack

2.1.1 SQL Injection
SQL Injection Attacks (SQLIA) refers to a class of code-

injection attacks in which data provided by user is included in

the SQL query in such a way that part of the user’s input is

treated as SQL code. These types of vulnerabilities come

among the most serious threats for web applications. Web

applications that are vulnerable to SQL injection allows an

attacker to manipulate SQL queries, which are input to the

database and provide them with complete access to the

underlying databases. SQL Injection vulnerabilities occur

because of nonexistent and/or incomplete validation of user

input. As a result, an attacker can inject input that potentially

alters the behavior of the script being executed [6, 8]. SQL

Injection Attacks can be done in various ways like using

UNION keyword, Tautology condition, Group by Having

Clause etc. There are also various ways of performing such

attacks which are discussed in [4], [5], and [7] by different

authors.

Tautologies: This type of an attack is used to authenticate and

identify the vulnerabilities in any web application. After

knowing about the vulnerabilities, it extracts data from the

database. Here, some code is injected into input fields, which

always evaluates to true, results in giving access to the

attacker. Consider a login page of a web application, which

ask user to enter username and password to get login into it.

This user details goes to the database in the form of a SQL

query as shown,

"SELECT * FROM Employee WHERE username = 'admin'

AND password='12345'

However, an attacker manipulates the query by injecting some

malicious content in the text fields of the web application. The

malicious query looks like as shown,

"SELECT * FROM Employee WHERE name = ' ' OR 1=1 – –

' ' AND password= ' 12345'.

The single quote (') symbol indicates the end of string, and (-

-) symbol is used as a comment which successfully terminates

the query without generating any error. Because of this, the

whole query will return true for Query result variable [4],

which authenticates the user without checking password.

Illegal/Logically Incorrect Queries: This category of attack is

called as the pre-preparation of attack. An attacker injects

some illegal information in the input fields, which goes to the

database in the form of a SQL query and after evaluation the

database response with an error message; this error message

contains some information about the database. Hence, an

attacker comes to know about the backend database in use,

along with some of the field names. Attacker can use this

information in future for his personal advantage.
Example: An attacker enters as input “' UNION SELECT

SUM (username) from users--”.

The resulting query formed is shown below:

SELECT * FROM users WHERE username='' UNION

SELECT SUM (username) from users--' and password=''”;

This query tries to execute the column username from users

table and it tries to convert the username column into integer,

which is not a valid type conversion, hence, the database

server returns an error message which contains name of the

database and information of the column field.

UNION Query: The intent behind this attack is bypassing

authentication and extracting data. This attack uses the

“UNION” operator, which performs union between two or

more SQL queries. As a result of this attack, database returns

a dataset which is union of the results of original query and

the injected query.
Example: SELECT username FROM user1 WHERE

designation =’%lecturer’

UNION

SELECT username FROM dba_users WHERE username

like’%’

The list returned to the web form includes all the selected

lecturers, but also all the database users in the application.

Stored Procedures: Some user-defined functions created by

the database users can be used whenever needed [4]. To use

this function collection of SQL queries is included.

Example: SELECT Salary FROM employee WHERE

Username=’ ’; SHUTDOWN; -- Password=’ ‘;

This query may results in the abrupt shutdown of the system

without any notification.

Piggy-Backed Queries: In this type of attacks some additional

queries are appended at the end of a valid SQL query which

makes this attack type very harmful.

Example: SELECT * FROM Employee WHERE eid=’e001’

AND password=’1234’; DROP TABLE Employee; --’;

This SQL statement results in deleting the Employee table.

2.1.2 Cross Site Scripting
Cross-Site Scripting also known as XSS is another very

harmful attack type of code injection attack discussed in [14].

This flaw occurs mainly due to the lack of input validation

and encoding. XSS allows attackers to execute script in the

victim’s browser, which can hijack user sessions, deface web

sites, insert hostile content, and conduct phishing attacks [22,

23]. Any scripting language supported by the victim’s

browser can also be a potential target for this attack. All web

application frameworks are vulnerable to XSS. Different types

of XSS Attacks are discussed in [14] and it also shows how

such attacks are carried out.

Reflected: Reflected attacks are those where the injected code

is reflected off the web server, such as in an error message,

search result, or any other response which includes some or

all of the input sent to the server as part of the request.

