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ABSTRACT 

The preliminary research in the area of applications of neural 

networks and pattern matching algorithms in species 

classification is presented. Artificial neural networks for 

classification and different pattern matching algorithms for 

matching the given DNA patterns or strings with the existing 

DNA sequences available in the databases are specifically 

studied. A set of local searching algorithms were 

experimented for different test string lengths and their time 

complexity is tabulated.  Conclusions and future directions are 

also presented.  
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1. INTRODUCTION 
Biological classification is the process by which scientists 

group living organisms. Organisms are classified based on 

how similar they are. Historically, similarity was determined 

by examining the physical characteristics of an organism but 

modern classification uses a variety of techniques including 

genetic analysis. [1] 

In molecular biology, DNA sequences are the fundamental 

information for each species and a comparison between DNA 

sequences is an interesting and basic problem. There are 

various open databases available in different Countries to 

maintain the DNA sequences of already analyzed and clarified 

species. When the research laboratory or organizations landed 

in any of an unidentified species’ DNA sequence, they need to 

compare that with the existing databases. From that they will 

find out suitable or nearer species which resembles the test 

data. This is called as classification or grouping. Mostly, the 

test DNA sequence may be a part of a gene of an organism 

and the available databases are very huge with billions of 

DNA sequence details.  

Also DNA sequences can be handled as bit streams. Since a 

DNA sequence is constructed with four bases (A, C, T, and 

G). There are at least 26 billion base pairs (bp) representing 

the various genomes available in the server of the National 

Center for Biotechnology Information (NCBI). [2] 

Gene identification is one of the most important tasks in the 

study of genomes. Methods such as clustering, data mining, 

gene identification etc were used in DNA analysis. The 

objective of these methods was to facilitate collaboration 

between researchers and bio-informaticians by presenting 

cutting edge research topics and methodologies. All the above 

studies aim to discover genes and their characteristic 

expression parameters, which help to discriminate between 

object classes. So far, great effort has been put into various 

methods of classification of genes for the purpose of DNA 

analysis. [22] 

There are various kinds of string comparison tools available 

and they will provide approximate matching. However most 

of the tools are based on exact matching of the strings. But, 

the total number of sequences is rapidly increasing, efficient 

methods are needed. Today’s requirement is a tool, not only 

for fast matching but also for efficient sequences storage. [10] 

In this paper, we are comparing the existing algorithms for 

string matching as well as the tools available for the same. We 

try to introduce the concept of ANN into this, for speed up the 

process of string comparison. In section 2, we will discuss 

what data mining, Bioinformatics and neural networks are in 

brief. As well as we will discuss the application of them in 

biological databases particularly in species classification. In 

section 3, we will discuss about the use of neural network in 

datamining. In this Section we will discuss one simple 

algorithm (Back propagation algorithm) as well as one tool 

(which are using ANN as building block). In section 4, a brief 

about how data mining is used in Biological database with a 

simple block diagram is discussed. In section 5, we are 

discussing a whole lot of algorithms used for string searching. 

This Section contains the introduction of the algorithm along 

with their time complexity. Even the pseudo codes of most of 

the algorithms were provided. We classify the search 

algorithm in to two broad categories, one for local search and 

another for global search. In this section we are discussing 

some of the most famous local search algorithms. Section 6 is 

dedicated for the global search algorithms. In this Section we 

are discussing few ever green global algorithms along with 

their pseudo codes. Section 7 is dedicated for the comparison 

of the local search algorithms with some sample data as well 

as the graphical representation of that comparison. This will 

give the strength and weakness of every algorithm in different 

scenarios. Section 8 is discussing about the application of this 

species classification method in some other areas. Section 9 is 

discussing about the conclusion and future exploration areas 

of this field. Section 10 is reference section. 

2 BASIC BUILDING BLOCKS  
This section introduces the concept of bioinformatics and the 

applications of data mining, and neural networks in biological 

databases with simple block diagram.  

