
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.16, August 2012

11

Plug-ins for GNU Radio Companion

Shravan Sriram,
Gunturi Srivatsa

Student, Department of ECE
Amrita Vishwa Vidyapeetham,

Coimbatore.

Gandhiraj R
Assistant Professor,

Communication Engineering
Research Group,

ECE Department, Amrita
Vishwa Vidyapeetham

Soman K P
Head, Computational

Engineering and Networking,
Amrita Vishwa Vidyapeetham

ABSTRACT

This paper gives an insight on how to develop plug-ins (signal

processing blocks) for GNU Radio Companion. GRC is on the

monitoring computer and does bulk of the signal processing

before transmission and after reception. The coding done in

order to develop any block is discussed. A block that performs

Huffman coding has been built. Huffman coding is a coding

technique that gives a prefix code. A block that performs

convolution coding at any desired rate using any generator

polynomial has also been built. Both Huffman and

Convolution coding are done on data stored in file sources by

these blocks. This paper thus describes the ease of signal

processing that can be attained by developing blocks in

demand by changing the C++ and PYTHON codes of the

HOWTO package. Being an open source it is available to all,

is highly cost effective and is a field with great potential.

Keywords

Flowgraphs, FPGA, USRP, Blocks, plug-ins, GRC,

convolution coder, Huffman coder, C++, Python, Software

Defined Radio (SDR)

1. INTRODUCTION
The need to update radio transceivers through software

updates lead to a concept known as Software Defined Radio.

When the modification of the software is propagated to

processes before transmission and after reception it leads to

the development of new Blocks used in GRC. Signal

processing blocks are of great help in SDR when the signal

received is raw and processing is to be done in order to obtain

information from a signal or to pack information into a signal.

Hence blocks in GRC play a strong role in the software

domain before transmission and after reception. These blocks

perform a wide variety of tasks such as transforms,

compression, coding, decoding, error correction, filter,

modulation etc…More blocks can be incorporated to improve

the signal processing ability in the software domain. Being an

open source it is available to all, is highly cost effective and is

a field with great potential.

2. SOFTWARE DEFINED RADIO (SDR)
Joe Mitola named a class of radios that is a single hardware

that can perform different functions at different times as

Software Defined Radio [2]. This radio is said to be able to

handle a wide spectrum, traffic, air interfaces and

applications. Thus SDR is a radio platform that performs

signal processing on the digitized version of a complex input

(input that is varied in traffic, frequency, application and

experiences different air interfaces).

The USRP (Universal Software Radio Peripheral) turns

general purpose computers into flexible SDR platforms. The

core of any USRP will contain a motherboard with four high-

speed ADCs and DACs and an FPGA [2]. The main principle

behind the USRP is that the digital radio tasks are divided

between the internal FPGA and the external host CPU. The

high speed general purpose processing, like down and up

conversion, decimation, and interpolation are performed in the

FPGA, while waveform-specific processing, such as

modulation, demodulation, coding and decoding are

performed at the host CPU.

 TX ADC

 RX

 DAC

Figure 1: block diagram of a software defined radio.

3. GNU RADIO

3.1 What is GNU Radio?
GNU Radio project was started by Eric Blossom. It is free

software that can be used in Linux based OS (Ubuntu) for

simulating communication systems and for designing

Software Defined Radios. It is hardware independent.

3.2 Organization
GNU radio is associated with two languages, C++ for creating

signal processing block, python for connections and

generating a signal flow graph. A signal processing block is

typically a C++ function which will perform any processing

on the input signal. A Signal Flow Graph portrays how

various signal processing blocks are inter-connected. The C++

codes of the blocks in GNU radio are accessed by python

codes by importing them using SWIG (Simplified Wrapper

and Interface Generator) [3]. In the flow graph vertices

represent signal processing blocks and edges represent the

data flow between them. Flow graphs in CPU can be used

along with an USRP to perform radio applications.

Figure 2: layers of a GNU radio block.

Python

SWIG

C++

Reprogrammable FPGA

Reprogrammable C++ in

monitoring computer

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.16, August 2012

12

3.3 GNU Radio Companion (GRC)
GNU Radio Companion is a Graphical User Interface (GUI)

tool for creating Signal Flow Graph(s). It is currently under

development by Josh Blum.

