
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

12

A Challenge in Improving the Consistency of

Transactions in Cloud Databases - Scalability

R. ANANDHI

Registered Scholar in Computer Science and
Engineering

SCSVMV University
Kanchipuram, Tamil Nadu, India

K. CHITRA
Phd, Assistant Professor in Computer Science

Government Arts College, Melur
Madurai, Tamil Nadu, India

ABSTRACT

Cloud computing is a automated on-demand self-service

paradigm, allowing a pay-per-use model on shared resources.

Scalability is one of the challenges faced by cloud computing

to be achieved at full strength. The “cloud scalability” is

slowly gaining weight in cloud industry since the load of

traffic is usually unpredictable. Load balancers are appointed

to monitor the traffic and scale accordingly. This paper will

give the types of scalability, choosing the correct scalability

and other issues.

General Terms

Scalability, Cloud Computing

Keywords

Horizontal scalability, Vertical Scalability, Scalability factor.

1. INTRODUCTION

There are many factors used to improve the performance of a

Database. One of them is SCALABILITY. Scalability means

doing what in a bigger way. Scaling an application indicates

allowing more people to use the application. There are mainly

two types of scaling an application. They are:

 Vertical Scalability: It denotes the addition of extra

resources within the same logical unit to increase

the capacity. E.g.: Addition of CPU to an existing

server, expanding storage by adding hard drive.

Therefore it increases the capacity of existing

hardware and software. It is the ability of the

application to be scaled under load. Here, the

database uses many cores and CPUs that share

RAM and disks.

 Horizontal Scalability: It denotes the concept of

addition of multiple units of resources and treats

them as a single unit. E.g.: Distributed systems. It

denotes the strength of the application to be scaled

in order to face the demands by making the copies

of application (replication) to satisfy the increasing

user demands.. It is a traditional load balancing

model and it`s an integral component of cloud

computing environment. Therefore it refers to the

ability to distribute both the data and the load of

simple operations over many servers with no RAM

or disk shared among those servers.

2. SCALABILITY FACTOR

Every component whether it is processors, servers, storage or

load-balancers that is to be scaled need some kind of

management overhead. During scaling, it is important to note

what percentage of resource is actually scalable. It is called as

SCALABILITY FACTOR. E.g.: If we lose 5% of the

processor power every time we add a CPU to the system, then

the scalability factor is 0.95.

Scalability can be further classified into four types

based on the scalability factor. They are:

 Linear scalability: Here scalability remains

constant in spite of scaling.

 Sub-linear scalability: Here scalability factor falls

below 1.0.

 Supra-linear scalability: It is possible to get good

throughput just by adding one resource (which is

very rare) is called as supra-linear scalability.

 Negative scalability: If the performance of an

application degrades when the application is scaled

is called as negative scalability.

3. CHOOSING OF SCALABILITY

If an application needs urgent scaling, going to the choice of

vertical scalability is wise. But the cost of vertical scaling is

directly proportional to the size of application. Horizontal

scalability is comparatively works at low budget. It implies

that the horizontal scalability can be done using the existing

commodity storage and server solutions. Going deep into the

technology, horizontal scalability is also not a cheap one since

the application has to be built from the scratch to view as a

single unit. The horizontal scalable system faces two

problems as “Split brain” and “Hardware failure”. Achieving

infinite vertical and horizontal scaling is totally impossible. If

we are writing an application for a pre-determined number of

users, choosing vertical scalability is wise. But if the number

of users grows to millions, going vertical will be a difficult

one as it becomes very expensive.

Selection of correct scalability depends on the factor how

much we want to scale that application. There is no “one size

fits all” solution for scalability. Many people aim to improve

the processing power when considering the concept of

scalability. But for a successful scalable application, all layers

like storage layer, the database layer, application layer, the

web layer, load balancer, firewall etc are all have to be scaled

equally. Usually focus is on horizontal scalability since the

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

13

number of cores is limited in sharing the memory and also it is

less expensive and use commodity servers.

Bigger hardware is not always fast but it can handle more

loads. It is similar to a highway with more lanes. The reason is

that SQL response times will not automatically improve on

bigger hardware. Horizontal Scalability can be achieved

through load balancing solution. It’s the vertical scalability

which is difficult to achieve in a cloud computing or

virtualized environment.