2.1 Data Mining 
Data mining is the process of discovering interesting patterns 

from massive amounts of data. In biological databases, the 

amount of data available is in trillions of bps. In Data mining, 
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as a process of knowledge discovery, the steps typically 

involves - data cleaning, data integration, data selection, data 

transformation, pattern discovery, pattern evaluation, and 

knowledge presentation [3] 

So, in short, Data mining is the process of automating 

information discovery. It is the process of analyzing data from 

different perspectives, summarizing it into useful information, 

and finding different patterns. The following flow chart, 

figure 1 shows the simple stages of data mining even though 

the actual data mining needs minimum 7 building blocks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A simple flowchart representing the stages of 

simplified datamining 

 

Our requirement in species classification is also involves the 

process of analyzing the data, summarizing the useful 

information and classify them into different groups 

2.2 Bioinformatics 
Bioinformatics is the field where computers are used to 

handle the biological information. It is an inter-disciplinary of 

mathematics, biology and computers. Bioinformatics refers to 

the use of computers for storing, comparing, retrieving, 

analyzing or predicting the composition or the structure of the 

biological information mostly available from research centers 

and research laboratories. [4] It is a large scale technique to 

conceptualize the biology in terms of basic molecules and 

apply informatics to understand them and organize them. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The block diagram of Bioinformatics 

 

The biological database is broadly classified as 

structural biological database, sequential biological 

database and others. We are concentrating on sequential 

biological database as the DNA sequence is falling 

under this category. The following figure shows the 

categories falling under biological database. 

 

             Biological databases 
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Figure 3: Broad classification of Biological Database 

2.3 Neural Network 
A machine that is designed to imitate the way human 

brain performs a particular task or function is called as 

neural network. To implement neural network in digital 

computer, either electronic components or software 

simulators will be used. To make neural network to 

perform useful computations, the process of learning is 

used. Based on the massive interconnections, the 

performance of a neural network will vary. The 

computing cells of neural networks were referred as 

neurons or processing units [5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A typical neural network 

 

The big Strengths of Neural Networks are, it is generalized 

and self organized. The neural network will work with 

inadequate and volatile knowledge base also. We can use 

incorrect or incomplete or noisy inputs to recall the 

information. This characteristic of the neural network is best 

suited for biological databases as most of them or noisy and 

incomplete. Even though the training phase takes reasonable 

time, the project development phase will take short time only. 

Even we prefer this characteristic is best suited for biological 

database. 

3 NEURAL NETWORK AND DATA 

MINING 
From the above discussions, we can find the clarity about the 

relationships of biological data, bioinformatics, data mining 
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and the neural networks. So to consolidate it, we need to do 

the following steps:  

Develop a Neural Network Applications for our classification 

problem. Check that the neural network approach is 

appropriate and select an appropriate paradigm. Once that is 

done, start to give inputs by selecting proper inputs and facts. 

Once the inputs are in their proper format, start to train the 

network. Once the network is trained, test it with known data 

and check its perfectness. Now the neural network application 

is ready for run. Run the neural network for different 

unknown data sets and find out the similarities of the existing 

data and the test data. Table it. Run the same set of data for 

different string comparison algorithms and compare it our 

neural network’s output. From the table we can conclude 

which is the best algorithm for the species classification.  

3.1 Back Propagation Algorithm: 
This is the common method of teaching artificial neural 

networks how to perform for a given task by sending the 

signals in the forward direction as well as the propagation of 

error in the backward direction. This method is used in the 

layered feed forward artificial neural networks. The concept 

is, the neurons are organized in layers and the signals are 

travelling in forward direction while the errors, if any, will be 

propagated in the backward direction. This type of back 

propagation is helpful for reducing the errors while the ANN 

is in the learning phase. Once the ANN finishes its learning, it 

will take the inputs and calculate the outputs more accurately. 