Reflected attacks are delivered to victims via another route,

such as in an e-mail message, or on some other web server.

When a user is tricked into clicking on a malicious link or

submitting a specially crafted form, the injected code travels

to the vulnerable web server, which reflects the attack back to

the user’s browser [14]. The browser then executes the code

because it came from a "trusted" server. This type of attack is

also called as non-persistent XSS attack.

Stored: In Stored attacks injected code is persistently stored

on the target servers, such as in a database, in a message

forum, visitor log, comment field, etc [14]. Therefore, an

attacker stores the script only once and it is executed as many

times as the web page is visited by victim and send the

victim’s sensitive information from his site to the attacker’s

site.

3. RELATED WORK
Many existing techniques, such as filtering, information flow

analysis, penetration testing, and defensive coding, can detect

and prevent a subset of the vulnerabilities that lead to SQLIAs

and Cross site scripting attacks. In this section, we list the

most relevant techniques and discuss their limitations with

relation to code injection attacks.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

21

Stephen W. Boyd and Angelos D. Keromytis [9] in year 2004

proposed an approach, which is based on the concept of

Instruction Set-Randomization. In this approach, the

predefined SQL keywords are manipulated by appending a

random integer to them before sending to the database, which

the attacker cannot easily guess. These randomized keywords

cannot be recognized by the database. To overcome this

problem the authors has proposed an independent module

which acts like a proxy agent and decodes the SQL keywords

to their original name before forwarding them to the Database

Server. There is negligible performance overhead found but

this method is capable of detecting only tautology type of

SQLIA.

Russell A. McClure and Ingolf H. Krüger [10] in year 2005

proposed an approach, based on the concept of Object

Oriented Programming. Their solution consists of an

executable Sqldomgen which is executed against a database.

The output generated by sqldomgen is a Dynamic Link

Library (DLL), containing classes which are strongly typed to

a database schema. These classes are referred as SQL Domain

Object Model (SQL DOM). Using these classes, an

application developer is able to construct dynamic SQL

statements without manipulating any string. In this approach,

an object data model is used to construct every possible valid

SQL statement. Next, they obtain the schema of the database,

and then iterate through the tables and columns contained in

the schema and output number of files containing a strongly

typed instances of the abstract object model. This method

detects the attack in the code at compile time rather then

runtime, and didn’t proved to be effective against stored

procedure SQLIA.

William G.J. Halfond and Alessandro Orso [11] in 2005,

proposed a technique, which uses a Model-based Approach

(AMNESIA) to detect illegal queries before they get execute

on the database. AMNESIA is based on both static and

dynamic analysis of queries and compares the dynamically

generated queries against the statically generated queries

using runtime monitoring. This tool first identifies the Hotspot

in SQL query and then builds a SQL query model for each

generated Hotspot in order to compute the values of query

string passed to a database. Next, when the input query

reaches the Hotspot, then the runtime monitoring is performed

and if the query is compliant with the model, the monitor lets

the query to get execute. This approach gave no false positive

and detected 1470 attacks performed for 3500 legitimate

accesses to the applications.

Shaukat Ali, Azhar Rauf, Huma Javed [12] gave a method in

year 2009. The technique uses stored procedures and hash

values of username and password for authenticating users to

the database and protecting it against SQLIA. These hash

values for username and password are generated

automatically when the user enters into database. A user is

authenticated by his username, password and hash values for

username and password. The evaluation results showed that

the time overhead of the approach is too small and is 1.3

milliseconds. But this method detected only tautology type

SQLIA.

MeiJunjin [13] in 2009 proposed a method which use the tool

given in [11]. This method use static, dynamic and automatic

testing method for the detection of SQL injection

vulnerabilities. Flow of input values used for a SQL Injection

is traced using the AMNESIA SQL query model [11] and

string argument instrumentation. Based on the input flow

analysis, test attack inputs are generated which are used to

construct SQL query. Hotspot Test cases are generated with a

Jcrasher and collected by SQLInjectionGen using java

application’s byte code and modified the byte code so that an

exception is raised just before the hotspot is executed. If the

execution of these test cases with malicious input does not

reach a hotspot, the program has effectively blocked the

malicious input. The proposed automated technique is

evaluated with the static analysis tool, FindBugs, and resulted

to be efficient as regard to the fact that false positive was

completely absent in the experiments.

