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ABSTRACT 

In data intensive computing, Hadoop is widely used by 

organizations. The client applications of Hadoop require high 

availability and scalability of the system. Mostly, these 

applications are online and their data growth rate is 

unpredictable. The present Hadoop relies on secondary 

namenode for failover which slows down the performance of 

the system. Hadoop system’s scalability depends on the 

vertical scalability of namenode server.  As the namespace of 

Hadoop distributed file system grows, it demands additional 

memory to cache. A namenode server does not have enough 

primary memory to cache the namespace, its performance and 

availability effects. A new Hadoop architecture has been 

proposed to address the issues of namenode scalability, single 

point of failure and availability of Hadoop. This approach is 

based on distribution of namespace using distributed hash 

tables. The growing size of namespace of HDFS is distributed 

into multiple name node servers. The proposed architecture of 

Hadoop is simulated by using the multiple name node servers. 

The name node are arranges in chord ring. This allows HDFS 

to scale up horizontally. The system provides decartelize 

managed approach for namespace distribution which gives 

consistent performance. The results of HDFS namespace to 

store 1 billion or above files are discussed in this research 

work. The proposed architecture has shown high availability 

and adapts to name node failure. 
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1. INTRODUCTION 
The phenomenal growth of internet based applications and 

web services in last decade have brought a change in the 

mindset of researchers. The traditional techniques to store and 

analyze voluminous data have been improved. Organization 

providing information technology solutions are having great 

concerns to the amount of data their machines are producing. 

These organizations are ready to acquire solutions which are 

highly reliable to store and process large data sets. Such 

organizations are required to index huge volume of contents 

and analyze terabytes of data to extract patterns [23, 24]. The 

size of program code is very small compared to data. The 

client applications move the program code to data. The 

program instructions are executed on the node where data 

resides. This provides data locality to client application’s 

code. The results from all machines are sent back, merged and 

streamed to client application [2, 18, 23, 24]. 

 

Several system architectures have been implemented for data-

intensive computing and large-scale data analysis, such as 

applications including parallel and distributed relational 

database management systems. But, most of data growth is in 

unstructured form of data. MapReduce is a programming 

paradigm architecture pioneered by Google [1, 2]. Now it is 

available in an open-source implementation called Apache 

Hadoop [12]. It is used by organizations like Yahoo, 

Facebook and other online shopping marts. Data-Intensive 

Computing Systems have approaches to parallelize the 

processing of data. The goal to design such platform is to 

provide high levels of reliability, efficiency, availability and 

scalability. Hadoop is one such architecture which exploits 

above mentioned features [23, 24, 27]. 

 

Hadoop parallelizes data processing across many nodes 

computers in a cluster. It speeds up large computations and 

hides I/O latency. Hadoop is especially well-suited to large 

data processing tasks like searching and indexing because it 

has powerful distributed file system [1, 2, 12, 18, 23, 24]. The 

Hadoop distributed file system (HDFS) has namenode servers 

and data nodes. The namenode server maintains the metadata 

called namespace. Namespace has information about 

namenode servers, file, blocks, replica, data nodes and 

running jobs. HDFS is highly reliable as it replicates chunks 

of data to nodes in the cluster. The replica decisions are used 

to improve the availability of system. Hadoop has emerged as 

a data mining platform and is becoming an industry standard 

for large data processing [23,24]. Hadoop is successfully used 

in science and a variety of industries. Scientific applications 

include mathematics, high energy physics, astronomy, 

genetics, and oceanography. The platform has been in action 

in many areas [13]. 

 

The goal of Hadoop distributed file system is to address the 

issues of hardware failure, high throughput data access and 

process large data sets of applications [4]. Hadoop has simple 

coherency model named write-once-read-many for files and 

works on idea of moving computation to data. HDFS is 

portable across heterogeneous hardware and software 

platforms. The centralized namenode server stores the 

namespace of HDFS in live memory for high performance. As 

the storage capacity of a cluster grows, more namenode server 

memory is required. Shvachko [3] estimates that 1 

Gigabyte(GB) memory is required to cache namespace of 1 

Petabyte (PB) of data in cluster. One petabytes of data storage 

requires approximately 100 million data blocks in HDFS. In 

order to accommodate data of 100 million blocks, the HDFS 

cluster needs 10 thousand of nodes with eight 1 TB drives. In 

case of total storage capacity of cluster as 60 PB, it requires a 

minimum 60 GB of memory in namenode server to provide 

full caching of namespace. Beyond 60 PB of data, it requires 

additional memory (RAM). The additional RAM achieves 

vertical scalability. It is unrealistic to add any amount RAM to 

the name node server. 