[7] 

3.2 Example for Neural Network Tool 
There are some standard neural network applications available 

in the market. For example, according to the website for 

NeuralWare (2005): 

               “NeuralWorks Predict® is an integrated, state-of-

the-art tool for rapidly creating and deploying prediction and 

classification applications. Predict® combines neural network 

technology with genetic algorithms, statistics, and fuzzy logic 

to automatically find optimal or near-optimal solutions for a 

wide range of problems.” [6] 

The University of California at Irvine Machine Learning 

Repository had used the NeuralWorks Predict® software on 

data sets for variety of applications. The applications vary 

from USA Space Shuttle database to wine recognition 

databases. We can find out from this discussion that 

NeuralWorks Predict® can work with any sort of big 

databases. So we can even use this product for biological 

databases too.  

4 PATTERN MINING FROM DNA 

SEQUENCE 
The first and initial stage of the proposed technique mines the 

nucleotide pattern from the DNA sequence. At this stage, 

patterns formed by different combinations of nucleotides are 

mined using a novel mining algorithm. Let g be the DNA 

sequence, which is a combination of four nucleotides A, G, C 

and T. For instance, a sample DNA sequence is given as 

CGTCGTGGAA. From the sequence, the mining algorithm 

extracts different nucleotide patterns and their support. The 

algorithm is comprised of two stages, namely, pattern 

generation and support finding. In pattern generation, patterns 

with different length are generated whereas in support finding, 

support values for every generated pattern are determined 

from the DNA sequence. [8] The basic structure of the 

algorithm is given as a block diagram in Fig. 5. 

 

 

 

 

 

 

 

 

Figure 5: Block diagram of the pattern mining algorithm 

5 ALIGNMENT METHODS 

In this section we are trying to list out some of the most 

popular alignment algorithms, which were exist from the last 

century, their contribution in present day algorithms and their 

time complexity. If the sequences are very short or very 

similar, they can be aligned easily by hand. But most of the 

problems in biological databases require the alignment of 

extremely numerous sequences; they are very lengthy and 

highly different in similarity. In this case, we cannot align it 

by using manual methods. We need a high quality alignment 

algorithm for sequence alignment, which will run with very 

limited human intervention. This is called as Computational 

approach. The computational approach can be categorized 

broadly as: global alignment and local alignment.  

Global alignment will take care of an end-to-end alignment of 

the sequences to be aligned. Calculating a global alignment is 

a form of global optimization that "forces" the alignment to 

span the entire length of all query sequences. 

Local alignments identify regions of similarity within long 

sequences that are often widely different. Local alignments 

are often preferable, but can be more difficult to calculate 

because of the additional challenge of identifying the regions 

of similarity. A variety of computational algorithms have been 

applied to the sequence alignment problem, including slow 

but formally correct methods like dynamic programming, and 

efficient, heuristic algorithms or probabilistic methods that do 

not guarantee to find best matches designed for large-scale 

database search.[9] 

5.1 Knuth–Morris–Pratt String Searching 

Algorithm (or KMP algorithm)  
In this algorithm, we are searching for the occurrences of a 

test string “word” W within a main “text string” S. This 

algorithm employs the observation that when any mismatch 

occurs, the next match will be determined by the word itself 

by embedding sufficient information, thus bypassing the re-

examination of previously matched characters.  This 

algorithm is having two parts. The complexity of each 

algorithm is O(k) and O(n). So the overall complexity of 

Knuth-Morris-Pratt algorithm is O(n+k). The advantage of 

this algorithm is that the complexity is same and not depends 

on the size of W and S. [11] 

5.1.1 The KMP Algorithm – Pseudo Code 
algorithm kmp_search: 

    input: 

        an array of characters, S  

        an array of characters, W  

    output: 
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        an integer (the zero-based position in S at which W is 

found) 

    define variables: 

        an integer, m ← 0  

        an integer, i ← 0  

        an array of integers, T  

    while m+i is less than the length of S, do: 

        if W[i] = S[m + i], 

            if i equals the (length of W)-1, 

                return m 

            let i ← i + 1 

        otherwise, 

            let m ← m + i - T[i], 

            if T[i] is greater than -1, 

                let i ← T[i] 

            else 

                let i ← 0 

         (if we reach here, we have searched all of S 

unsuccessfully) 

    return the length of S 

5. 2. Boyer–Moore String Search Algorithm 

(or BM algorithm) 
This algorithm is the standard benchmark for practical string 

search because of its efficiency in string searching. BMS 

algorithm will preprocesses the searching string (the pattern), 

but will not modify the string being searched in (the text). 

