
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.17, August 2012

30

High Scalability of HDFS using Distributed Namespace

Harcharan Jit Singh V. P. Singh

Department of Computer Science and Engineering,

Thapar University,

Patiala, Punjab, India

ABSTRACT

In data intensive computing, Hadoop is widely used by

organizations. The client applications of Hadoop require high

availability and scalability of the system. Mostly, these

applications are online and their data growth rate is

unpredictable. The present Hadoop relies on secondary

namenode for failover which slows down the performance of

the system. Hadoop system’s scalability depends on the

vertical scalability of namenode server. As the namespace of

Hadoop distributed file system grows, it demands additional

memory to cache. A namenode server does not have enough

primary memory to cache the namespace, its performance and

availability effects. A new Hadoop architecture has been

proposed to address the issues of namenode scalability, single

point of failure and availability of Hadoop. This approach is

based on distribution of namespace using distributed hash

tables. The growing size of namespace of HDFS is distributed

into multiple name node servers. The proposed architecture of

Hadoop is simulated by using the multiple name node servers.

The name node are arranges in chord ring. This allows HDFS

to scale up horizontally. The system provides decartelize

managed approach for namespace distribution which gives

consistent performance. The results of HDFS namespace to

store 1 billion or above files are discussed in this research

work. The proposed architecture has shown high availability

and adapts to name node failure.

General Terms

Data intensive computing, Scalability, Failover, Availability

Keywords

HDFS, Hadoop, Chord, Namespace, namenode, datanode

1. INTRODUCTION
The phenomenal growth of internet based applications and

web services in last decade have brought a change in the

mindset of researchers. The traditional techniques to store and

analyze voluminous data have been improved. Organization

providing information technology solutions are having great

concerns to the amount of data their machines are producing.

These organizations are ready to acquire solutions which are

highly reliable to store and process large data sets. Such

organizations are required to index huge volume of contents

and analyze terabytes of data to extract patterns [23, 24]. The

size of program code is very small compared to data. The

client applications move the program code to data. The

program instructions are executed on the node where data

resides. This provides data locality to client application’s

code. The results from all machines are sent back, merged and

streamed to client application [2, 18, 23, 24].

Several system architectures have been implemented for data-

intensive computing and large-scale data analysis, such as

applications including parallel and distributed relational

database management systems. But, most of data growth is in

unstructured form of data. MapReduce is a programming

paradigm architecture pioneered by Google [1, 2]. Now it is

available in an open-source implementation called Apache

Hadoop [12]. It is used by organizations like Yahoo,

Facebook and other online shopping marts. Data-Intensive

Computing Systems have approaches to parallelize the

processing of data. The goal to design such platform is to

provide high levels of reliability, efficiency, availability and

scalability. Hadoop is one such architecture which exploits

above mentioned features [23, 24, 27].

Hadoop parallelizes data processing across many nodes

computers in a cluster. It speeds up large computations and

hides I/O latency. Hadoop is especially well-suited to large

data processing tasks like searching and indexing because it

has powerful distributed file system [1, 2, 12, 18, 23, 24]. The

Hadoop distributed file system (HDFS) has namenode servers

and data nodes. The namenode server maintains the metadata

called namespace. Namespace has information about

namenode servers, file, blocks, replica, data nodes and

running jobs. HDFS is highly reliable as it replicates chunks

of data to nodes in the cluster. The replica decisions are used

to improve the availability of system. Hadoop has emerged as

a data mining platform and is becoming an industry standard

for large data processing [23,24]. Hadoop is successfully used

in science and a variety of industries. Scientific applications

include mathematics, high energy physics, astronomy,

genetics, and oceanography. The platform has been in action

in many areas [13].

The goal of Hadoop distributed file system is to address the

issues of hardware failure, high throughput data access and

process large data sets of applications [4]. Hadoop has simple

coherency model named write-once-read-many for files and

works on idea of moving computation to data. HDFS is

portable across heterogeneous hardware and software

platforms. The centralized namenode server stores the

namespace of HDFS in live memory for high performance. As

the storage capacity of a cluster grows, more namenode server

memory is required. Shvachko [3] estimates that 1

Gigabyte(GB) memory is required to cache namespace of 1

Petabyte (PB) of data in cluster. One petabytes of data storage

requires approximately 100 million data blocks in HDFS. In

order to accommodate data of 100 million blocks, the HDFS

cluster needs 10 thousand of nodes with eight 1 TB drives. In

case of total storage capacity of cluster as 60 PB, it requires a

minimum 60 GB of memory in namenode server to provide

full caching of namespace. Beyond 60 PB of data, it requires

additional memory (RAM). The additional RAM achieves

vertical scalability. It is unrealistic to add any amount RAM to

the name node server.