Rattipong Putthacharoen, Pratheep Bunyatnoparat [15] in

2011 uses the method of rewriting the cookies. Main aim of

this dynamic cookie rewriting is to make the cookies useless

for XSS attacks. A proxy agent between user’s browser and

web server is used, which changes the value of name attribute

in the cookies field. The returned cookies from the browser

are rewritten back to their original value at web proxy before

being forwarded to web server. As browser’s database do not

store original information of cookies, so even if attackers steal

cookies from the database, they cannot be used later to

impersonate the users. The tool detected both categories of

XSS attack without having any changes made at the client and

server site. But the proxy failed to intercept https requests

coming from the client.

The proposed approach by E. Galan, A. Alcaide, A. Orfila, J.

Blasco [16] in 2010, enhanced the scope of current scanners

by using a Multi-agent Architecture. The approach is able to

detect Stored as well as Reflected XSS vulnerabilities by

using multiple agents, which worked independent of each

other to detect the attacks. Proposed method is tested in

different scenarios; secured and unsecured, but only basic

attack vectors were tested, more vectors can be added to test

the accuracy of their approach.

David Scott and Richard Sharp [17] created an Application

level firewall in 2001, using Security-Policy Description

language (SPDL). The security policies were written in

SPDL-1 language, and compiled for execution at the security

gateway. SPDL specify a set of validation constraints and

transformation rules. The policy compiler translates the SPDL

into code for checking validation constraints. In addition, an

Application-Level Security Gateway is placed between web

server and client machines for detecting the attacks. The only

limitation of this method is its failure against stored XSS

attack.

Peter Wurzinger, Christian Platzer, Christian Ludl, Engin

Kirda, and Christopher Kruegelk [18] in 2009 proposed an

idea of Reverse Proxy. They introduced SWAP (Secure Web

Application Proxy), a server-side solution for detecting and

preventing cross-site scripting attacks. SWAP comprises a

reverse proxy which intercepts all HTML responses and a

modified web browser which is utilized to detect script

content. SWAP can be deployed transparently for the client,

and requires only a simple automated transformation of the

original web application. It has the limitation of performance

overhead, not suitable for high-performance web services and

is limited to only JavaScript.

Engin Kirda, Christopher Kruegel, Giovanni Vigna, and

Nenad Jovanovic [19] proposed a Personal Web Firewall

Noxes in the year 2006, which is based on Client-Side Attack

Detection. Noxes acts as a web proxy and uses both manual

and automatically generated rules to mitigate possible cross-

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

22

site scripting attempts. It effectively protects against

information leakage from user’s environment while requiring

minimal user interaction and customization effort. Limitation

of the approach is it’s lacking SSL support and failure against

stored XSS attacks.

None of the existing technique provides an efficient solution

for detecting both types of code injection attacks i.e. SQL

Injection and Cross site scripting. Hence, some technique

should be designed for providing more security to the users

and providing a secure environment for making any online

transaction via internet. For providing such high level security

we propose Code Injection Detection Tool (CIDT) which

provides security against both the categories of code injection

attacks and also their various types. It comprises two

separate modules which function’s independently of each

other. And any HTTP request coming to CIDT is verified by

both the modules separately.

4. PROPOSED METHODOLOGY
A Code Injection Detection Tool (CIDT) is proposed in this

paper which deals with both the Code Injection attacks,

caused via Vulnerable Web Applications. The proposed

system has two modules; the Script detector and Query

detector. HTTP request coming from the client side instead of

going to the web server is transferred to CIDT within which

the request is feed to both modules one by one. And when,

any malicious content is found in the request by either of the

module, the request is considered as invalid and its execution

is prevented on the web server.

The block diagram of proposed system is shown in figure 4.1.

CIDT functions like a proxy between user request and web

server. The HTTP request having a session id is forwarded to

the proxy agent (CIDT), which authenticates the request by

sending it to the Query detector and Script Detector. First,

Script detector validates the request and if any invalid

character is found in the input query it is rejected and not

forwarded to the next module. Only request which are

reported as valid by Query detector are forwarded to the next

module. Script detector filters the request for invalid tags and

encodes it before forwarding to the server. Functionality of

both the modules is independent in a sense that the valid

request goes to both the modules before getting executed on

the web server.