This algorithm is best suited for applications where the text 

does not continue to be same across multiple searches. The 

information gathered during the pre-process will be used to 

skip the sections of the text to lower the constant factor. This 

advantage is missing in many other algorithms. If the pattern 

length increases, this algorithm will run faster.  

The Boyer-Moore algorithm has worst-case running time of 

O(nm) only if the pattern does not appear in the text.  

5.2.1 The Boyer- Moore Algorithm – Pseudo Code 
Suppose to alignment P and T, a substring t of T matches a 

suffix of P, but a mismatch occurs at the next comparison to 

the left. If it exists, the right-most copy t' of t in P such that t' 

is not a suffix of P and the character to the left of t' in P differs 

from the character to the left of t in P. Shift P to the right so 

that substring t' in P is below substring t in T. If t' does not 

exist, then shift the left end of P past the left end of t in T by 

the least amount so that a prefix of the shifted pattern matches 

a suffix of t in T. If no such shift is possible, then shift P by n 

places to the right. If an occurrence of P is found, then shift P 

by the least amount so that a proper prefix of the shifted P 

matches a suffix of the occurrence of P in T. If no such shift is 

possible, then shift P by n places; shift P past T. [11] 

5.3. Rabin–Karp String Searching 

Algorithm  
The RK string searching algorithm is a string searching 

algorithm that uses hashing to find any one of a set of pattern 

strings in a text. For text of length t and patterns of p and their 

combined length m. This algorithm’s average and best case 

running time is O(n+m). It’s worst-case time is O(nm). [23] 

5.3.1 The RK Algorithm – Pseudo Code 
Function rabin_karp 

Let m is the length of the text string t 

Let n is the length of the pattern string p 

Let si denote the length-n contiguous substring of t beginning 

at offset i ≥ 0 

use a hash function h to map each si to a good sized set of the 

first k nonnegative integers 

compute h(p) 

for every I,  h(si) = h(p), check for a match as in the naive 

algorithm 

If h(si) = h(p), stop the checking operation 

5.4. The Aho–Corasick String Matching 

Algorithm  
The AC string matching algorithm is dictionary-matching 

algorithm that locates elements of a finite set of strings (the 

"dictionary") within an input text. It matches all patterns 

simultaneously. Because all matches are found, there can be a 

quadratic number of matches if every substring matches. 

Basically, the algorithm constructs a finite state machine that 

resembles a prefix tree with additional links between the 

various internal nodes. These extra internal links allow fast 

transitions between failed pattern matches, to other branches 

of the prefix tree that share a common prefix. This allows the 

automaton to transition between pattern matches without the 

need for backtracking. [24] 

The complexity of the algorithm depends on the length of the 

patterns plus the length of the searched text plus the number 

of output matches. This algorithm has asymptotic worst-time 

complexity O(n+m) in space O(m). 

5.4.1 Aho-Corasick Algorithm – Pseudo Code 
Pattern matching machine 

Input: A text string x and a pattern matching machine M with 

goto function g, failure function f, and output function output 

Output: locations at which keywords occur in x. 

begin 

state  0 

for i 1 until n do 

begin 

while g(state, ai) = fail do state  f(state) 

state  g(state, ai) 

if output (state) ≠ empty then 

begin 

print i 

print output(state) 

end 

end 

end  

5.5. The Brute-Force Pattern Matching 

Algorithm  
The Brute-force pattern matching algorithm compares the 

pattern P with the text T for each possible shift of P relative to 

T, until either a match is found or all placements of the pattern 

have been tried. Its time complexity is O(nm) [12] 

