
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.19, August 2012

15

Crawling the Web Surface Databases

Vidushi Singhal
Asstt Prof

MRIU, Faridabad

Sachin Sharma
Asstt Prof

MRIU, Faridabad

ABSTRACT

The World Wide Web is growing at a rapid rate. A web

crawler is a computer program which independently browses

the World Wide Web. The size of web as on February 2007

was 29 billion pages. One of the most important uses of web

page is in indexing purpose and keeping web pages up to date

which can be used by search engine to serve the end user

queries. Web is dynamic in nature; hence we need to update

the web pages constantly. In this paper, we put forward a

technique to update a page stored in web repository. This

paper put forward an efficient method to refresh a page. We

are proposing two methods for refreshing the page by

comparing the page structure. First method compares the page

structure with the help of tags used in it. And second method

creates a document tree compare structures of pages.

Keywords: Web Crawler, WWW, Spidering, Search

Engine, Surface Web, Deep Web, Document Tree Structure

1. INTRODUCTION

1.1 Definition

A crawler is an independent script which independently

browses the World Wide Web. This process of browsing is

called Web crawling or spidering. A number of recent studies

have noted that a tremendous amount of content is present on

the net. Many sites use spidering as a means of providing up

to date data to search engines. Web crawlers are used to create

a copy of all the visited pages for later processing by a search

engine that indexes the downloaded pages to provide fast

searches. Crawlers can also be used for automating

maintenance tasks on a Web site, for example checking links

or validating HTML code. Also, web crawlers can be used to

gather specific types of information from Web pages, such as

harvesting e-mail addresses.

Net is full of useful data. From which some of the data is

easily accessible to us with the help of standard search engine.

We call such type of data as surface web. But the data which

is not a part of surface web is called as deep web. It is also

known as invisible data because it is not visible to the user

directly. To access such type of data we need some special

type of details as the password, authentication of the site etc.

Accessing of deep web is now a big challenge for the

researchers because it contains very important data. Public

information on the deep Web is currently 400 to 550 times

larger than the commonly defined World Wide Web[15]. A

crawler is a part of a search engine. To search information

from the internet, user submits his query to the search engine,

search engine then reply the user with different links to

different pages. User follows these links to collect the

required information. Typically a search engine works in such

a manner that special crawler software visits a site and reads

the source code of the pages. This process is called as

"crawling" or "spidering". Crawling starts with a seed URL

and then follows the link presented on page using Depth First

Search or Breadth First Search [1]. Then, this page is

compressed and push into the search engine's repository called

an "index". This stage is called as "indexing". Finally, when

someone submits a query to the search engine, it retrieves that

page out of the index and allocates it a certain rank. This

process is called "ranking". Search engine can be categorized

in three categories. Crawler based search engines use

automated software programs called as ‘spiders’, ‘crawlers’,

‘robots’ or ‘bots’ to survey the web pages. Human-powered

search engines believe on humans to submit information that

is subsequently indexed and catalogued. Only information that

is submitted by a human is put into the index. A search engine

which works as a combination of both the type of search

engine is called as hybrid search engine. Several major

problems affect non-cooperative web crawlers on the web.

The first problem is that web crawlers do not maintain a high-

degree of freshness. The second is that multiple crawlers can

redundantly crawls the same regions of the web. The third is

that with the proliferation of web crawlers comes increased

contention for shared network resources. This paper presented

the technique which reduces the redundant data on net.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.19, August 2012

16

1.2 RELATED WORK

Web crawlers have always been a fascinating area of interest

since the advent of web. A lot of work has also been done

already to optimize the performances of web crawlers. They

have certain Issues described below:

Crawler Architecture: Work done describes various

architectures under which crawlers of certain current search

engines are working. [2] Describes the architecture of the

crawling technique used by Google whereas [3] describes a

strategy based on text and link characteristics of referring

pages by producing a rank function which is weighted sum of

the text and link scores.[4] tells about a technique of effective

focused crawling to improve the quality of web navigations.