As the number of data nodes increases, the work load on a 

single centralized namenode server increases and has a great 

impact on the performance and availability of the cluster. It is 

therefore, increasing work load and memory that restricts the 
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scalability of the Hadoop cluster [6, 20]. A single centralized 

namenode server is more prone to failures. In case namenode 

server fails, the whole cluster data nodes are unavailable to 

client applications. The recovery time depends on the amount 

of metadata data [8]. As the name node server starts, it takes 

time to load the namespace to cache. This adds up to the 

unavailability of service. So a single centralized namenode 

server becomes a Single point of failure (SPOF).  

 

Chord’s main goal is the location of entities in P2P 

environments, like documents, files, or any resource that one 

might want to share in a computer network [20, 21, 25, 26]. It 

is a distributed lookup protocol. It maps a given key onto a 

node. Data is easily placed in a Chord by associating a key 

with each resource item. Chord shows adaptation feature 

when node failures occur, when nodes join and leave the 

network in small interval. Another feature is its efficient query 

processing. In chord, namespace data is distributed by 

distributed hash tables and it addresses the limitations of 

single namenode server like scalability, failover and 

performance. Chord is decentralized environment which is 

symmetric, auto adaptive and provides consistent performance 

of resource lookup. Chord ring maintains data structures like 

finger table, successor list and predecessor list to five 

consistent resource lookup performances. 

 

The remainder of this paper is organized as follows. 

Background and related work are described in Section 2. 

Section 3 states the details of the proposed architecture of 

Hadoop.  Evaluation of the proposed architecture is described 

in Section 4. Finally, conclusions and future work are 

described in Section 5. 

 

2. BACKGROUND AND RELATED 

WORK 

Since the weakness of the centralized namespace storage of 

Hadoop has surfaced up, there have been attempts in research 

publications providing strategies for eliminating the single 

point of failure and address the scalability issue of the 

architecture. In this section, the background of this research 

field and related studies are reviewed.  

 

Dhruba Borthapur discussed the issue of single point of 

failure of Hadoop and suggests improvements in failover of 

Namenode server. The AvtarNode [8] was developed to 

address the issue of failover and a mechanism to address the 

single point failure of the Namenode. The primary AvtarNode 

is a Namenode and writes its transaction logs into the shared 

NFS filer. Another instance of AvtarNode is running and 

called standby node which continually reading the transaction 

logs from the same shared NFS filer. The standby namenode 

donot participate in the functioning of HDFS. The 

AvatarNode is effective mechanism to guard against 

Namenode failures and keeps the namespace data protected. 

However, the AvatarNode does not address the high 

scalability of the architecture and still has the single point of 

access to the cluster. As the namespace grows, the two name 

node servers do not load balance the work. This approach 

provides failover and not able to accommodate the large 

namespace. 

 

Feng Wang’s discussed the metadata replication based 

solution to provide high availability and failover technique 

[9]. The solution has phases: the first is the initialization phase 

which initializes the execution environment of high 

availability. The second phase replicates metadata from 

critical node to corresponding backup node at runtime. The 

last phase resumes the running of Hadoop. As the file system 

information and Edit Log transactions are stored as a backup 

copy on the Namenode, the solution emphasizes on the 

replication of critical metadata. It presents an adaptive method 

for failure recovery of the Namenode by metadata replication 

with further reduces failover duration, but it does not solve the 

issue of single point of failure with Hadoop. 