5.5.1 The Brute-Force Algorithm – Pseudo Code 
function BruteForceMatch(T, P, m, n) 

Input text T of size n and pattern P of size m 

Output starting index of a substring of T equal to P or -1if no 

such substring exists  

for I  0 until n do  

begin 
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j  0 

while j < m and T[i + j]  = P[j] 

begin 

increment j by one 

if j = m 

return  i  

else return  -1 

end 

end 

 

5.6. Boyer–Moore–Horspool Algorithm or 

Horspool Algorithm  
The Boyer-Moore algorithm uses two heuristics in order to 

determine the shift distance of the pattern in case of a 

mismatch. They are referred as bad-character and the good-

suffix heuristics. The idea behind this algorithm is, instead of 

considering the bad character for mismatch, they consider the 

rightmost character of the current text window to determine 

the shift distance in each case. [13] 

BMH is an algorithm for finding substrings in the given 

strings. It is a simplified form of the Boyer–Moore string 

search algorithm. The time complexity for an average case is 

of O(N) on random text, and  O(MN) in the worst case.  

 

5.6.1 Horspool Algorithm – Pseudo Code 
Horspool (P = p1p2…pm,T = t1t2…tn) 

preprocessing 

for c  ∑  do d[c] ← m 

for j  1…m-1 do d[pj] ← m - j 

searching 

pos←0  

while pos ≤ n-m do 

j ←m 

while j > 0 and tpos+j = pj  do j ← j-1 

if j = 0 then report an occurrence at pos+1 

pos ← pos +d[tpos+m] 

end of while 

 

 

 

 

 
 

Figure 6: HpBc table used by Horspool algorithm 

 

5.7 Reverse Factor Algorithm 
Most of the algorithms match the suffixes of the test pattern 

like Boyer-Moore string algorithm. It is possible to match the 

prefix of the pattern also by scanning from the right to left of 

the string. We can do this by using the smallest suffix 

automaton of the reverse pattern of the string. This 

methodology is called as Reverse Factor algorithm. This 

algorithm parses the character of the window from right to left 

with the help of the automaton in its searching phase. This 

process continues till there is no more transition defined for 

the current character in the current automaton. By this we can 

find the length of the longest prefix of the pattern, which is 

matching. Knowing the longest matching prefix’s length, we 

can calculate how much the right shift is required. The time 

complexity for the preprocessing phase is O(m) and for the 

searching phase is O(mn). [12] 

5.7.1 The Reverse Factor Algorithm – Pseudo 

code 
Input:  A text string T and a pattern string P with lengths n 

and m respectively  

Output:  All occurrences of P inT. 

Set i to 1;  

Step 1:  if  i+m-1 >n then exit. 

else  let W is equal to  T(i, i+m-1) be a window.  

find LSP(W,P)  

if  |LSP(W,P)| is equal to  m,  

report an exact match is found at ti and a is equal to m-

|LSP(W,P)|. 

else, set a=m-|LSP(W,P)|. 

increment i by a 

go to Step 1. 

 

5.8 The Turbo-BM Algorithm  
The Turbo BM algorithm is a corrective measure or 

improvisation of the Boyer-Moore algorithm. Here the 

preprocessing is same but there is extra space is added 

comparing with the original Boyer-Moore algorithm. In this 

algorithm, we remember the last time suffix pattern which 

was matching. The major two advantages are: possible to 

jump over factor and enable to perform a turbo-shift. The time 

complexity for the preprocessing phase is O(m+ ) and the 

time complexity for the search is O(n). [14] 

5.8.1 The Turbo BM Algorithm – Pseudo Code 
let I is equal to 0 and memory allocated is  nil;  

while i ≤ n-m do 

begin  

align  pattern  with  positions  t[i  +  1 . . i   +  m]  of the  text;  

scan the  text  right-to-left from  the  position  i + m,   

using memory  to reduce number  of inspections;  

let x’  be  the  part  of the  text scanned;  

if   x  =  p  then  report  a  match  at  position  i;  

compute the shift shifti  according  to  x  and  memory;  

take i as  i + shifti;  update  memory  using  x;  

end  

end. 