As the number of data nodes increases, the work load on a

single centralized namenode server increases and has a great

impact on the performance and availability of the cluster. It is

therefore, increasing work load and memory that restricts the

http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Relational_database_management_systems
http://en.wikipedia.org/wiki/Relational_database_management_systems
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Hadoop
http://en.wikipedia.org/wiki/Yahoo
http://en.wikipedia.org/wiki/Facebook

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.17, August 2012

31

scalability of the Hadoop cluster [6, 20]. A single centralized

namenode server is more prone to failures. In case namenode

server fails, the whole cluster data nodes are unavailable to

client applications. The recovery time depends on the amount

of metadata data [8]. As the name node server starts, it takes

time to load the namespace to cache. This adds up to the

unavailability of service. So a single centralized namenode

server becomes a Single point of failure (SPOF).

Chord’s main goal is the location of entities in P2P

environments, like documents, files, or any resource that one

might want to share in a computer network [20, 21, 25, 26]. It

is a distributed lookup protocol. It maps a given key onto a

node. Data is easily placed in a Chord by associating a key

with each resource item. Chord shows adaptation feature

when node failures occur, when nodes join and leave the

network in small interval. Another feature is its efficient query

processing. In chord, namespace data is distributed by

distributed hash tables and it addresses the limitations of

single namenode server like scalability, failover and

performance. Chord is decentralized environment which is

symmetric, auto adaptive and provides consistent performance

of resource lookup. Chord ring maintains data structures like

finger table, successor list and predecessor list to five

consistent resource lookup performances.

The remainder of this paper is organized as follows.

Background and related work are described in Section 2.

Section 3 states the details of the proposed architecture of

Hadoop. Evaluation of the proposed architecture is described

in Section 4. Finally, conclusions and future work are

described in Section 5.

2. BACKGROUND AND RELATED

WORK

Since the weakness of the centralized namespace storage of

Hadoop has surfaced up, there have been attempts in research

publications providing strategies for eliminating the single

point of failure and address the scalability issue of the

architecture. In this section, the background of this research

field and related studies are reviewed.

Dhruba Borthapur discussed the issue of single point of

failure of Hadoop and suggests improvements in failover of

Namenode server. The AvtarNode [8] was developed to

address the issue of failover and a mechanism to address the

single point failure of the Namenode. The primary AvtarNode

is a Namenode and writes its transaction logs into the shared

NFS filer. Another instance of AvtarNode is running and

called standby node which continually reading the transaction

logs from the same shared NFS filer. The standby namenode

donot participate in the functioning of HDFS. The

AvatarNode is effective mechanism to guard against

Namenode failures and keeps the namespace data protected.

However, the AvatarNode does not address the high

scalability of the architecture and still has the single point of

access to the cluster. As the namespace grows, the two name

node servers do not load balance the work. This approach

provides failover and not able to accommodate the large

namespace.

Feng Wang’s discussed the metadata replication based

solution to provide high availability and failover technique

[9]. The solution has phases: the first is the initialization phase

which initializes the execution environment of high

availability. The second phase replicates metadata from

critical node to corresponding backup node at runtime. The

last phase resumes the running of Hadoop. As the file system

information and Edit Log transactions are stored as a backup

copy on the Namenode, the solution emphasizes on the

replication of critical metadata. It presents an adaptive method

for failure recovery of the Namenode by metadata replication

with further reduces failover duration, but it does not solve the

issue of single point of failure with Hadoop.

The Hadoop RPC server implementation [7] has a single

listener thread that reads data from the socket and puts them

into a call queue for the Namenode threads. Namenode gets to

process the RPC requests only after all the incoming

parameters copied and de-serialized by the listener thread. The

Namenode metadata management was enhanced by creating a

pool a RPC reader threads which works well to decentralize

the RPC requests from the clients. Most of the file system

operations are read only and do not trigger any synchronous

transactions. By changing the current File System name

system lock to readers-writer lock, the performance of the

Namenode improved significantly [7].The solution was

effective in improving the performance of the Namenode to

handle heavy workload, but it fails to provide a solution to the

scalability and single point of failure of the Namenode.