  

The Hadoop RPC server implementation [7] has a single 

listener thread that reads data from the socket and puts them 

into a call queue for the Namenode threads. Namenode gets to 

process the RPC requests only after all the incoming 

parameters copied and de-serialized by the listener thread. The 

Namenode metadata management was enhanced by creating a 

pool a RPC reader threads which works well to decentralize 

the RPC requests from the clients. Most of the file system 

operations are read only and do not trigger any synchronous 

transactions. By changing the current File System name 

system lock to readers-writer lock, the performance of the 

Namenode improved significantly [7].The solution was 

effective in improving the performance of the Namenode to 

handle heavy workload, but it fails to provide a solution to the 

scalability and single point of failure of the Namenode.  

 

George Porter [5], provides a solution to meet the increasing 

demands of namespace storage of the cluster. Porter discusses 

the use of a decoupled Datanode architecture to provide 

increased data storage and computation in Hadoop [5]. The 

paper introduces SuperDataNodes which are servers 

containing more disks than the regular nodes in Hadoop. The 

design is a storage-rich architecture of Hadoop. As a single 

SuperDataNode accommodates data worth many DataNodes, 

its failure has significant impact on the storage. The use of 

SuperDataNode has no change on the metadata storage. As a 

result, it does not improve scalability of HDFS the 

architecture. The use of SuperDataNodes is not a cost 

effective solution to improve the storage capacity. The single 

point of access puts load on it bandwidth to access big data. 

  

Apache group came up with a solution to called federation 

that means the name nodes are independent and don’t require 

coordination with each other. In order to scale the name 

service horizontally, federation uses multiple independent 

name nodes servers. The name nodes are federated [22] that 

means the name nodes are independent and don’t require 

coordination with each other. This approach is suitable for 

running many independent namespace in one cluster. All 

these namespaces are still not contributing to the scalability of 

single namespace and big cluster deployment still depends on 

single name node server. Though the namespace data is store 

on independent datanodes but still namespace cache is not 

distributed and has scalability limitations. This idea is good to 

have multiple namespace in a single cluster. A federated 

cluster is designed to store more data and handle more clients, 

because it has multiple name nodes. However, each individual 

name node is subject to the same limits and shortcomings, 

such as lack of High Availability (HA), as a non-federated 

one. The federated approach provides a static partitioning of 

the federated namespace. If one volume grows faster than the 

other and the corresponding Namenode reaches the limit, its 

resources cannot be dynamically repartitioned among other 

name nodes except by manually copying files between file 

systems. 
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3. THE PROPOSED ARCHITECTURE 

 

The large size of namespace catering millions of clients and 

billons of files and directories imposes a big challenge to 

provide high scalability and performance of metadata 

services. In such systems a structured, decentralized, self 

organizing and self healing approach is required. The 

proposed architecture addresses the issues to achieve high 

scalability, SPOF (Single Point of failure), high availability, 

load balancing, security and quality of service without 

compromising the performance. 

3.1 Distributed Hash Table Based 

Namespace 
Distributed hash table divides the namespace of HDFS to 

multiple namenode servers. To achieve very high scalability 

and availability, divided namespace is replicated on different 

name nodes. The main goal for building such a system is to 

cater the growing demands of namespace and seamless 

support to high scalability.  The current namespace limit is 

100 million files. Static partitioning allows it to scale the 

federated namespace to billions of files. Estimates shows that 

implementation of a dynamically partitioned namespace will 

be able to support 100 billion objects. DHT is a managed and 

structured approach for the scalability of HDFS. 

Availability is another strong motivation for the distributed 

hash table based namespace. A HDFS installation with a 

NameNode operating in a large JVM is vulnerable to frequent 

full garbage collections, it takes the Namenode out of service 

frequently. During this time client application waits for the 

namenode server. A failure of the namenode makes the file 

system inaccessible and takes time to recover. Considering all 

above mentioned concerns, the thesis proposes an improved 

Hadoop system architecture that will provide dynamic 

distribution of namespace to achieve very high scalability, 

availability and guard the system from single point of failure. 

The design not only eliminates the limitations but also 

improve the Hadoop core functionalities.  

 

Namespace Distribution by Hashing: 

Firstly, the hashing is done on the basis of parent directory 

path. This approach controls the migration that happens due to 

renaming of directory. The directory structure is hierarchical. 