5.9 Boyer-Moore-Smith Algorithm 
In Smith Algorithm just compute the shift with the text 

character just next the rightmost text character of the window. 

This operation gives sometimes shorter shift than using the 

rightmost text character of the window. The preprocessing 

phase of the Smith algorithm consists in computing the bad-

character shift function and the Quick Search bad-character 

shift function. Smith will take the maximum between the 

values.  [11] 

The preprocessing phase is in O(m+σ ) time and the searching 

phase has a quadratic worst case time complexity. 

 

5.9.1 The Smith String Matching – Pseudo Code 
void SMITH(character  x, integer m, character y, integer n)  

begin  

a A   C   G   T 

HpBc[a] 1   6    2    8 
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   initialize  j, bmBc[ASIZE], qsBc[ASIZE]; 

  /* Preprocessing */ 

   preprocess preBmBc(x, m, bmBc); 

   preprocess preQsBc(x, m, qsBc); 

   /* Searching */ 

   initialize  j = 0; 

   while (j<= n - m)  

   begin  

  if (memcmp(x, y + j, m) is equal to 0) 

  OUTPUT(j); 

  Equal j to j + max of bmBc[y[j + m - 1]], qsBc[y[j + m]] 

 end 

end 

 

5.10 Quick Search 
This is one of the fastest algorithms available for string 

matching and faster than Boyer-Moore algorithm. The time 

complexity of this algorithm is O(m+n). Quick search 

algorithm resembles Boyer-Moore algorithm while detecting 

the matches between two strings. Quick search algorithm uses 

only the bad-character shift table, but Boyer-Moore algorithm 

uses both bad-character table as well as good suffix shift 

table. This is the major difference between them. The quick 

search operation will not depend on scanning the string 

pattern in any particular order. [25] 

5.10.1 Quick Search Algorithm – Pseudo Code 
quick_search(P,T) 

n = length (T) 

m = length(P) 

T’ = T.P 

bcp = precompute_bad_character (P) 

gsp = precompute_good_suffix(P) 

s = 0 

while bcp(T’[s+m-1]) > 0 do 

s = s + bcp(T’[s+m-1]) 

while s ≤ n-m do 

j = m – 2 

while j ≥ 0 and p[i] = T’(s+j) do 

 j = j-1 

if j < 0 then print (s) 

s = s + gsp (j + 1) 

while bcp (T’[s+m-1]) > 0 do  

s = s+ bcp(T’[s+m-1]) 

end 

5. 11 Backward Nondeterministic Dawg 

Matching algorithm 
It is the variant of the Reverse Factor algorithm. It uses bit-

parallelism simulation of the suffix automaton of xR. This 

algorithm is efficient if the pattern length is no longer than the 

memory-word size of the machine. The automaton is 

simulated with bit parallelism even without constructing it. In 

this algorithm, for each character, associated tables B will be 

precomputed with a bit mask expressing its occurrences. [26] 

5. 11.1 BNDM Algorithm – Pseudo Code 
/*  Preprocessing */ 

begin 

memset (B,0,arraysize *sizeof(integer)) 

initialize s to 1 

for i = m-1 to i ≥ 0 do  

begin  

B(x(i)) = B(x(i)) or S 

left shift s by one bit 

end 

/* searching phase */ 

Initialize j to 0 

While j<=n-m 

begin 

   i=m-1; 

   last=m; 

d is not equal to 0 

while(i>=0  and d !=0) 

begin 

    d EQUALTO d  and s(y(j+1)); 

     i=i-1; 

  if (d != 0) 

  begin 

if i >= 0 

  last=i+1; 

else 

  output(j); 

end 

left shift d by one bit 

if end 

  j=j+last 

end 

end 

 

6. GLOBAL SEARCH ALGORITHM 
As our concentration is on local search algorithms, we are 

listing out very few global searching algorithms for our 

comparison purpose. Here we took only two algorithms even 

though there are a huge variety of algorithms available in 

present day scenario.   