George Porter [5], provides a solution to meet the increasing

demands of namespace storage of the cluster. Porter discusses

the use of a decoupled Datanode architecture to provide

increased data storage and computation in Hadoop [5]. The

paper introduces SuperDataNodes which are servers

containing more disks than the regular nodes in Hadoop. The

design is a storage-rich architecture of Hadoop. As a single

SuperDataNode accommodates data worth many DataNodes,

its failure has significant impact on the storage. The use of

SuperDataNode has no change on the metadata storage. As a

result, it does not improve scalability of HDFS the

architecture. The use of SuperDataNodes is not a cost

effective solution to improve the storage capacity. The single

point of access puts load on it bandwidth to access big data.

Apache group came up with a solution to called federation

that means the name nodes are independent and don’t require

coordination with each other. In order to scale the name

service horizontally, federation uses multiple independent

name nodes servers. The name nodes are federated [22] that

means the name nodes are independent and don’t require

coordination with each other. This approach is suitable for

running many independent namespace in one cluster. All

these namespaces are still not contributing to the scalability of

single namespace and big cluster deployment still depends on

single name node server. Though the namespace data is store

on independent datanodes but still namespace cache is not

distributed and has scalability limitations. This idea is good to

have multiple namespace in a single cluster. A federated

cluster is designed to store more data and handle more clients,

because it has multiple name nodes. However, each individual

name node is subject to the same limits and shortcomings,

such as lack of High Availability (HA), as a non-federated

one. The federated approach provides a static partitioning of

the federated namespace. If one volume grows faster than the

other and the corresponding Namenode reaches the limit, its

resources cannot be dynamically repartitioned among other

name nodes except by manually copying files between file

systems.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.17, August 2012

32

3. THE PROPOSED ARCHITECTURE

The large size of namespace catering millions of clients and

billons of files and directories imposes a big challenge to

provide high scalability and performance of metadata

services. In such systems a structured, decentralized, self

organizing and self healing approach is required. The

proposed architecture addresses the issues to achieve high

scalability, SPOF (Single Point of failure), high availability,

load balancing, security and quality of service without

compromising the performance.

3.1 Distributed Hash Table Based

Namespace
Distributed hash table divides the namespace of HDFS to

multiple namenode servers. To achieve very high scalability

and availability, divided namespace is replicated on different

name nodes. The main goal for building such a system is to

cater the growing demands of namespace and seamless

support to high scalability. The current namespace limit is

100 million files. Static partitioning allows it to scale the

federated namespace to billions of files. Estimates shows that

implementation of a dynamically partitioned namespace will

be able to support 100 billion objects. DHT is a managed and

structured approach for the scalability of HDFS.

Availability is another strong motivation for the distributed

hash table based namespace. A HDFS installation with a

NameNode operating in a large JVM is vulnerable to frequent

full garbage collections, it takes the Namenode out of service

frequently. During this time client application waits for the

namenode server. A failure of the namenode makes the file

system inaccessible and takes time to recover. Considering all

above mentioned concerns, the thesis proposes an improved

Hadoop system architecture that will provide dynamic

distribution of namespace to achieve very high scalability,

availability and guard the system from single point of failure.

The design not only eliminates the limitations but also

improve the Hadoop core functionalities.

Namespace Distribution by Hashing:

Firstly, the hashing is done on the basis of parent directory

path. This approach controls the migration that happens due to

renaming of directory. The directory structure is hierarchical.

An example of a file under directory /prod/data/result/

result1.txt or /prod/logs/ is shown in Figure 1.

 Figure 1: Directory Structure

The distributed structure parameters are given in Table 1.

Table 1. Metadata of objects

ObjectID ObjectName ParentId

1101 /prod 0

1150 /prod/data 1101

1110 /prod/logs 1101

1190 /prod/data/results 1150

The namespace of directory structure described in Figure 1

contains other information than the above mentioned

attributes like the access permissions. It separate tables for

mentioning the userid, permission level and relation of access

log of the objects. The objects are added and removed. / is the

root of hierarchy and its object is 0. The user-object relation

is depicted in Table 2.

Table 2. User-Object Relationship

Userid Objectid Permissions With grant option

501 1101 7 Y

501 1190 7 Y

502 1101 5 -

502 1190 5 -

The relation given in Table 2 helps in defining access and

privileges to users. The admin of cluster or application owner

grants or revoke permissions to users. Number seven is

regarded as full read, write and executions permissions. The

permissions value is same as it is in Linux File System. This

relation may contain more attributes like admin option under

which a user can grant permissions to other users. The objects

are distributed to namenode servers as per Hash Index Values

(HIV) and are given in table 3:

Table 3. Distributed hash value Index for namenode

HIVFrom HIVTo Namenode Server

0 400 NN0

401 800 NN1

801 1200 NN2

1201 1600 NN3

This relation contains range of values for which the namenode

is responsible. This relationship is also used to find the

namenode sever which contains the specific hash value. The

query for the metadata is sent directly to the namenode. The

size of this relation is small and namenode do not often goes

down and come up frequently. This relation not only speeds

up the search but also perform the load balancing of

namespace to namenode.