An example of a file under directory /prod/data/result/ 

result1.txt or /prod/logs/ is shown in Figure 1. 

 
 Figure 1: Directory Structure 

The distributed structure parameters are given in Table 1. 

Table 1. Metadata of objects 

ObjectID ObjectName ParentId 

1101 /prod 0 

1150 /prod/data 1101 

1110 /prod/logs 1101 

1190 /prod/data/results 1150 

 

The namespace of directory structure described in Figure 1 

contains other information than the above mentioned 

attributes like the access permissions. It separate tables for 

mentioning the userid, permission level and relation of access 

log of the objects. The objects are added and removed. / is the 

root of hierarchy and its object is 0.  The user-object relation 

is depicted in Table 2. 

Table 2. User-Object Relationship 

Userid Objectid Permissions With grant option 

501 1101 7 Y 

501 1190 7 Y 

502 1101 5 - 

502 1190 5 - 

 

The relation given in Table 2 helps in defining access and 

privileges to users. The admin of cluster or application owner 

grants or revoke permissions to users. Number seven is 

regarded as full read, write and executions permissions. The 

permissions value is same as it is in Linux File System. This 

relation may contain more attributes like admin option under 

which a user can grant permissions to other users. The objects 

are distributed to namenode servers as per Hash Index Values 

(HIV) and are given in table 3:  

 

Table 3. Distributed hash value Index for namenode 

HIVFrom HIVTo Namenode Server 

0 400 NN0 

401 800 NN1 

801 1200 NN2 

1201 1600 NN3 

This relation contains range of values for which the namenode 

is responsible. This relationship is also used to find the 

namenode sever which contains the specific hash value. The 

query for the metadata is sent directly to the namenode. The 

size of this relation is small and namenode do not often goes 

down and come up frequently. This relation not only speeds 

up the search but also perform the load balancing of 

namespace to namenode. 

   

3.2 Proposed System Architecture of 

Hadoop 
The namenode servers form a ring and namespace is 

distributed on the namenode servers. This is different than the 

default Hadoop which is prone to single point of failure.  

Each namenode pre-fetch the namespace it is responsible for 

and caches it. This caching is on the server side. The 

namenode also caches the relations required to hash object 

and HIV distribution table. As the namenode has limited set 

of namespace, it can easily cache and process the user request. 

All the metadata for a namenode server is stored in the 

database as database gives higher throughput and control for 

transaction processing. 

 

The caching of metadata is implemented by B+ tree which 

places the metadata in memory while the system starts and 

joins the Namenode cluster. Each namenode maintains its 

successor and predecessor namenode lists. So a namenode is 

aware of its predecessor and successor and can communicate 

to both sides. It forms a bidirectional ring of namenode. 

Periodically, each namenode is monitored by its successor. So 

successor finds whether the namenode is up or down. If it 

finds it down, then it will notify to all other namenode that its 

predecessor is out of service. Predecessor of down node 

becomes predecessor of namenode. The proposed architecture 

of Hadoop is described figure 2. 
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Figure 2: Proposed Architecture of Hadoop 

 

3.2.1 Management of files and blocks 
The files are divided into blocks of size 128 MB and are 

placed on the data nodes and its replication is placed on the 

other data node at minimum three places to give high 

availability. The metadata about the datanode and blockid is 

placed in the name node servers. In the present case, the 

metadata store in namenode which covers the hashing range 

of its parent directory and is responsible to handle the queries 

of clients.  The client hashes the parent directory of file and 

lookup the namenode that maintains the range in which it 

falls. It contacts any of the namenode and move clockwise 

(increasing) or anti clockwise (decreasing). If distributed hash 

value table of keys is replicated on all nodes then the name 

node lookup complexity is O(1) otherwise it is O(log N).  

 

3.2.2 Uniform Distributed Namespace Caching 
It has been a big challenge to distribute the namespace data 

uniformly to load balance all namenodes. The metadata is 

prefetched and cached using B+ tree. A client querying the 

namenode is answered right away from the perfected cache. 