Users can drag and drop GNU radio blocks, give inter-

connections, can edit various block parameters and thus create

a Signal Flow Graph (see Figure 4). The GNU radio

companion is also a useful tool for simulation as GRC

contains various WX widgets (block) which can be connected

to verify the output. Knowledge of Python is not required for

using GRC. GRC executes the flow graph by generating a

Python code.

4. Creation of a Block in GRC
The GNU Radio companion contains signal processing blocks

that implement a C++ code to perform signal processing. A

number of signal processing blocks are given by the GNU

radio software as a package. Since the software is open

source, new user defined blocks can be created. This is an

advantage as MATLAB Simulink type of blocks can be

created and used for various applications.

The how to create package (a tar file) is available for

download in the GNU radio website, the tar file is extracted to

get the C++, Python, SWIG and XML files that define the pair

of sample blocks, square and square2 (plug-ins for squaring a

number).

To create the square block in GRC, the following commands

are to be given in the terminal of a Linux based OS (Ubuntu),

[4] after entering the directory that has the extracted files.

>>./bootstrap

>>./configure

>>cd swig

>>make generate makefile swig

>>cd

Re-enter the directory containing the extracted

files.

>>sudo make install

>> sudo ldconfig

After giving the above commands, a new tab called HOWTO

is created in GRC that contains the square and square2 blocks

that performs the squaring of a number.

To obtain a signal processing block one can edit the C++ and

XML codes available for square block. This requires

understanding of C++ code for the square block. XML should

be edited to alter the way block should appear in the GUI.

Any signal processing block will have 3 files associated with

it

 The .h and .cc files that defines the new block class.

 The .i file describes how the block is imported to

python using SWIG.

The C++ concepts used in the code of the square block are

explained in detail.

Howto_square_ff.cc and howto_square_ff.h are the C++ file

and header files respectively for the square block, these files

are present in the extracted content of the HOWTO package.

In howto_square_ff.h, gr_block.h header is included.

howto_square_ff.h header is included in howto_square_ff.cc,

gr_io_signature.h is included in howto_square_ff.cc.

gr_block.h is one among the extracted files. The base class for

all signal processing blocks is gr_block. A new block class

when created in GRC derives its class from the gr_block class

or one of its sub-classes. Code snippet for gr_block class

private:

std::string d_name;

gr_io_signature_sptr d_input_signature;

gr_io_signature_sptr d_output_signature;

int d_output_multiple;

double d_relative_rate;

gr_block_detail_sptr d_detail;

long d_unique_id;

 d_name has the blocks name, d_unique_id has the ID of the

block [3]. Another file that is present is gr_io_signature.h.

This header file contains the class gr_io_signature, describes

how input or output flows. It also gives information on the

size of the input and output streams.

class gr_io_signature {

public:

~gr_io_signature ();

Int min_streams () const {return d_min_streams; }

int max_streams() const {return d_max_streams; }

size_t sizeof_stream_item (int index) const { return

d_sizeof_stream_item; }

private:

int d_min_streams;

int d_max_streams;

size_t d_sizeof_stream_item;

gr_io_signature (int min_streams, int max_streams,

size_t sizeof_stream_item);

friend gr_io_signature_sptr gr_make_io_signature

(int min_streams,

 int max_streams,

 size_t sizeof_stream_item);

};

The class gr_io_signature defines the upper and lower bounds

of the input and output streams as d_min_streams and

d_max_streams respectively. And the size of an item in the

stream is given by sizeof_stream_item. When a block is

created, there is need to indicate two signatures for both input

and output flows. d_input_signature and d_output_signature

are two smart pointers referring to gr_io_signature objects for

the input and output flows, which is the basic information of a

block.