3.2 Proposed System Architecture of

Hadoop
The namenode servers form a ring and namespace is

distributed on the namenode servers. This is different than the

default Hadoop which is prone to single point of failure.

Each namenode pre-fetch the namespace it is responsible for

and caches it. This caching is on the server side. The

namenode also caches the relations required to hash object

and HIV distribution table. As the namenode has limited set

of namespace, it can easily cache and process the user request.

All the metadata for a namenode server is stored in the

database as database gives higher throughput and control for

transaction processing.

The caching of metadata is implemented by B+ tree which

places the metadata in memory while the system starts and

joins the Namenode cluster. Each namenode maintains its

successor and predecessor namenode lists. So a namenode is

aware of its predecessor and successor and can communicate

to both sides. It forms a bidirectional ring of namenode.

Periodically, each namenode is monitored by its successor. So

successor finds whether the namenode is up or down. If it

finds it down, then it will notify to all other namenode that its

predecessor is out of service. Predecessor of down node

becomes predecessor of namenode. The proposed architecture

of Hadoop is described figure 2.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.17, August 2012

33

Figure 2: Proposed Architecture of Hadoop

3.2.1 Management of files and blocks
The files are divided into blocks of size 128 MB and are

placed on the data nodes and its replication is placed on the

other data node at minimum three places to give high

availability. The metadata about the datanode and blockid is

placed in the name node servers. In the present case, the

metadata store in namenode which covers the hashing range

of its parent directory and is responsible to handle the queries

of clients. The client hashes the parent directory of file and

lookup the namenode that maintains the range in which it

falls. It contacts any of the namenode and move clockwise

(increasing) or anti clockwise (decreasing). If distributed hash

value table of keys is replicated on all nodes then the name

node lookup complexity is O(1) otherwise it is O(log N).

3.2.2 Uniform Distributed Namespace Caching
It has been a big challenge to distribute the namespace data

uniformly to load balance all namenodes. The metadata is

prefetched and cached using B+ tree. A client querying the

namenode is answered right away from the perfected cache.

So, metadata distribution is very important to load balance the

namenode activities. Here, the uniform hash key distribution

is used for metadata. An uneven approach may lead to

inconsistent performance and lead to underutilization of

cluster capabilities. In this approach caching is symmetric and

all namenodes are evenly loaded. In case a namenode joins, it

takes load from the neighboring namenodes on the other hand

if a node leaves; its successor namenode takes the burden of

metadata and informs the other namenodes that ancestor

namenode is changed.

3.2.3 Namespace Backup and Recovery
The blocks on datanode are replicated to guard against failure

but the crucial namespace is kept in active and passive mode

to guard the single point of failure. In earlier approaches, the

namenode data was stored in files and fetched to cache. The

transaction processing in files for a huge metadata is

cumbersome and time consuming. If a namenode goes down,

it takes a lot of time to check the integrity and then it takes

huge time to cache it in the namenode server.

In the present approach, the structured metadata is stored in

the database. This database gives high throughput to

transactions. Using database backup and recovery tools, the

backup of metadata becomes easy. Also, it has no effect on

the performance of the namenode. It is another edge to

proposed architecture. Though the database server takes some

portion of the memory and CPU but it still compensate it by

improving the availability, high transaction throughput and

backup recovery features.

3.2.4 High Availability
The proposed architecture has been designed to provide high

availability. A big HDFS installation with a Namenode

operating in a large JVM is vulnerable to frequent full garbage

collections, which may take the Namenode out of service for

several minutes. In the present design, the namespace is

distributed using hashing and a namenode is responsible for a

small set of namespace data and that set is well guarded by

replication. Hence, if a namenode goes off or is unavailable,

then the successor takes charge for a while without any

downtime. As the down namenode comes up its successor

again redistribute the load. So it provides maximum

availability.

If there are multiple namenode failures and the running

namenode do not have the cache to accommodate the whole

namespace, it then affects the availability. So administrator

has to check that the total available memory is always greater

than the namespace size. So, an administrator needs to set a

critical value of running namenode server. The administrator

has to ensure this critical number under which the availability

and performance suffers.