4.1 Query Detector

A Query Detector is a simple tool which is used to test the

precision of SQL Queries, and detecting malicious request

from user at the web server. It takes request coming from any

user and validates the request before forwarding it to the web

server for further execution and processing.

 User Input

 Session ID HTTP Request

Fig. 1 Block diagram of CIDT

4.1.1 Session Manager
When HTTP request goes to the web server a Session object

for that user is initialized [25], which assign a Session

variable or Token for that particular connection. This session

remains in its active state until the connection remains active.

As soon as the connection is terminated the session terminates

accordingly.

4.1.2 Input Valuator
Input_Valuator is a key section of Query detector. It works as

a Proxy between Client and the web server and any request

going on the web server is first validated at the

Input_Valuator. It has an attack vector repository consisting

of some special characters (e.g. ' - ;) which are often used in

writing malicious code for SQL Injection attack. It does the

functionality of matching user supplied data in HTTP request

with the text file stored in attack repository. When user

supplied text contain any special symbols which are present in

the repository, it is treated as invalid request by the

Input_Valuator. Execution of that request on the web server is

prevented. If no pattern is matched then that request is treated

as valid and is forwarded to the next module for filtering the

script tags.

Web

Application

Session

Manager

Code Injection Detection Tool

Script Detector

Query Detector

Web

Server

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

23

 User Input

 Session ID HTTP Request

 No

 Match

 Match

 Found

Fig. 2 Block diagram of Query detector

4.2 Script Detector
Script detector is used to detect the malicious script embedded

in the web application. It sanitizes HTML input before

executing on the web server. This sanitization process

removes all the invalid and unwanted tags from the user input

and then encodes the remaining input into simple text thus

preventing the execution of any malicious script. The block

diagram of Script Detector shown in figure 4.3 has different

blocks which prevent the Cross-Site Scripting attack.

4.2.1 HTML Sanitizer
HTML Sanitizer removes unsafe tags and attributes from

HTML code. . It takes a string with HTML code and strips all

the tags that do not make part of a list of safe tags. The list of

safe tags is defined according to the whitelist tags list given

by Open Web Application Security Project (OWASP) [20].

There are some functions to dis-allow unsafe or forbidden

tags like script, style, object, embed, etc. It can also remove

unsafe tag attributes, such as those that define JavaScript code

to handle events. The links href attributes also gets special

treatment to remove URLs that trigger JavaScript code

execution and line breaks. The list of all the allowed tags and

forbidden tags is given in Table 2. The sanitization process

starts with breaking the HTML string in tokens; this

functionality is handled by HTML tokenizers.

4.2.2 Tokenizer

Tokenizer divides the HTML text within user input into

tokens. A token is a single atomic unit of supplied text. In

proposed method a token is be one of the following: tag start

(), comment (), tag content (“text”), a tag closing (). As a

result of this a list of tokens will be created, and then each and

every token in this list is matched with the whitelist tags and

forbidden tags shown in Table 2. And then the HTML

Sanitizer forward’s the user request to HTML Encoder.

 User Input

 Session ID HTTP Request

Fig. 3 Block diagram of Script detector

4.2.3 HTML Encoder
HTML encoder performs the character escaping. It uses the

HtmlEncode Method of ASP.NET to encode the user input.

The HtmlEncode method applies HTML encoding to a string

to prevent a special character to be interpreted as an HTML

tag. This method is useful for displaying text that contain

"special" HTML characters such as quotes, angular brackets

and other characters by the HTML language. Table 1 shows a

list of some of these special characters and their equivalent

encoded value, which is used by the HTML Encoder to

encode the input.

4.2.4 Script Pattern
This contains all the tags and patterns that are used to match

with the tokens which are formed by the tokenizer. It contains

list of all the forbidden tags, allowed tags, tag starting pattern,

tag closing pattern, comment patterns, style pattern,

URLpattern etc. The list of all patterns used by this module is

shown in Table 2.

4.2.5 Pattern Matcher
The functionality of this module is just to take the input from

the list of tokens and match them with the Script Patterns. All

the rejected tags are stored in the invalid tags list and all the

accepted tags are forwarded to the HTML Encoder for

encoding.