The method general_work is the brain of the box that does all

the signal processing.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.16, August 2012

13

virtual int general_work

(int noutput_items,

gr_vector_int &ninput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

noutput_items and ninput_items are the number of output

items to be written on each output stream and the number of

input items available on each input stream respectively. We

may have a vector of integers, each element of which gives

the input on the input stream. But noutput_items is just an

integer. Thus input rate can be different but the output rate is

constant.

typedef std::vector<void *>

gr_vector_void_star;

typedef std::vector<const void*>

gr_vector_const_void_star;

This the way the input and out data types need to be

initialised. To know more about the special data types in GNU

see gr_types.h [3].

GNU Radio makes use of a special class of C++ pointers

called Boost smart pointers [3]. Boost is a collection of C++

libraries that provides powerful extensions to C++ from many

aspects, such as algorithm implementation, math/numeric’s,

input/output, iterations, etc. Their behavior is very much

similar to that of C++ pointers except that they ensure proper

destruction of dynamically allocated objects. This is a pre-

required package d the installation of GNU radio.

After adding the boost header file, the boost shared pointer

can be used by defining it as

Boost::shared_ptr <T> pointer_name

Where, T is the type of object pointed to by the smart pointer.

Thus,

boost::shared_ptr<gr_io_signature>

declares a smart pointer pointing to an object with class type

gr_io_signature. Since the constructors used in the .h files are

private they cannot be called outside the class. And in order to

avoid the private constructor being pointed by a raw C++

pointer the boost shared pointers are made use of. First a

friend function is declared so that we can access all the private

data. Then in the function, the private constructor is called to

create an instance.

howto_square_ff::general_work (int noutput_items,

gr_vector_int &ninput_items,

gr_vector_const_void_star &input_items

gr_vector_void_star &output_items)

The above snippet is the definition of the function that

performs bulk of the signal processing. The C++ code

defining any system is defined here, that is, the main C++

program of the block is written under this function.

If the block contains multiple inputs, Specific constraints on

the number of input and number of output streams must be

specified.

This information is used to construct the input and output

signatures (2nd & 3rd arguments to gr_block's constructor).

The input and output arguments are used by the system to

check that a valid number and type of inputs and outputs are

connected to this block during execution in GRC. In the case

of a simple square block, one input is accepted and one output

is given out [8]. A new input vector must be instantiated

corresponding to a second input when needed. In the

convolution encoder it is done in the following way

const float *in0 = (const float *) input_items[0];

const float *in1 = (const float *) input_items[1];

In order to obtain certain parameters from the user one has to

define the required parameters in the function definition, and

also pass these parameters to each of the function calls and

every use of the shared pointer.
The XML file is responsible for the outlook of the block. Any

changes made in the code that involves change in the number

of inputs, outputs and also obtaining parameters from the user

must reflect in the XML file.

For the case of 2 inputs, the following changes in

howto_square_ff.xml file give the 2 ports required by the

block

<sink>

 <name>N</name>

 <type>float</type>

 </sink>

<sink>

 <name>Ngb</name>

 <type>float</type>

 </sink>

And the following snippet gives the ports to provide the block

with the required parameters Eg.vlen, N.

 <make>howto.square_ff($N)</make>

<callback>set_N($N)</callback>

 <param>

 <name>N</name>

 <key>N</key>

 <type>int</type>

 </param>

Any information about the block for the user to see can be

given as documentation.

<doc>

details...about block

</doc>

There is a makefile in the extracted folder which has to be

compiled so that all the changes made are checked for errors

and compiled and the final block with changes can be seen in

GRC.

For compiling, the following command is given in the

terminal.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.16, August 2012

14

>>sudo make install

5. HUFFMAN CODING
Consider a discrete memory less source of characters {s0,

s1,….., sk-1} with probabilities {p0, p1, …,pk-1}. For such a

source , the code has to be uniquely decodable. This

restriction ensures that for each finite sequence of symbols

emitted by the source, the corresponding sequence of code

words is different from the sequence of code words

corresponding to any other source sequence. A prefix code is

defined as a code in which no codeword is a prefix of any

other codeword. Huffman coding is one such algorithm that

produces prefix codes [5].

In Huffman coding the probabilities of the characters are first

calculated. Then a node is created where the bottom and top

elements are the lowest and second lowest probabilities in the

sorted list. Elements of this node are added. Then the process

of sorting, creation and adding of nodes is continued to end up

with 1 remaining node. Thus a tree is formed and a 0 is placed

on the node on the bottom and a 1 on the node on the top.