3.3 NameNode
The detailed operation of namenode servers in bidirectional

circular ring is discussed. The idea is based on the working of

chord ring with some modification to the requirement of

Hadoop. Chord is a peer to peer, decentralize, symmetric, self

healing and self organizing project. The new proposed design

brings in some reworking on the initialization and namenode

servers. The coordination is very important among each

namenode servers while the node server goes down and

comes up or while new file and directories or objects/ blocks

are added to the namespace. The dynamism of chord and

dynamism of namespace coordinates to achieve best possible

performance.

In proposed Hadoop design, the files are mapped by their

parent directory id so that a single node has the entire

directory element. The probability of application lookup for

same kind of file is high and the probability of these files

under single directory is also high. The hashing is done on

parent directory id. It allows same kind of files hashed to

single name node server. The lookup for metadata is even fast

as application finds all its file metadata under one namenode

server and it cuts down the name node lookup for resources.

So the chord has nodes and key of resources that name nodes

want to share. In Hadoop the namenodes is in the range of [0,

2m) where m is space identifier. Each namenode is having a

namenode id. In Figure 4.2, eight namenodes were shown

with id NN0-7. Each namenode is responsible for a set of

keys. Each name node has a finger table of three entries.

When a data node creates a block of a file, a key is generated

for that block and is assigned to the namenode server.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.17, August 2012

34

The namenodes and objects/data blocks organization is

explained with respect to each other in a 2m name nodes

numbered from 0 to 2m - 1. Key k is assigned to the first node

whose identifier is equal to k in the identifier space, regardless

of the owner of the resource that generated this key. This

namenode is called the successor node of key k, denoted by

successor (k).

3.4 Chord for Namespace Management
Chord is proposed with some modifications of chord ring that

help to improve the performance of namespace management

of Hadoop. Apart from finger table and successor list, the

namenode server also maintains predecessor’s pointer to make

the ring bidirectional. As the namenode identifiers are in serial

order, it becomes easy to check the identifier of the namenode

and compare it with the requester. If it is less in value, then it

goes one step back or to node’s predecessor. Otherwise, it has

to go clockwise, jumping from node to node as in finger table

and reaches the destination. The same thing happens when a

key resource is searched. Hence bidirectional ring gives an

edge to improve the lookup performance.

4. RESULTS AND PERFORMANCE

EVALUATIONS

The primary component of the design is distributed name

node server in chord ring. To evaluate the performance of

proposed design, planetsim is used to construct the chord ring

of name nodes and related data structures.

The test results are obtained for chord ring of different sizes

for parameters such as creation time, broadcast time, random

key lookup and uni-cast time and are shown in tables from 4

to 7. A 64 chord ring is constructed having namenode shown

in Figure 3.

Figure 3: Chord Ring of 64 Name Node Servers

The time required in creating a chord ring of name node

servers and their lookup data structures like finger table,

successor list and predecessor list. The network creation time

affects the availability and increases mean time to recovery

(MTTR).

Table 4. Network creation time and number of name node

servers

Number of

namenode servers

Network Creation

time in seconds

Number of

Steps

8 0.076 857

16 0.111 937

32 0.153 1115

64 0.251 1435

128 0.54 2075

256 2.472 3355

This time is proportionate to the number of namenode server.

A relation of the network creation time and different name

nodes is shown in table 4.

The time required to broadcast a message in chord ring of

name node servers depends upon the number of nodes. The

broadcast is required when a namenode joins or leave

gracefully. Name node announces its present as it joins. The

relationship between the broadcast time and number of

namenode servers is shown in Table 5.

Table 5. Broadcast time on different number of name node

servers

Number of name

node servers

Broadcast time

in seconds

Number of

Steps broadcast

8 0.021 4

16 0.026 5

32 0.03 6

64 0.038 7

128 0.055 8

256 0.108 9

The smaller time improves the performance of node joining

and leaving operation. The random key lookup time and steps

is very important to find the object metadata. The lookup first

searches the local name node namespace, and then forwards

the request to other using finger table, successor list and

predecessor list. Using these data structures, name node

lookup gives a managed performance and need not to use

broadcasting. The lookup time of six random keys on different

number of name node server is shown in Table 6. The smaller

lookup time gives higher metadata lookup performance.

Table 6. Random key lookup time in a chord ring of

different name node servers

Number of

namenode server

No of steps in

lookup

Time

8 288 0.015

16 310 0.007

32 355 0.010

64 448 0.012

128 623 0.012

256 976 0.030

The chord ring is a managed network. Each name node server

has its own lookup data structures. The key lookup requests

are passed to other name node server using unicasting.