[5] Describes a parallel crawler with multiple architectures

along with metrics for evaluation. The immense growing

dimension of the World Wide Web induces many obstacles

for all-purpose single-process crawlers including the presence

of some incorrect answers among search results and the

scaling drawbacks. As a result, more enhanced heuristics are

needed to provide more accurate search outcomes in an

appropriate timely manner. [6] This paper proposes the

application of a link independent Web page importance metric

to govern the priority rule within the crawl frontier through

proposing a modest weighted architecture for a focused

structured parallel Web crawler (CFP crawler) in which the

credit assignment to URLs in crawl frontier is done according

to a click stream-based prioritizing algorithm. A traditional

crawler picks up a URL, retrieves the corresponding page and

extracts various links, adding them to the queue. A deep Web

crawler, after adding links to the queue, checks for forms. If

forms are present, it processes them and retrieves the required

information. [7] Analyze and compare important deep Web

information crawling techniques to find their relative

limitations and advantages. To minimize limitations of

existing deep Web crawlers, a novel architecture is described

based on QIIIEP specifications. The proposed architecture is

cost effective and has features of privatized search and general

search for deep Web data hidden behind html forms. The

World Wide Web is an interlinked collection of billions of

documents formatted using HTML. Due to the growing and

dynamic nature of the web, it has become a challenge to

traverse all URLs in the web documents and handle these

URLs, so it has become imperative to parallelize a crawling

process. The crawler process is further being parallelized in

the form ecology of

Crawler workers that parallel download information from the

web. [8] Proposes a novel architecture of parallel crawler,

which is based on domain specific crawling, makes crawling

task more effective, scalable and load-sharing among the

different crawlers which parallel download web pages related

to different domains specific URLs.

Page Update Policies: Each crawler has to update the web

pages on a periodic basis to improve the quality of its

databases. [9] Discusses scheduling algorithms for crawlers to

index the web on a regular basis. [10] Describes the various

freshness metrics used for gauging the freshness and quality

of a local copy of a web page.

[16] Proposes various refresh policies and studies their

effectiveness. The author first formalize the notion of

freshness" of copied data by defining two freshness metrics,

and then propose a Poisson process as the change model of

data sources. Based on this framework, the author examines

the effectiveness of the proposed refresh policies analytically

and experimentally. [17] In this paper a hybrid approach is

build on the basis of which a web crawler maintains the

retrieved pages “fresh” in the local collection. Towards this

goal the concepts of Page rank and Age of a web page is used.

As higher page rank means that more number of users is

visiting that very web page and that page has higher link

popularity. Age of web page is a measure that indicates how

outdated the local copy is. Using these two parameters a

hybrid approach is proposed that can identify important pages

at the early stage of a crawl, and the crawler re-visit these

important pages with higher priority.

Page Priority Method: To prioritize a page over another,

certain methods and parameters have been proposed that are

also used by modern day search engines [11-13]. These

methods take into account various parameters such as link

count for a certain page or the keyword occurrence frequency

to provide a suitable parameter for page relevance.

[14] Shows an algorithm to detect the changes in a web page.

It shows the technique to update a page present in web

repository after comparing it with the new copy.

2. EXISTING METHOD

Existing method consists of a multi threaded server and client

crawlers. Server is used to store the data & to give the

instruction to the client crawlers. Client crawlers are used to

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.19, August 2012

17

accept the instruction from the server & made its searches

according to it. The server itself never downloads a page it

just forward its request to one of its client to download the

page. Once the page is downloaded it is stored in the web

repository. A lot of the content on the web is dynamic. It is

quite possible that after downloading a particular web page,

the local copy of the page residing in the repository of the web

pages becomes obsolete compared to the copy on the web.

Therefore a need arises to update the database of web pages.

The author discusses two methods [14] to derive certain

parameters, which can help in deriving the fact whether the

page has changed, or not. These parameters will be calculated

at the time of page parsing. When the client counters the same

URL again, it just calculates the code by parsing the page

without downloading the page and compares it to the current

parameters.

If changes in parameters are detected, it is concluded that the

page has changed and needs to be downloaded again.

Otherwise the URL is discarded immediately without further

processing.

Changes in a web page is said to be occurred if there is a

change in page structure or in content of the page. Pages on

web are created using HTML or XML which uses tags. First

method uses these tags to compare the web pages and second

method creates a document tree.

3. PROPOSED METHOD

Once a decision has been taken to update the pages, it should

be ensured that minimal resources are used in the process.

Updating only those elements of the database, which have

actually undergone a change, can do this. It also checks

whether the page is already there in the database. If page is

already present then we need to discard the link otherwise we

replace the exiting page with the fresh downloaded page. In

this paper we propose two methods to compare the structure

of web page.

3.1 Method I

By structure we mean how the text images are displayed on

the page. All of these objects are designed using HTML,

XML or other formatting tools. All these formatting tools

used tags arranging in proper manner. Changes in structure

lead to rearrangement of these tags.

In this algorithm we start our process by comparing the first

tag of existing page with the first tag of the new downloaded

page. If we found it same the process is continued till end tag

of the page otherwise page is declared to be changed from

existing one.