So, metadata distribution is very important to load balance the 

namenode activities. Here, the uniform hash key distribution 

is used for metadata. An uneven approach may lead to 

inconsistent performance and lead to underutilization of 

cluster capabilities. In this approach caching is symmetric and 

all namenodes are evenly loaded. In case a namenode joins, it 

takes load from the neighboring namenodes on the other hand 

if a node leaves; its successor namenode takes the burden of 

metadata and informs the other namenodes that ancestor 

namenode is changed.  

 

3.2.3 Namespace Backup and Recovery 
The blocks on datanode are replicated to guard against failure 

but the crucial namespace is kept in active and passive mode 

to guard the single point of failure. In earlier approaches, the 

namenode data was stored in files and fetched to cache. The 

transaction processing in files for a huge metadata is 

cumbersome and time consuming. If a namenode goes down, 

it takes a lot of time to check the integrity and then it takes 

huge time to cache it in the namenode server. 

 

In the present approach, the structured metadata is stored in 

the database. This database gives high throughput to 

transactions. Using database backup and recovery tools, the 

backup of metadata becomes easy. Also, it has no effect on 

the performance of the namenode. It is another edge to 

proposed architecture. Though the database server takes some 

portion of the memory and CPU but it still compensate it by 

improving the availability, high transaction throughput and 

backup recovery features. 

 

3.2.4 High Availability 
The proposed architecture has been designed to provide high 

availability. A big HDFS installation with a Namenode 

operating in a large JVM is vulnerable to frequent full garbage 

collections, which may take the Namenode out of service for 

several minutes. In the present design, the namespace is 

distributed using hashing and a namenode is responsible for a 

small set of namespace data and that set is well guarded by 

replication. Hence, if a namenode goes off or is unavailable, 

then the successor takes charge for a while without any 

downtime. As the down namenode comes up its successor 

again redistribute the load. So it provides maximum 

availability. 

 

If there are multiple namenode failures and the running 

namenode do not have the cache to accommodate the whole 

namespace, it then affects the availability. So administrator 

has to check that the total available memory is always greater 

than the namespace size. So, an administrator needs to set a 

critical value of running namenode server. The administrator 

has to ensure this critical number under which the availability 

and performance suffers. 

 

3.3   NameNode     
The detailed operation of namenode servers in bidirectional 

circular ring is discussed. The idea is based on the working of 

chord ring with some modification to the requirement of 

Hadoop. Chord is a peer to peer, decentralize, symmetric, self 

healing and self organizing project. The new proposed design 

brings in some reworking on the initialization and namenode 

servers. The coordination is very important among each 

namenode servers while the node server goes down and 

comes up or while new file and directories or objects/ blocks 

are added to the namespace. The dynamism of chord and 

dynamism of namespace coordinates to achieve best possible 

performance.  

 

In proposed Hadoop design, the files are mapped by their 

parent directory id so that a single node has the entire 

directory element. The probability of application lookup for 

same kind of file is high and the probability of these files 

under single directory is also high. The hashing is done on 

parent directory id. It allows same kind of files hashed to 

single name node server. The lookup for metadata is even fast 

as application finds all its file metadata under one namenode 

server and it cuts down the name node lookup for resources. 

 

So the chord has nodes and key of resources that name nodes 

want to share. In Hadoop the namenodes is in the range of [0, 

2m) where m is space identifier. Each namenode is having a 

namenode id. In Figure 4.2, eight namenodes were shown 

with id NN0-7. Each namenode is responsible for a set of 

keys. Each name node has a finger table of three entries. 

When a data node creates a block of a file, a key is generated 

for that block and is assigned to the namenode server.  
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The namenodes and objects/data blocks organization is 

explained with respect to each other in a 2m name nodes 

numbered from 0 to 2m - 1. Key k is assigned to the first node 

whose identifier is equal to k in the identifier space, regardless 

of the owner of the resource that generated this key. This 

namenode is called the successor node of key k, denoted by 

successor (k).  