Hence, unicast time affects the performance of key lookup

operation. A relationship between number of name nodes and

unicast time in chord ring is shown in Table 7. The unicast

time depends upon the number of name node server and

directly improves the performance of key lookup operation.

Table 7. Unicast time in a chord ring of different number

of name node servers

Number of

namenode servers

Uni-cast Time

in seconds

Steps

8 0.056 47

16 0.056 56

32 0.073 66

64 0.092 67

128 0.120 75

256 0.302 89

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.17, August 2012

35

From the above tables, it is clear that choosing the right

number of namenode servers in chord ring is very important

for operations mentioned above. A wrong choice of number

affects the overall performance of HDFS.

The B+ tree based caching of namespace for single namenode

and multiple namenode servers with different number of

namespace objects has been simulated in python programs. To

test the performance, random key searches are performed on a

namespace of single and multiple name node servers. Results

are collected and are shown below in tables.

The initialization time is the time to fetch metadata into the

memory. Pre-fetch and caching of metadata is done to

improve the performance of lookups. B+ tree is in-memory

data structure that Hadoop uses to cache the metadata. To

evaluate the availability of the proposed system, the cache

initialization has been implemented.

The time consumed to search 100 random metadata key

queries from the cache is directly related to performance of

the name node server. The larger search time affects the name

node server performance and slows down the performance of

Figure 4: Initialization time vs Metadata objects per name

node server

client application. Figure 4 shows that there is an exponential

rise in cache initialization time for metadata objects number

greater than 3.5 millions. Under this number, the growth is

almost linear. The system will remain unavailable while

whole metadata is not cached. The large cache initialization

time affects the availability of the system and mean time to

recovery of the system.

Figure 5: Time to search 100 random keys vs metadata

objects per namenode server

From Figure 5, it is clear that the time consumed to search

100 keys falls substantially from 50 million metadata object

per name node server to 3 millions. This fall is almost linear.

It shows that around 3 million or below object per name node

is best for the system performance.

The queries per system per second indicate the performance

of whole system comprising of n name node server. This

parameter indicates the number of client requests processed in

a second. The larger the number of queries a system can take,

improves the system performance and client user experience.

Adding name node servers in chord ring improves the query

performance and metadata caching capacity of HDFS.

Figure 6: Number of name node server vs maximum

number of queries per system

High Scalability of Proposed Hadoop Architecture

HDFS single namenode server has limited support for

metadata objects and data nodes. Single name node saturates

at 100 billions of files and 10 thousands. The proposed

approach distributes the metadata and data node load on

multiple name nodes using distributed hash tables. This

approach gives limitless support to the scalability of HDFS.

The size of namespace is computed on the basis of number of

files, average four metadata objects per file, total metadata

objects and 200 bytes per objects as shown in Table 5.8.

Table 8 Size of Namespace for 1 billion and 2 billion files

NUMBER

OF FILES

TOTAL

METADATA

OBJECTS

SIZE OF

NAMESPACE

IN GB

1000000000 4000000000 745.06

2000000000 8000000000 1490.12

The Table 8 shows that approximately 746 GB is required to

store and cache 1 billions of files. This amount of metadata is

distributed on the name node servers. Table 9 is depicted to

show the size of metadata per namenode server for different

number of name node in chord ring.

Table 9 Distribution of metadata for different number of

namenode servers

Namespace

(GB)

Number of

name node

servers

Size Metadata per

namenode server

(GB)

745.06 32 23.28

745.06 64 11.64

745.06 128 5.82

1490.12 32 46.57

1490.12 64 23.28

1490.12 128 11.64

0

10000000

20000000

30000000

40000000

50000000

60000000

1 6 11 16 21 26 31

Initialisation time (s)

M
et

ad
et

a
p

er
 n

am
e

n
o

d
e

se
rv

er

0

10000000

20000000

30000000

40000000

50000000

60000000

1 9 17 25 33

M
et

ad
at

a
o

b
je

ct
s

p
er

N
am

e
n

o
d

e

Time to search 100 keys in seconds

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

1 6 11 16 21 26 31
Number of Name Node servers

M
ax

im
u

m
 q

u
er

ie
s

p
er

sy
st

em
 p

er
 s

ec
o

n
d

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.17, August 2012

36

Other important factor for scalability is to manage the internal

load due to data node. The large number of datanodes per

name node saturates the server dues to high number of status

update requests. The number of data node is proportional to

number of files and is computed on the basis of average 3

blocks per file and block size 128 MB replicated thrice is

shown in Table 10. The large amount of storage requires large

number of data nodes. According the proposed architecture,

the data nodes are also resources and are divided among name

nodes severs.