For example consider the following page:

Fig 1.1: Web page in web repository

Fig 1.2: Web page on fresh link

From the above two pages (fig 1.1 and fig 1.2) following table

is formed:

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.19, August 2012

18

Tag

Name

Web Page in

Web Repository

Web Page

on Fresh

Link

Tag1 H H

Tag2 H H

Tag3 T B

Table: 1.1 (Comparison of tags of web page fig 1.1 and fig

1.2)

At Tag1 both tags are same so the process is continued for

next tag. Next tag is also same so the process moves to next

tag. This tag is different. So we declared that the page has

changed.

The proposed method offers following advantages:

 We are using just a single tag rather than using whole

string. It reduces the inconvenience occurred in creating

a whole string by reading the complete web page.

 Rather than comparing the complete string we will

compare it till the third tag which is a changed value. So

it will reduce the comparison time.

 It identifies even the single tag changed in the structure.

 Even a single change in the structure of a page can be

tracked.

 Most of the time we are able to calculate the actual result

by comparing just one tag.

 It works for all type of formatting styles.

 To take the decision page downloading the client crawler

only needs to compare these tags.

3.2 Method Two

It includes two methods to detect the changes on a web page:

construction of document tree and level order tree traversing.

The structure of every node used in tree presentation of web

page should contain following information.

ID: it stores the unique id for each node of the tree.

CHILD: it stores the information about children of each node.

LEVEL: it stores the information about the level of a node.

LEVEL_ARRAY: it is the array which stores the level of

each node.

For example we get tree structure shown in fig 1.5 from web

page shown in Fig. 1.3 and we get tree structure as is shown

in Fig. 1.6 from the web page shown in fig 1.4.

 Here in this example we are considering fig 1.3 as the initial

web page and fig 1.4 as the changed web page. With the help

of document tree created in fig 1.5 and 1.6 following table

1.2 is drawn. We are using BFS to create the table.

Fig 1.3: Web repository page

For Example

Fig 1.4: Fresh link page

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.19, August 2012

19

Fig 1.5: Tree structure from web repository page

IMG

B

TABLE

TR

TD TD

TABLE

TR

ID=1

ID=2

 ID=4

ID=7

ID=6

]

ID=5

TD TD B B

A

ID=12

TABLE

TD

TD

FONT ID=11 ID=10

ID=9 ID=8

ID=14

ID=15

ID=17

ID=13

ID=16

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.19, August 2012

20

IMG

B

TABLE

TR

TD TD

TABLE

TR

ID=1

ID=2

 ID=4

ID=7

ID=6

]

ID=5

TD TD B B

A

ID=12

TABLE

TD

TD

FONT ID=11 ID=10

ID=9 ID=8

ID=14

ID=15

ID=18

ID=13

ID=16
TABLE

TR

TD TD

IMG

ID=17

ID=19

ID=20 ID=21

ID=22

Fig 1.6: Tree structure from fresh link page

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.19, August 2012

21

LEVEL INITIAL

STRUCTURE

MODIFIED

STRUCTURE

Level -1 1 1

Level -2 2 2

Level -3 2 2

Level -4 2 2

Level -5 2 2

Level -6 1 2

Level -7 2 2

Level -8 5 5

Level -9 1 2

Table 1.2: Level Structure using BFS

According to initial structure

LEVEL = {1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 8, 8, 8, 8, 9}

ID= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}

CHILD= {1, 2, 1, 1, NULL, 1, 2, 1, 1, 2, 3, NULL, NULL, 1,

NULL, NULL, NULL}

LEVEL_ARRAY = {1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,

8, 9}

According to modified structure

LEVEL = {1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 8, 8, 8, 8, 9, 9}

ID= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}

CHILD= {1, 2, 1, 1, NULL, 1, 2, 1, 1, 2, 3, NULL, NULL, 1,

NULL, NULL, 1, NULL}

LEVEL_ARRAY = {1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8,

8, 9, 9, 10, 11, 11, 12}

Now we start level wise traversing of both the tree. Results

are shown in the table. As per the example after comparing

both the set we get the idea that structure has changes at level-

9. As soon as we find the first difference among these two

structures a conclusion has been drawn that page has changed

and we need to update the web repository. This approach

gives us following benefits:

 Rather than comparing the whole document we

make our search till the first difference.

 Even if a node is deleted or added, it is easily

recorded by the LEVEL_ARRAY.

 The client crawler needs to check only two sets of

data at the time of updating.