The problem is that a single database or SQL query that is

poorly constructed can destroy vertical scalability and actually

increase the cost of deploying in the cloud because we are

paying for the resources as per the usage. Cloud computing

does not going to do any magic in optimization of codes or

queries or database tables; but it lies in the developers hand to

choose whether or not the cloud computing is used as the

deployment model.

4. CLOUD SCALABILITY

When considering cloud computing, the concept of vertical

scalability is very important since the charges are based on the

usage of resources like the old mainframe model. If the

application is not properly scaled vertically, it is going to

increase the cost of the application to run in the cloud. Cloud

computing providers also would not address the vertical

scalability unless they are peculiar to the application. No

external solution will help to optimize the code; they can raise

the overall performance by normalizing protocols, network

bandwidth etc; but it can’t go deep into the code like

rearrange the joins, rewrite the poor loop, refactoring a data

structure etc.

Vertical scalability is in the domain of the application

developer whether the application is going to be deployed

inside the data center or outside the cloud. The developers can

make use of the technologies like network side scripting,

application delivery solutions etc to help the efforts for

vertical scalability; but there is also limitation to address the

root cause of the application’s failure to vertically scale.

Improving the vertical scalability is important in achieving the

low investment on cloud computing and virtualization.

Applications not responding to vertical scalability will finally

become expensive when implements in cloud services as

requirement on resource increases with demand of

application. Cloud computing and virtualization have impacts

on vertical scalability by using horizontal scalability

techniques to give the surety that capacity meets demand and

performance level agreements are met. Improving vertical

scalability can be achieved by optimizing SQL queries,

understanding the bottlenecks associated with the

programming languages used, using API, taking advantage of

offload capabilities of application delivery solutions available

and aware about the decomposition of the applications into

finely grained services.

5. SCALING AT MESSAGING SYSTEM

We can improve the scalability of messaging system by

adding multiple brokers to the system, thus escaping the

inherent resource limits of a broker deployed on a single

machine. Brokers can be combined into a network by adding

network connectors between the brokers, which enables to

define broker networks with an arbitrary topology. When

brokers are linked together as a network, routes from

producers and consumers are created dynamically, as clients

connect to and disconnect from the network. Therefore the

consumer can connect to any broker in the network and the

network automatically routes messages from producers

attached at any other point in the same network.

There are two approaches for routing messages through a

broker network namely Static Propagation and Dynamic

Propagation.

 Static propagation: It wants to explicitly specify

the routes, by telling the broker where to forward

messages for specific queues and topics using

pattern matching. So, we can configure the brokers

to disable advisory messages altogether, which

eliminates the scalability problems associated with

advisory messages.

 Dynamic propagation: It necessitates sending

advisory messages throughout the broker network,

which the brokers then use to figure out the optimal

route in a dynamic way. It is more flexible than

static propagation. There is a risk that the advisory

messages could swamp the traffic in the broker

network as scaling is done on the network.

6. ALIAS FOR HORIZONTAL

SCALABILITY

An alternative horizontal scaling strategy is to deploy multiple

brokers, but to leave them isolated from one another, so that

there is not broker network. So the decision can be taken by

the client for this case to decide which broker to send

messages to or receive messages from. This approach requires

the partitioning of messages into various categories based on

the receiver’s name; so the messages belonging to a particular

receiver can be handled by a separate broker.

The merits of this approach are:

 Usage of tuning techniques for vertical scaling.

 Achievement of better horizontal scalability than a

network of brokers since there is meager crosstalk

among brokers.

The demerit of this technique is the need of complex clients

 as they have to know the way of partitioning of

messages and

 selection of appropriate broker for routing messages

to a particular destination.

Query response time can be considerably decreased by proper

indexing of data. Proper indexing aims to exploit the

logarithmic scalability of the B-Tree index to its full extent.