Table 1. List of Special character and encoded values [26]

Special Characters Equivalent Encoded

value

“ {double quote} "

'{apostrophe / single quote } '

& &

< <

> >

{space}

{tab}

Web

Application

Session

Manager

Input

Valuator

Matching

Web

Server

Proxy Agent

Text

File

Attack Alert

Web

Application

Session

Manager

HTML Sanitizer

HTML

Encoder

Tokenizer

Token List

Pattern

Matcher

Invalid

Tags

Script

Pattern

HTML Token

Accepted

Tokens

Rejected

Tokens

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

24

Table 2. List of Tags and Patterns [26]

Forbidden tags (script|object|embed|link|style|form|inpu

t)

allowedTags (b|p|i|s|a|img|table|thead|tbody|tfoot|tr|th|

td|dd|dl|dt|em|h1|h2|h3|h4|h5|h6|li|ul|ol|s

pan|div|strike|strong|"+

"sub|sup|pre|del|code|blockquote|strike|

kbd|br|hr|area|map|object|embed|param|l

ink|form|small|big)

commentPattern <!--.*

tagClosePattern </(?i)(\\w+\\b)\\s*>$

tagStartPattern <(?i)(\\w+\\b)\\s*(.*)/?>$

standAloneTags (img|br|hr)

attributesPattern (\\w*)\\s*=\\s*\"([^\"]*)\

stylePattern ([^\\s^:]+)\\s*:\\s*([^;]+);?")

urlStylePattern (?i).*\\b\\s*url\\s*\\(['\"]([^)]*)['\"]\\)")

The Comment Patterns mentioned in Table 2 are formed using

Regular Expressions. These are recursive structures built up

from basic strings and union, concatenation, and repetition

(zero or more times) of other regular expressions. A regular

expression is a sequence of the following items:

 A literal character.

 A matching character, character set, or character class.

 A repetition quantifier.

 An alternation clause.

 A sub pattern grouped with parentheses.

5. SYSTEM IMPLEMETATION
We implemented the prototype version of CIDT as a

Windows .NET application in C#. We choose .NET because

in the literature survey we found that all the categories of code

injection attacks were not succeeded on the application build

using Java. The web applications on which attacks are

performed and tested is implemented using simple web

technologies like HTML, CSS, and Active Server Pages.

Query Detector and Script Detector are implemented

separately and then they are combined together to form a

Code Injection Detection Tool. Algorithm 5.1 and Algorithm

5.2 are used for implementing the modules.
A web application having login page, a text file containing

some special characters as discussed in section 4.1, and a

database to store the user’s login information is required for

implementing Algorithm 5.1. It is used for preventing user

from SQL Injection attack.

Algorithm 5.1 Query Detector

\begin {SQL_Detect}

Step 1: Accept u_name, u_pass in text from users.

Step 2: Start the Session for current u_name.

Step 3: Forward u_name to FileInput.aspx.

Step 4: Set attack False;

Step 5: Repeat <for each line of input>

 Until { (line equal to Test.txt) and not equal to Null }

 \End While

Step 6: Set line String Pattern;

Step 7: If { u_name.contains(line)}

 Set attack true;

 \End If

Step 8: If { attack equals to true }

 Set Valid false;

 Else

 Set Valid true;

 \End If

Step 9: If { Valid is equal to false }

 Discard U_name from entering into the database.

 Else

 Allow Connection to database.

\End

User’s request through a web application is forwarded to the

Query Detector. Algorithm 5.1 then matches the content of

user request with the text file for any special character. If any

special character gets matched, the request is said to an

invalid request and its execution is stopped. Otherwise it is

allowed to be executed.

Algorithm 5.2 Script Detector

Step 1: Take user input in the form of any HTML text having

scripts, tags, links, or urls.

Step 2: Tokenize the input code.

Step 3: Store all the tokens in a list.

Step 4: Having the list of token, check for every single token

whether it is acceptable or not.

 Repeat {for every token check it with a regular

expressions}

a) If token is a comment discard it.

b) If { token is a start tag }

 Extract the tags and all its attributes

 If { Forbidden Tag }

 Remove the tag.

 \End if

If { Allowed Tag } then do

 Extract every attribute of the tag.

i) Check the “href” and “src” for admitted tags.(a,

img, embed)

ii) Check the “style” attribute and discard it.

iii) Remove every “on…..” attribute

(onclick,onmouseover…)

iv) Encode attribute value for unknown ones.

v) Push the tag on the stack of open tags.

 Else

The tag is unknown and will be removed.