 

3.4 Chord for Namespace Management 
Chord is proposed with some modifications of chord ring that 

help to improve the performance of namespace management 

of Hadoop. Apart from finger table and successor list, the 

namenode server also maintains predecessor’s pointer to make 

the ring bidirectional. As the namenode identifiers are in serial 

order, it becomes easy to check the identifier of the namenode 

and compare it with the requester. If it is less in value, then it 

goes one step back or to node’s predecessor. Otherwise, it has 

to go clockwise, jumping from node to node as in finger table 

and reaches the destination. The same thing happens when a 

key resource is searched. Hence bidirectional ring gives an 

edge to improve the lookup performance.  

 

4. RESULTS AND PERFORMANCE 

EVALUATIONS 

The primary component of the design is distributed name 

node server in chord ring. To evaluate the performance of 

proposed design, planetsim is used to construct the chord ring 

of name nodes and related data structures. 

The test results are obtained for chord ring of different sizes 

for parameters such as creation time, broadcast time, random 

key lookup and uni-cast time and are shown in tables from 4 

to 7. A 64 chord ring is constructed having namenode shown 

in Figure 3.  

 
  

Figure 3: Chord Ring of 64 Name Node Servers 

The time required in creating a chord ring of name node 

servers and their lookup data structures like finger table, 

successor list and predecessor list. The network creation time 

affects the availability and increases mean time to recovery 

(MTTR). 

 

Table 4. Network creation time and number of name node 

servers 

Number of 

namenode servers 

Network Creation 

time in seconds 

Number of 

Steps 

8 0.076 857 

16 0.111 937 

32 0.153 1115 

64 0.251 1435 

128 0.54 2075 

256 2.472 3355 

 

This time is proportionate to the number of namenode server. 

A relation of the network creation time and different name 

nodes is shown in table 4. 

 

The time required to broadcast a message in chord ring of 

name node servers depends upon the number of nodes. The 

broadcast is required when a namenode joins or leave 

gracefully. Name node announces its present as it joins. The 

relationship between the broadcast time and number of 

namenode servers is shown in Table 5.  

 

Table 5. Broadcast time on different number of name node 

servers 

Number of name 

node servers 

Broadcast time 

in seconds 

Number of 

Steps broadcast 

8 0.021 4 

16 0.026 5 

32 0.03 6 

64 0.038 7 

128 0.055 8 

256 0.108 9 

 

The smaller time improves the performance of node joining 

and leaving operation. The random key lookup time and steps 

is very important to find the object metadata. The lookup first 

searches the local name node namespace, and then forwards 

the request to other using finger table, successor list and 

predecessor list. Using these data structures, name node 

lookup gives a managed performance and need not to use 

broadcasting. The lookup time of six random keys on different 

number of name node server is shown in Table 6. The smaller 

lookup time gives higher metadata lookup performance.  

 

Table 6. Random key lookup time in a chord ring of 

different name node servers 

Number of 

namenode server 

No of steps in 

lookup 

Time 

8 288 0.015 

16 310 0.007 

32 355 0.010 

64 448 0.012 

128 623 0.012 

256 976 0.030 

 

The chord ring is a managed network. Each name node server 

has its own lookup data structures. The key lookup requests 

are passed to other name node server using unicasting.  

Hence, unicast time affects the performance of key lookup 

operation. A relationship between number of name nodes and 

unicast time in chord ring is shown in Table 7.  The unicast 

time depends upon the number of name node server and 

directly improves the performance of key lookup operation.  

 

Table 7. Unicast time in a chord ring of different number 

of name node servers 

Number of 

namenode servers 

Uni-cast Time 

in seconds 

Steps 

8 0.056 47 

16 0.056 56 

32 0.073 66 

64 0.092 67 

128 0.120 75 

256 0.302 89 
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From the above tables, it is clear that choosing the right 

number of namenode servers in chord ring is very important 

for operations mentioned above. A wrong choice of number 

affects the overall performance of HDFS. 

 

The B+ tree based caching of namespace for single namenode 

and multiple namenode servers with different number of 

namespace objects has been simulated in python programs. To 

test the performance, random key searches are performed on a 

namespace of single and multiple name node servers. Results 

are collected and are shown below in tables. 