4. CONCLUSION & FUTURE SCOPE

With the size of the web increasing at a tremendous rate, web

crawlers are being more and more challenged to discover and

maintain web objects, especially on behalf of web search

engines. Currently, web search engines relying on web

crawlers to keep their indices up-to-date are falling behind.

Web page change detection is very important as it provide us

with the knowledge that what is happening on the Web. It

keeps our data updated. Certain techniques can ensure that

the most popular material is kept up-to-date, but that is

limiting. In this paper we proposed a general protocol to

detect the changes that occur in the web pages presented on

the internet. It consists of two methods. Firstly we try to

detect the changes in page structure by comparing the tags in

both the paper. In second method we create a document tree.

Then we do level wise traversing to track the changes among

two pages. Finally we declare the result whether the web

pages are same or not.

Our future work consist of more research to minimize the

efforts to detect the changes occurred in web. My research on

the web page change detection is not finished since I am

trying find other ways to compare two pages which cost

minimum in terms of memory, bandwidth etc.

5. REFERENCES

[1] David Eichmann, “The RBSE Spider – Balancing

effective search against web load”, Repository Based

Software Engineering Program , Research Institute for

Computing and Information Systems, University of

Houston – Clear Lake.

[2] Sergey Brin and Lawrence Page, “The Anatomy of a

Large-Scale Hypertextual Web Search Engine”, In

Proceedings of the Seventh World-Wide Web

Conference, 1998.

[3] Anshika pal, Deepak Singh tomar, S.C srivastava,

“effective focused crawling based on content and link

structure analysis”, international journal of computer

science and information security, vol 2, no. 2, June 2009

[4]jody Johnson, kostas Tsioutsiouliklis, C.L Giles, “Evolving

strategies for focused web crawling”, Proceedings of

twentieth international conference of machine learning,

Washington DC, 2003.

[5] Junghoo Cho & Hector Garcia-Molina, “Parallel

Crawlers”. Proceedings of the 11th international

conference on World Wide Web WWW '02, Honolulu,

Hawaii, USA. ACM Press. Page(s): 124 – 135.

[6] F. Ahmadi Abkenari, Ali Selamat, “A clickstream based

focused trend parallel web crawler”, vol 9, no 5,

November 2010.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.19, August 2012

22

[7] Dilip Kumar Sharma, A. K. Sharma,” A Novel

Architecture for Deep Web Crawler”, International

Journal of Information Technology and Web

Engineering, vol 6, issue 1, 25-48, January-March 2011

[8] Nidhi Tyagi, Deepti Gupta, “A novel architecture for

domain specific parallel crawler”, Indian journal of

computer science and engineering, vol 1, no 1, 44 – 53.

[9] E. Co.man, Jr., Z. Liu, and R. R. Weber, “Optimal robot

scheduling for web search engines”. Proceedings of the

11th international conference on World Wide Web

WWW '02 Honolulu, Hawaii, USA. ACM Press.

Page(s): 136 – 147.

[10] “Synchronizing a database to improve freshness,

submitted for publication”. Proceedings of the 2000

ACM SIGMOD international conference on

Management of data. Volume 29 Issue 2. Page(s): 117 –

128.

[11] M. Diligenti, F. M. Coetzee, S. Lawrence, C. L. Giles,

and M. Gori, “Focused crawling using context graphs”,

In Proceedings of the Twenty-sixth International

Conference on Very Large Databases, 2000.

[12] S. Chakrabarti, M. van den Berg, and B. Dom, “Focused

crawling: A new approach to topic-specific web resource

discovery”, In The 8th International World Wide Web

Conference, 1999.

[13] Junghoo Cho, Hector Garcia-Molina, and Lawrence,

“Efficient crawling through URL ordering Page”, In

Proceedings of the 7th World-Wide Web Conference,

1998, page(s):161-171.

[14] Divakar Yadav, A.K Sharma, J.P. Gupta, “ Parallel

crawler architecture and web page change detection”,

WSEAS transaction on computers, issue 7, volume 7,

july 2008

[15] Bergman, Michael K, “White paper: the deep web :

surfacing hidden value”, Vol 7, Issue 1, August 2001

[16] Junghoo Cho , Hector Garcia-molina ,” Effective page

refresh policies for web crawlers”,Vol 28, Issue 4,

December 2003, Pages 390 – 426

[17] Vipul Sharma, Mukesh Kumar, Renu Vig, A Hybrid

Revisit Policy For Web Search, Vol 3, No 1, Feb 2012,

Page(s): 36 - 47