 \End If

If { token is a end tag } then do

 Extract the tag

 Check whether the corresponding tag is already open.

Else

 It is not a tag encode it.

\End If

\End While

Algorithm 5.2 describes the process of sanitization.

Sanitization is a process of filtering html content present in

the input request. The function of sanitizer is to tokenize the

user request and collects the list of tokens. Each token is

matched with the script pattern using regular expressions.

Unwanted or invalid tokens are removed from the user request

and then the system encodes it before forwarding to the web

server.

6. DISCUSSION
Code injection attacks could be easily carried out on a

vulnerable web application using widely known attack vectors

[21, 24]. Our web application is also attacked by some attack

vectors and almost all the attack vectors successfully break

the security of the application. All types of SQL Injection

file://w+/b)/s*%3e$
file://w+/b)/s*(.*)/%3f%3e$
file://w*)/s*=/s*/%22(%5b%5e/%22%5d*)/
file://s*:/s*(%5b%5e;%5d+);%3f%22)

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

25

attacks and Cross site scripting attacks were successfully

carried out to breach the security of the system.

Code Injection Detection Tool (CIDT) is applied on the same

web application and once again all the previously unbeaten

attack vectors are applied on it. The use of CIDT in web

application results in preventing it from various code injection

attack vectors by giving very less false negatives and false

positives. We have compared CIDT with alternative

techniques of attack detection.

The result of our technique is fairly clear. For all subjects, our

technique was able to correctly identify all attacks as SQLIAs

or XSS, while allowing all legitimate requests to be

performed. In other words, our system produced no false

positives and no false negatives. The lack of false positives

and false negatives is very promising and provides evidence

of the viability of the technique. Table 3 shows the

comparison of CIDT with alternative approaches, and it is

clear that the proposed method is successful against all code

injection attacks (SQLIA and XSS) except the stored

procedure.

Table 3. Comparison of CIDT with alternative approaches

Approach

SQLIA XSS

Tautology Incorrect

query

Union

query

Stored

Procedure

Piggy-backed

query
Stored

XSS

Reflected

XSS

AMNESIA [11]
SQLrand [9]
SQLIPA [12]
SQLDOM [10]
SQLInjectionGen [13]
NOXES [19]
Reversal Proxies [18]
SPDL Based approach [17]
DynamicCookies Rewriting [15]
Multi-agent Scanner [16]
CIDT (Proposed approach)

7. CONCLUSION
In this paper, brief study of various Code Injection attacks is

performed; in addition, different methods for Detection and

Prevention of these attacks are also discussed. The main goal

of code injection attacks is to inject some malicious script in

the code to gain an unauthorized access to the system. Web

applications are basically vulnerable to such type of attacks,

where the user provide input information and this information

gets stolen by the attacker because of the lack of validation at

the input side. We have discussed two most common attack

types, SQL Injection (SQLIA) and Cross-Site Scripting

(XSS), in SQLIA the input information is modified by the

attacker before getting execute on the database, hence the

modified query reaches to database for execution. We have

proposed a tool named Code Injection Detection Tool (CIDT),

which prevent the execution of different type of attacks on the

web application. This makes communication between client

and web server more secure and efficient. Thus, the user’s

confidential information is protected while they perform any

online transaction through internet.

8. REFERENCES
[1] Bibliography: Bernard Menezes, Indian Institute of

Tech, Mumbai, “Network Security and Cryptography”,

Cenage Learning Publiactions.

[2] An Article on Web Application Security 101 by

Appliclure technologies “dotDefender Web Application

Security” published in year 2011.

[3] Research Report by Ponemon Institute “Second Annual

Cost of Cyber Crime Study Benchmark Study of U.S.

Company” Sponsored by ArcSight, an HP Company

Independently conducted by Ponemon Institute LLC,

Publication Date: August 2011.

[4] Inyong Lee, Soonki Jeong, Sangsoo Yeoc, Jongsub

Moon, “A novel method for SQL injection attack

detection based on removing SQL query attribute

values”, Volume 55, Issues 1–2, January 2012, pp 58–68.

[5] Diallo Abdoulaye Kindy and Al-Sakib Khan Pathan “A

Survey on SQL Injection: Vulnerabilities, attacks, and

Prevention Techniques” 2011 IEEE 15th International

Symposium on Consumer Electronics, pp 468-471.