 

The initialization time is the time to fetch metadata into the 

memory. Pre-fetch and caching of metadata is done to 

improve the performance of lookups. B+ tree is in-memory 

data structure that Hadoop uses to cache the metadata. To 

evaluate the availability of the proposed system, the cache 

initialization has been implemented. 

 

The time consumed to search 100 random metadata key 

queries from the cache is directly related to performance of 

the name node server. The larger search time affects the name 

node server performance and slows down the performance of 

  
Figure 4: Initialization time vs Metadata objects per name 

node server 

 

client application. Figure 4 shows that there is an exponential 

rise in cache initialization time for metadata objects number 

greater than 3.5 millions. Under this number, the growth is 

almost linear. The system will remain unavailable while 

whole metadata is not cached. The large cache initialization 

time affects the availability of the system and mean time to 

recovery of the system. 

 

 
 

Figure 5: Time to search 100 random keys vs metadata 

objects per namenode server 

 

From Figure 5, it is clear that the time consumed to search 

100 keys falls substantially from 50 million metadata object 

per name node server to 3 millions. This fall is almost linear. 

It shows that around 3 million or below object per name node 

is best for the system performance. 

 

The queries per system per second indicate the performance 

of whole system comprising of n name node server. This 

parameter indicates the number of client requests processed in 

a second. The larger the number of queries a system can take, 

improves the system performance and client user experience. 

Adding name node servers in chord ring improves the query 

performance and metadata caching capacity of HDFS.  

 

 
Figure 6: Number of name node server vs maximum 

number of queries per system 

 

High Scalability of Proposed Hadoop Architecture 

 

HDFS single namenode server has limited support for 

metadata objects and data nodes. Single name node saturates 

at 100 billions of files and 10 thousands. The proposed 

approach distributes the metadata and data node load on 

multiple name nodes using distributed hash tables. This 

approach gives limitless support to the scalability of HDFS. 

The size of namespace is computed on the basis of number of 

files, average four metadata objects per file, total metadata 

objects and 200 bytes per objects as shown in Table 5.8. 

     

Table 8 Size of Namespace for 1 billion and 2 billion files 

 

NUMBER 

OF FILES 

 

TOTAL 

METADATA 

OBJECTS 

SIZE OF 

NAMESPACE 

IN GB 

1000000000 4000000000 745.06 

2000000000 8000000000 1490.12 

 

The Table 8 shows that approximately 746 GB is required to 

store and cache 1 billions of files. This amount of metadata is 

distributed on the name node servers. Table 9 is depicted to 

show the size of metadata per namenode server for different 

number of name node in chord ring. 

 

Table 9 Distribution of metadata for different number of 

namenode servers 

Namespace 

(GB) 

Number of 

name node 

servers 

Size Metadata per 

namenode server 

(GB) 

745.06 32 23.28 

745.06 64 11.64 

745.06 128 5.82 

1490.12 32 46.57 

1490.12 64 23.28 

1490.12 128 11.64 
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Other important factor for scalability is to manage the internal 

load due to data node. The large number of datanodes per 

name node saturates the server dues to high number of status 

update requests. The number of data node is proportional to 

number of files and is computed on the basis of average 3 

blocks per file and block size 128 MB replicated thrice is 

shown in Table 10. The large amount of storage requires large 

number of data nodes. According the proposed architecture, 

the data nodes are also resources and are divided among name 

nodes severs.  

  

Table 10 Number of Data Nodes and Number of files 

NUMBER OF 

FILES 

TOTAL 

STORAGE 

REQUIRED 

ON DATA 

NODES in TB 

NUMBER OF 

DATA NODE 

WITH 8 TB 

OF STORAGE 

1000000000 1098633 137329 

2000000000 2197266 274658 

 

The data given in tables from 8 to 11 are computed to manage 

1 billion and 2 billion files on 32, 64 and 128 name nodes. 

The data is well within the limit for memory and internal load 

of data nodes. The proposed architecture has broken the limit 

of 100 million files and 10,000 data node per Hadoop cluster.  

 

It is clear from Table 8 that the 1 billion files require 745 GB 

of memory and this memory is made available to HDFS from 

32 name node servers by using 23.28 GB memory of each.  