Table 10 Number of Data Nodes and Number of files

NUMBER OF

FILES

TOTAL

STORAGE

REQUIRED

ON DATA

NODES in TB

NUMBER OF

DATA NODE

WITH 8 TB

OF STORAGE

1000000000 1098633 137329

2000000000 2197266 274658

The data given in tables from 8 to 11 are computed to manage

1 billion and 2 billion files on 32, 64 and 128 name nodes.

The data is well within the limit for memory and internal load

of data nodes. The proposed architecture has broken the limit

of 100 million files and 10,000 data node per Hadoop cluster.

It is clear from Table 8 that the 1 billion files require 745 GB

of memory and this memory is made available to HDFS from

32 name node servers by using 23.28 GB memory of each.

Table 11 Load of Data Nodes per Name Node Server

NUMBER

OF DATA

NODE

NUMBER OF

NAME NODE

SERVERS

DATA NODE

PER SERVER

137329 32 4292

137329 64 2146

137329 128 1073

274658 32 8583

274658 64 4292

274658 128 2146

One billion files require 1098633 TB of storage. To store the

same amount of data 137329 data nodes with 8 TB of storage

are required. Each name node carries an internal load of 4292

data nodes.

Further, the scalability is improved by adding more name

node servers to manage higher size of namespace.

Name Node Failover in Proposed Hadoop Architecture

When a Namenode fails or gracefully leave the chord ring, its

load is passed to the next active successor node in the ring.

Although, Namenode failures are not frequent still the

proposed system has the resilience and adaption to these

failures. A relationship of metadata and datanode load on

successor node due to two consecutive name node failures is

shown in Table 12 and 13 respectively.

Table 12 Metadata load on successor node due to two

consecutive name node failures

SIZE OF

METADATA

PER

NAMENODE

SERVER

METADATA

LOAD

SIZE OF

SUCCESSOR

METADATA

23.28 46.56 69.84

11.64 23.28 34.92

5.82 11.64 17.46

Table 13 Data node load on successor node due to two

consecutive failures

NUMBER

OF

DATA

NODES

NUMBER

OF NAME

NODE

SERVERS

DATA

NODE

PER

SERVER

TOTAL

NODES

AFTER

FAILOVER

137329 32 4292 12875

137329 64 2146 6438

137329 128 1073 3219

274658 32 8583 25749

274658 64 4292 12875

274658 128 2146 6438

The metadata is replicated to multiple namenode servers using

its finger table. The successor node has the replication copy of

metadata of failure name node. It takes the load of failure

name node. In case the failure name node joins again. It

searches for its successor and gets its metadata and internal

load back.

5. CONCLUSIONS
The proposed architecture has resolved the issues of

namespace scalability, failover and availability. The focus of

the work is based on namespace distribution using distributed

hash tables. The system has achieved high scalability as

namespace is distributed among namenodes by using

distributed hash tables. The centralized namenode has been

prone to single point of failure for HDFS. In proposed design,

the failover technique has been discussed that guards it from

single point of failure. In previous approaches, the growing

namespace of HDFS affects the availability and performance

of Hadoop cluster. In this research work, the performance and

availability of namespace is scaled up by adding namenode

server. The results show that the proposed architecture has

improved the performance in terms of system initialization

time, key lookup operation and the load capacity of HDFS.

Only vertical scalability was possible in previous approaches.

Now, the proposed architecture of has self adaptive and

healing feature that allows it to scale up the namespace

horizontal by adding namenode server. The resource lookup

cost is O(log N). The issue of single point of failure has been

addressed. Now, namenode may leave and join without any

downtime and much overhead. This has improved the

availability of cluster as other name nodes had replication of

distributed namespace. Finally, the provisioning of services

on the proposed architecture improves the performance of

client applications, gives the scalability in terms of data

storage, load capacity of data nodes and overall performance

of the HDFS.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.17, August 2012

37

5.1 Future Work
The performance of the system can further be improved by

strategies the replication of distributed namespace on other

namenode servers. The client applications interacts the

namenode servers for metadata lookup for files. The metadata

of these files lies on few sets of namenode servers. The

intimacy between client application and these namenode can

be developed to further improve the performance of the

HDFS. A single large Hadoop cluster deployment is always

cheaper and easy to manage than many small Hadoop clusters.

So many client application data resides on a single large

Hadoop deployment. It requires careful review of the security.

Each client applications have different storage requirements.

More advanced technique could be designed to address the

issue of quality of service and client application data security.