From the tree the code for each character is obtained. To

represent the message, the character is replaced by the

corresponding codes [7].

 I 0.4 0.4 0.6 I 0

 A 0.2 0.4 0.4 A 10

 N 0.2 0.2 N 111

 D 0.2 D 110

Figure 3: Huffman Coding performed for INDIA

Figure 4: A GRC implementation of Huffman Coding.

Figure 5: a dot diagram showing Huffman Coder output

for INDIA as input.

6. CONVOLUTION CODING
To perform convolutional encoding of data, start

with k memory registers, each holding 1 input bit. Unless

otherwise specified, all memory registers start with a value of

0. The encoder has n modulo-2 adders (a modulo 2 adder can

be implemented with a single Boolean XOR gate, where the

logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0,

and n generator polynomials — one for each adder (see figure

below). An input bit m1 is fed into the leftmost register. Using

the generator polynomials and the existing values in the

remaining registers, the encoder outputs n bits. Now bit

shift all register values to the right (m1 moves to m2, m2

moves to m3) and wait for the next input bit. If there are no

remaining input bits, the encoder continues to give on output

until all registers have returned to the zero state [6].

The figure below is a rate 1/2 (m/n) encoder with constrain

length (k) of 3. Generator polynomials are G1= (1,1,1) and G2

= (0,1,1) Therefore, output bits are calculated (modulo 2) as

follows:

f1 = m1 + m2 + m3; f2 = m2 + m3

For data of a known length convolution encoding is

performed by the multiplication of the message bit with each

of the generator polynomials and alternating the bits from

these products at the output so that we get k output bits for

every input bit. For a message sequence of 10011 and

Generator polynomials (1,0,1), (1,1,1).

 f2

 +

 msg

 +
 f1

Figure 6: block diagram of a 1/2 convolution encoder.

m1 m2 m3

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.16, August 2012

15

Figure 8: snapshot of convolution encoder in GRC.

Figure 7: snapshot of the properties of conv_coder block

where we can set different parameters.

Figure 9: o/p of the conv_coder, i/p – 10011.

Figure 10: snapshot of MATLAB command window,

where convolution encoder can be performed with single

function convenc.

7. CONCLUSION
Block creation in GRC is possible if we have knowledge in

C++ and XML. It is not difficult in GRC as a basic

howto_square block is available at (www.gnuradio.org) and if

we can write an algorithm for the operation required from the

block, we can create MATLAB Simulink type of blocks by

ourselves. These blocks can be used to process our input

signals. Improving the scope of these blocks greatly reduces

the burden on the hardware engineers, as almost all work done

by the hardware can be accomplished in the software domain.

Being an open source it is available to all, is highly cost

effective and is a field with great potential.

8. ACKNOWLEDGMENTS
The success of any project depends largely on the

encouragement and guidance of many others. We would like

to take this opportunity to express our gratitude to Mr.

Premanand, Research Associate, Department of Computation

and Excellence in Networking for his valuable help.

9. REFERENCES
[1] Byron S Gottfried, 1996. Programming with C, The

McGraw-Hill Company.

[2] Danilo Valerio, 2008 Open Source Software-Defined

Radio: A Survey on GNU Radio and its Applications.

[3] Dawei Shen, May-June,2005, Tutorials on Software

Defined Radio.

[4] GNU Radio website http://www.gnuradio.org.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.16, August 2012

16

[5] Ranjan Bose, 2008 Information Theory, Coding and

Cryptography, 2ndEditon, Tata McGraw-Hill Publishing

Company Limited, New Delhi.

[6] Simon Haykin, 1995 Communication Systems, 3rd Edition,

John Wiley & sons (Asia) Pvt. Ltd. , New Delhi.

[7] Willi-Hans Steeb, 2005 Mathematical Tools in Signal

Processing with C++ and Java Simulations, International

School for Scientific Computing.

[8] Yashwanth P.Kanetkar, 1997. Understanding Pointers in

C, 1st edition, BPB Publications.