 

    

Table 11 Load of Data Nodes per Name Node Server  

NUMBER 

OF DATA 

NODE 

NUMBER OF 

NAME NODE 

SERVERS 

DATA NODE 

PER SERVER 

137329 32 4292 

137329 64 2146 

137329 128 1073 

274658 32 8583 

274658 64 4292 

274658 128 2146 

 

One billion files require 1098633 TB of storage. To store the 

same amount of data 137329 data nodes with 8 TB of storage 

are required. Each name node carries an internal load of 4292 

data nodes.  

 

Further, the scalability is improved by adding more name 

node servers to manage higher size of namespace.  

 

Name Node Failover in Proposed Hadoop Architecture 

 

When a Namenode fails or gracefully leave the chord ring, its 

load is passed to the next active successor node in the ring. 

Although, Namenode failures are not frequent still the 

proposed system has the resilience and adaption to these 

failures.  A relationship of metadata and datanode load on 

successor node due to two consecutive name node failures is 

shown in Table 12 and 13 respectively. 

  

 

 

 

 

Table 12 Metadata load on successor node due to two 

consecutive name node failures 

SIZE OF 

METADATA 

PER 

NAMENODE 

SERVER 

METADATA 

LOAD 

SIZE OF 

SUCCESSOR  

METADATA 

23.28 46.56 69.84 

11.64 23.28 34.92 

5.82 11.64 17.46 

 

Table 13 Data node load on successor node due to two 

consecutive failures 

NUMBER 

OF 

DATA 

NODES 

NUMBER 

OF NAME 

NODE 

SERVERS 

DATA 

NODE 

PER 

SERVER 

TOTAL 

NODES 

AFTER 

FAILOVER 

137329 32 4292 12875 

137329 64 2146 6438 

137329 128 1073 3219 

274658 32 8583 25749 

274658 64 4292 12875 

274658 128 2146 6438 

 

The metadata is replicated to multiple namenode servers using 

its finger table. The successor node has the replication copy of 

metadata of failure name node. It takes the load of failure 

name node. In case the failure name node joins again. It 

searches for its successor and gets its metadata and internal 

load back.  

5. CONCLUSIONS 
The proposed architecture has resolved the issues of 

namespace scalability, failover and availability. The focus of 

the work is based on namespace distribution using distributed 

hash tables. The system has achieved high scalability as 

namespace is distributed among namenodes by using 

distributed hash tables. The centralized namenode has been 

prone to single point of failure for HDFS. In proposed design, 

the failover technique has been discussed that guards it from 

single point of failure. In previous approaches, the growing 

namespace of HDFS affects the availability and performance 

of Hadoop cluster. In this research work, the performance and 

availability of namespace is scaled up by adding namenode 

server. The results show that the proposed architecture has 

improved the performance in terms of system initialization 

time, key lookup operation and the load capacity of HDFS. 

Only vertical scalability was possible in previous approaches. 

Now, the proposed architecture of has self adaptive and 

healing feature that allows it to scale up the namespace 

horizontal by adding namenode server. The resource lookup 

cost is O(log N). The issue of single point of failure has been 

addressed. Now, namenode may leave and join without any 

downtime and much overhead. This has improved the 

availability of cluster as other name nodes had replication of 

distributed namespace. Finally, the provisioning of services 

on the proposed architecture improves the performance of 

client applications, gives the scalability in terms of data 

storage, load capacity of data nodes and overall performance 

of the HDFS.  
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5.1 Future Work 
The performance of the system can further be improved by 

strategies the replication of distributed namespace on other 

namenode servers. The client applications interacts the 

namenode servers for metadata lookup for files. The metadata 

of these files lies on few sets of namenode servers. The 

intimacy between client application and these namenode can 

be developed to further improve the performance of the 

HDFS. A single large Hadoop cluster deployment is always 

cheaper and easy to manage than many small Hadoop clusters. 

So many client application data resides on a single large 

Hadoop deployment. It requires careful review of the security. 

Each client applications have different storage requirements. 

More advanced technique could be designed to address the 

issue of quality of service and client application data security.  
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