[6] Stephen Kost “An Introduction to SQL Injection Attacks

for Oracle Developers”, White Paper, Version 1.3 -

March 2007.

[7] K. Amirtahmasebi, S. R. Jalalinia, S. Khadem, "A survey

of SQL injection defense mechanisms," Proc. Of ICITST

2009, pp.1-8, 9-12 Nov. 2009.

[8] Qian XUE, Peng HE Shannxi College of Communication

Technology Xi’an, P. R. China “On Defence and

Detection of SQL SERVER Injection Attack” Wireless

Communication Networking and Mobile Computing

(WiCOM), pp 1- 4, 2011 IEEE.

[9] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing

SQL Injection Attacks. In Proceedings of the 2nd

Applied Cryptography and Network Security

Conference, pp 292–302, June 2004.

http://www.sciencedirect.com/science/journal/08957177/55/1

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

26

[10] R.A. McClure, and I.H. Kruger, "SQL DOM: compile

time checking of dynamic SQL statements," Software

Engineering, 2005. ICSE 2005. Proceedings. 27th

International Conference on, pp. 88- 96, 15-21 May

2005.

[11] William G.J. Halfond, Alessandro Orso, “AMNESIA:

Analysis and Monitoring for NEutralizing SQL-Injection

Attacks”, ACM-05 USA, November 7-11, 2005, pp 174-

183 Long Beach, California.

[12] S. Ali, SK. Shahzad and H. Javed, “SQLIPA: An

Authentication Mechanism against SQL Injection,”

European Journal of Scientific Research ISSN 1450-

216X Vol.38 No.4 (2009), pp 604-611.

[13] MeiJunjin, “An Approach for SQL injection

vulnerability detection” International conference on

Information Technology: New Generations, 2009 6th pp

1411-1414.

[14] Mr. Dan Kuykendall, “Detecting Persistent Cross-Site

Scripting”, White paper, Volume 11211, eEye Digital

Security, 2010.

[15] Rattipong Putthacharoen, Pratheep Bunyatnoparat,

“Protecting Cookies from Cross Site Script Attacks

Using Dynamic Cookies Rewriting Technique”, ICACT

2011 pp 1090-1094.

[16] E. Galan, A. Alcaide, A. Orfila, J. Blasco, “A Multi-

agent Scanner to Detect Stored-XSS Vulnerabilities”,

Internet Technology and Secured Transactions (ICITST),

Nov 2010, pp 1-6.

[17] David Scott, Richard Sharp, “Abstracting Application

Level Web Security”, WWW ’02 11th International

Conference on World Wide Web, ACM, Network 2002,

pp 396-407..

[18] Peter Wurzinger, Christian Platzer, Christian Ludl, Engin

Kirda, and Christopher Kruegelk, “SWAP: Mitigating

XSS Attacks using a Reverse Proxy” SESS’09, May 19,

2009 pp 33-39, Vancouver, Canada, 2009 IEEE.

[19] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and

Nenad Jovanovic, “Noxes: A Client-Side Solution for

Mitigating XSS Attacks”, SAC’06 April 23-27, 2006 pp

33-39, Dijon, France.

[20] “Open Web Application Security Project (OWASP)”,

www.OSWAP.Org”.

[21] “Collection of various Attack Vectors”,

http://ha.ckers.org/.

[22] Chris Palmer “Secure Session Management with Cookies

for Web Applications”, iSEC Partners, Inc San

Francisco, Version 1.1, Sept 10 2008.

[23] “Ethical Hacking Tutorials”,

http://www.breakthesecurity.com/2012/01/how-to-do-

cookie-stealing-with-cross.html.

[24] Chris Anley, “Advanced SQL Injection in SQL Server

Applications”, An NGS Software Insight Security

Research (NISR) Publication in 2002 Next Generation

Security Software Ltd.

[25] Paul Johnston, “Authentication and Session Management

on the web” GIAC Security Essentials Certification

Practical Assignment Version 1.4b, 24 Nov, 2004.

[26] Pattern Matching using Regular Expression,

www.dotnetpearl.com.

http://www.oswap.org/
http://ha.ckers.org/
http://www.breakthesecurity.com/2012/01/how-to-do-cookie-stealing-with-cross.html
http://www.breakthesecurity.com/2012/01/how-to-do-cookie-stealing-with-cross.html