6. REFERENCES
[1] Ghemawat, S., Gobioff, H. and Leung, S.T., 2003, The

Google File System, Google.

[2] Dean, J. and Ghemawat, S., 2004, MapReduce:

Simplified Data Processing on Large Clusters, Google.

[3] Shvachko, K.V., May 2010, HDFS scalability: the limits

to growth, usenix vol 35 no 3, www.usenix.org

/publications/login/2010-04/openpdfs/shvachko.pdf.

[4] Borthakur, D., November 2007, The Hadoop Distributed

File System: Architecture and Design.

[5] Porter, G., April 2010, Decoupling Storage and

Computation in Hadoop with SuperDataNodes, ACM

SIGOPS Operating Systems Review, Volume 44 issue.

[6] Tankel, D., May 2010, Scalability of Hadoop Distributed

File system, Yahoo developer work.

[7] The RPC server Listener thread is a scalability

bottleneck, Apache Jira,

https://issues.apache.org/jira/browse/HADOOP-6713.

[8] Borthapur, D., 2010, Hadoop AvatarNode High

Availability,

http://hadoopblog.blogspot.com/2010/02/hadoop-

namenode-high-availability.html, Facebook.

[9] Wang, F., Qiu, J., Yang, J., Dong, B., Li, X. and Li, Y.,

November 2009, Hadoop High Availability through

Metadata Replication, IBM China Research Laboratory,

ACM.

[10] Wang, Y. and HaiTao, L.V., 2011, Efficient Metadata

Management in Cloud Computing, IEEE 3rd

International Conference on Communication Software

and Networks.

[11] Sriniwas, A. V., Reddy, M. V. and D. Janakiram, March

2006, Distributed Wisdom: Designing a Replication

Service for Large Peer to Peer Data Grids, IEEE

Distributed Systems Online Vol. 7, No. 3.

[12] Apache Hadoop Project: http://hadoop.apache.org

[13] Shvachko, K., Kuang, H., Radia, S. and Chansler, R.,

2010, The Hadoop Distributed File System, Mass

Storage Systems and Technologies (MSST), IEEE 26th

Symposium.

[14] Attebury, G. and Baranovski, A., 2009, Hadoop

Distributed File System for the Grid, Nuclear Science

Symposium Conference Record (NSS/MIC), IEEE.

[15] Guang-hua, S. and Jun-na, C., 2011, QDFS: A Quality-

Aware Distributed File Storage Service Based on HDFS

Computer Science and Automation Engineering (CSAE),

IEEE International Conference.

[16] Shvachko, K. and Kuang, H., 2010, The Hadoop

Distributed File System, Mass Storage Systems and

Technologies (MSST), IEEE 26th Symposium.

[17] An Introduction to HDFS Federation ,

http://hortonworks.com/blog/an-introduction-to-hdfs-

federation/

[18] The Next Generation of Apache Hadoop MapReduce,

http://developer.yahoo.com/blogs

/hadoop/posts/2011/02/mapreduce-nextgen/

[19] Shvachko, K.V., june 2010, Apache Hadoop: The

Scalability Update,

https://www.usenix.org/publications/login/june-2011-

volume-36-number-3/apache-hadoop-scalability-update

USENIX, The advanced computing system association.

[20] Flocchini, P. , Jan 2007, Enhancing Peer-to-Peer

Systems Through Redundancy, Selected Areas in

Communications, IEEE Journal, Volume 25.

[21] Huang, H. and Zheng, Y., 2010, PChord: a distributed

hash table for P2P network, Frontiers Of Electrical and

Electronic Engineering In China Volume 5, Number 1.

[22] HDFS Federation,

http://hadoop.apache.org/common/docs/r0.23.0/hadoop-

yarn/hadoop-yarn-site/Federation.html

[23] Tom White, Hadoop: The Definitive Guide

[24] Jason Venner, Pro Hadoop

[25] Vu, Q.H., Lupu, M. and Ooi, B.C., Peer to Peer

Computing principles and Applications, Springer

[26] Antony Chazapis, Georgios Tsoukalas , 2007, Global-

scale peer-to-peer file services with DFS, IEEE 8th Grid

Computing Conference

[27] Manghui Tu, Peng Li, I-Ling Yen, Bhavani

Thuraisingham, Latifur Khan, JANUARY-MARCH

2010, Secure Data Objects Replication in Data Grid,

IEEE Transactions on Dependable and Secure

computing, Vol. 7, No. 1

http://www.springerlink.com/content/?Author=Yan+Zheng