6.1. The Needleman–Wunsch Algorithm  
This algorithm takes two sequences A and B and performs 

global alignment between them. The main usage of this 

algorithm is in protein and nucleotide sequence alignment in 

bioinformatics. This algorithm is using dynamic programming 

technique. This is the first application for dynamic 

programming in biological sequence comparison. This 

algorithm is also known as optimal matching algorithm. The 

time complexity of this algorithm is O(nm). [27] 

6.1.1 NW Algorithm – Pseudo Code 
F : {1, 2, . . . , n} × {1, 2, . . . ,m} → R 

in which F(i, j) equals the best score of the alignment of the 

two prefixes (x1, x2, . . . , xi) and (y1, y2, . . . , yj). 

Input: two sequences X and Y 

Output: optimal alignment and score α 

Initialization: 

Set F(i, 0) := −i x d for all i = 0 to n 

Set F(0, j) := −j x d for all j = 0 to m 

For i = 1 to n do: 

For j = 1 to m do: 

Set F(i, j) := max ( F(i − 1, j − 1) + s(xi, yj), F(i − 1, j) – d, F(i, 

j − 1) – d) 

Set backtrace T(i, j) to the maximizing pair (i’,j’) 

The score is α := F(n, m) 

Set (i, j) := (n, m) 

repeat 

if T(i, j) = (i − 1, j − 1) print (xi, yj) 

else if T(i, j) = (i − 1, j) print (xi, −) 

else print (−, yj) 

Set (i, j) := T(i, j) 

until (i, j) = (0, 0). 
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6.2. Hirschberg's Algorithm 
 Hirschberg's algorithm is a dynamic programming algorithm 

that finds the least cost sequence alignment between 

two strings. The cost is measured as Levenshtein distance. 

The Levenshtein distance is defined as the sum of the costs of 

insertions, replacements, deletions, and null actions needed to 

change one string to the other. Hirschberg's algorithm is the 

modified version of Needleman–Wunsch algorithm by 

adding divide and conquers technique. The general use 

of Hirschberg's algorithm is in computational biology to find 

maximal global alignments of DNA and protein sequences. 

This algorithm is generally used for optimal sequence 

alignment technique. BLAST and FASTA are suboptimal 

heuristics. Hirschberg's algorithm takes O(nm) time, but needs 

only O(min{n,m}) space. This algorithm is a space efficient 

one to calculate the longest common sequence between the 

test string and the available database. [28] 

6.2.1 Hirschberg's Algorithm – Pseudo Code 
Hirschberg(x,y) is 

n = length(x);  m = length(y) 

If n <= 1 or m <= 1: 

OUTPUT Alignment(x,y) using Needleman-Wunsch. 

else: 

  A.  mid = floor(n/2) 

  B.  x_left = Prefix[x,mid] 

  C.  x_right = Suffix[x,n-mid] 

  D.  Edit[x_left] = Forwards(x_left,y)   

  E.  Edit[x_right] = Backwards(x_right,y)  

  F.  cut = ArgMin{Edit[x_left,Prefix[y,j]] +  

                Edit[x_right,Suffix[y,m-j]]}   

  G.  Hirschberg(x_left,Prefix[y,cut]) 

  H.  Hirschberg(x_right,Suffix[y,m-cut]) 

 

7. EXPERIMENTAL RESULTS 
In this chapter we will run the 9 most general local algorithms 

for different length of test strings and find the time taken by 

them to find matching.[29] The values are entered in terms of 

seconds. The graphical representation will help us to visualize 

it and got clearer picture of which one is better for which 

string length. Here as we know the DNA alphabet consists of 

the four nucleotides A, C, G and T (standing for adenine, 

cytosine, guanine, and thymine, respectively) used to encode 

DNA. Therefore, the set of alphabet used are O = {a, c, g, t}. 