Response time problems are caused by sloppy indexing. The

response time difference is stunning. It is hardly possible to

improve it by scaling horizontally however it would be easy to

cut the response time by adding more servers. The horizontal

performance gains of the so-called NoSQL systems are mostly

on the write side—often reached with the eventual

consistency model. They allow temporary inconsistencies that

will finally become consistent. But SQL insists on the very

rigid consistency. This increases response times for write

operations but not give worse throughput.

Maintaining a strict consistency in a distributed system—E.g.

like scaling horizontally with multiple servers requires the

members to coordinate all changes in a synchronous manner.

But the drawbacks of this approach are:

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.2, August 2012

14

1. Synchronous communication adds latencies and

increases response times.

2. Reduces the overall availability since every change

needs many clients to participate.

A distributed SQL database achieves consistency by two-

phase commit (2PC) protocol. 2PC allows each system to start

a global transaction that modifies data in both systems. The

global transaction maintains the consistency. It wants the all

or nothing property. It will not succeed if one system is

unavailable—the overall system availability is reduced. Even

if all are available, 2PC increases the response time due to the

additional effort. The troublesome on strict consistency is

directly proportional to the number of nodes in the network.

In practical applications, strict consistency is hard to apply

across more nodes. Dropping of strict consistency will lead to

solve the availability problem as well as reduce the overall

response time. The idea is to have global consistency after

executing write operation. So consistency is eventually

reached by handling conflicts and not by preventing conflicts.

Having more hardware will not improve the response time;

rather it will result only in the latencies decreasing the

response time. Therefore the more complex the infrastructure,

the more latencies arise, the slower the response time. Disk

Seek Time also has a impact on the response time since

moving the disk head requires considerable amount of time.

7. HOW TO IMPROVE CLOUD

SCALABILITY?

 Auto Scaling: It is one of the unique features of

cloud computing and implemented in Amazon’s

EC2. The components needs are a load balancer and

a couple of web servers. Setup the auto-scaling

algorithm and initialize the threshold value based on

the network traffic. When the setup threshold value

is PASSED, Amazon’s EC2 will spins a new web

server and automatically roll it into the load

balancer pool. Similarly when the traffic falls below

the threshold value, Amazon will take a server from

the allotted pool.

 Scale the Database tier Horizontally: NoSQL

offers a number of solutions for this approach.

Configure NoSQL in a master-master active passive

cluster, also known as circular replication. All the

completed transactions will be sent to the other

server in the cluster by NoSQL. The passive server

will handle the read transactions and thereby

increasing availability and scalability. If the

network traffic increases, add a additional read-only

server.

 Striped Elastic Block Storage (EBS): EBS is a

good approach to bring the flexibility of a storage

area network in traffics. To improve EBS

performance, use Linux RAID technology. Since

EBS already has redundancy, we can use striping or

RAID 0 across a number of EBS volumes (usually

4).

8. CONCLUSION

Therefore throughput and response time are the two views of

measuring the performance of a system while scaling. More

hardware will not improve query response time while proper

indexing is the best way to improve. There are also other

types of scalability like container-level scalability and

database scalability to be dealt. Network scalability is a rare

topic to be touched by the experts. Cloud applications also

depend upon the network resources during consistency and

scalability performance issues.

9. REFERENCES

[1] H. C. Lim, S. Babu, and J. S. Chase, “Automated control

for elastic storage,” in ICAC10. New York, NY, USA:

ACM, 2010, pp. 19–24.

[2] P. Marshall, K. Keahey, and T. Freeman, “Elastic

site:Using clouds to elastically extend site resources,”

Cluster Computing and the Grid, IEEE International

Symposium on, vol. 0, pp. 43–52, 2010.

[3] E. Berger and J. C. Browne, “Scalable load distribution

and load balancing for dynamic parallel programs,” in

IWCBC99: In Proceedings of the International

Workshop on Cluster-Based Computing 99,

Rhodes/Greece, 1999.

[4] The University of Melbourne, “Dynamically Scaling

Applications in the Cloud”.

[5] R. Cattell, “Scalable SQL and NoSQL Data Stores”.

[6] University of Technology, Sydney,

Australia,”Availability and Load Balancing in Cloud

Computing”.

[7] Stonebraker and R. Cattell, “Ten Rules for Scalable

Performance in Simple Operation Datastores”.