In this example the test text is consisted of 9,97,650 characters 

and we search 50 different patterns of each length from 10 to 

100 characters in steps of 10. The text and the patterns used 

were taken from the GenBank DNA database. Kindly refer 

table 1 for understanding the comparisons. 

We can notice from the graph that, for the test pattern the 

running time of the Reverse Factor algorithm (RF) is efficient 

in practice for our small set of alphabets used in DNA 

sequence. Even though the time taken by the KR algorithm is 

constant throughout the operation, the overall time taken is 

more than the RF algorithm. So it is not best suited for our 

application. The good choice will be RF algorithm for DNA 

pattern matching algorithms. Kindly refer the figure 7 for our 

understanding.  

8. APPLICATION OF SPEICIES 

CLASSIFICATION ALGORITHMS IN 

OTHER AREAS 
Species identification and classification technique can be 

extended as disease identification, classification of diseases 

and patients accordingly. While doing so, the personal details 

of the patients, their disease details, and the treatment they are 

undergoing, etc will be accessed from their clinical databases. 

To keep the secrecy of the patients and their personal details, 

we need to protect them. To do so, privacy preserving is 

needed. [16][21] As privacy preserving the database is 

another huge area, we didn’t touch that in this paper.  

9. CONCLUSION 
The paper aims to incorporate data mining concepts in the 

classification technique. The paper is planned in such a way 

that features are extracted from the DNA sequence of different 

species with the aid of data mining concepts. A supervised 

classifier will be developed using artificial Neural Network 

(ANN) technique and the classifier will be trained using the 

extracted features. Because of the training process, the 

classifier will be well-prepared to classify the DNA sequence 

of the different species. So, given a DNA sequence, the 

classifier can classify effectively by identifying the species 

class to which the sequence belongs. The planned 

methodology will be evaluated using DNA sequence of 

different species and its performance will be appraised. The 

methodology can be implemented in the MATALB platform 

and can be evaluated. It is expected that the methodology can 

classify the sequence on the basis of its species class with 

remarkable classification accuracy. 

A set of algorithms for string matching on binary strings and 

encoded DNA sequences has been presented. The 

experimental results shows which local searching algorithm is 

best suited for the DNA sequence searching. The same 

searching algorithm can be extended further in medical field 

for identifying and classifying the diseases. The use of ANN 

will help us to speed up our process as the neurons are already 

trained from known data. The only job pending there is to 

compare them with the test data. How fast the comparison is 

done and how effectively the memory space is utilized will 

depend on which algorithm is used in implementing the 

comparison task. As most of the species DNA databases are 

huge and they will occupy a vast amount of memory space, 

the efficient algorithm both in time complexity and space 

complexity will be the best suitable one. In this paper, we 

took only the time complexity into consideration. The space 

complexity has to be explored and the combination of these 

two will be the best among the best.  
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Table 1: Number of character comparisons for a DNA alphabet 

 

m BF  KMP BM BMH QS BMS TBM RF KR 

10 1.346732 1.116931 0.301635 0.373474 0.356066 0.242178 0.299615 0.26149 1.000031 

20 1.348057 1.109472 0.271363 0.39388 0.365869 0.246332 0.269731 0.154379 1.000009 

30 1.335037 1.097344 0.231094 0.357166 0.332303 0.218819 0.229967 0.110341 1.000023 

40 1.342449 1.103267 0.209129 0.349426 0.332189 0.215021 0.208034 0.087277 1.000018 

50 1.34136 1.106258 0.223401 0.365487 0.351301 0.225939 0.222463 0.074325 1.000022 

100 1.3453 1.106325 0.19552 0.362155 0.350235 0.212253 0.19623 0.05325 1 

Average  1.343156 1.1066 0.23869 0.366931 0.347994 0.226757 0.237673 0.12351 1.000017 
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Figure 7: The graph for DNA alphabet 
 


