
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.14, August 2012

21

Artificial Neural Network based String Matching

Algorithms for Species Classification – A Preliminary

Study and Experimental Results

 Sathish Kumar S
 Research Scholar

Dr MGR Educational and Research Institute
University,

Chennai, Tamil Nadu, India

 N. Duraipandian, M.E., Ph.D
 Phd, Vice Principal
 Velammal Engineering College
Ambattur – Redhills Road, Chennai,

 Tamil Nadu, India

ABSTRACT

The preliminary research in the area of applications of neural

networks and pattern matching algorithms in species

classification is presented. Artificial neural networks for

classification and different pattern matching algorithms for

matching the given DNA patterns or strings with the existing

DNA sequences available in the databases are specifically

studied. A set of local searching algorithms were

experimented for different test string lengths and their time

complexity is tabulated. Conclusions and future directions are

also presented.

Keywords

Alignment, ANN, DNA sequencing, Species classification,

String matching

1. INTRODUCTION
Biological classification is the process by which scientists

group living organisms. Organisms are classified based on

how similar they are. Historically, similarity was determined

by examining the physical characteristics of an organism but

modern classification uses a variety of techniques including

genetic analysis. [1]

In molecular biology, DNA sequences are the fundamental

information for each species and a comparison between DNA

sequences is an interesting and basic problem. There are

various open databases available in different Countries to

maintain the DNA sequences of already analyzed and clarified

species. When the research laboratory or organizations landed

in any of an unidentified species’ DNA sequence, they need to

compare that with the existing databases. From that they will

find out suitable or nearer species which resembles the test

data. This is called as classification or grouping. Mostly, the

test DNA sequence may be a part of a gene of an organism

and the available databases are very huge with billions of

DNA sequence details.

Also DNA sequences can be handled as bit streams. Since a

DNA sequence is constructed with four bases (A, C, T, and

G). There are at least 26 billion base pairs (bp) representing

the various genomes available in the server of the National

Center for Biotechnology Information (NCBI). [2]

Gene identification is one of the most important tasks in the

study of genomes. Methods such as clustering, data mining,

gene identification etc were used in DNA analysis. The

objective of these methods was to facilitate collaboration

between researchers and bio-informaticians by presenting

cutting edge research topics and methodologies. All the above

studies aim to discover genes and their characteristic

expression parameters, which help to discriminate between

object classes. So far, great effort has been put into various

methods of classification of genes for the purpose of DNA

analysis. [22]

There are various kinds of string comparison tools available

and they will provide approximate matching. However most

of the tools are based on exact matching of the strings. But,

the total number of sequences is rapidly increasing, efficient

methods are needed. Today’s requirement is a tool, not only

for fast matching but also for efficient sequences storage. [10]

In this paper, we are comparing the existing algorithms for

string matching as well as the tools available for the same. We

try to introduce the concept of ANN into this, for speed up the

process of string comparison. In section 2, we will discuss

what data mining, Bioinformatics and neural networks are in

brief. As well as we will discuss the application of them in

biological databases particularly in species classification. In

section 3, we will discuss about the use of neural network in

datamining. In this Section we will discuss one simple

algorithm (Back propagation algorithm) as well as one tool

(which are using ANN as building block). In section 4, a brief

about how data mining is used in Biological database with a

simple block diagram is discussed. In section 5, we are

discussing a whole lot of algorithms used for string searching.

This Section contains the introduction of the algorithm along

with their time complexity. Even the pseudo codes of most of

the algorithms were provided. We classify the search

algorithm in to two broad categories, one for local search and

another for global search. In this section we are discussing

some of the most famous local search algorithms. Section 6 is

dedicated for the global search algorithms. In this Section we

are discussing few ever green global algorithms along with

their pseudo codes. Section 7 is dedicated for the comparison

of the local search algorithms with some sample data as well

as the graphical representation of that comparison. This will

give the strength and weakness of every algorithm in different

scenarios. Section 8 is discussing about the application of this

species classification method in some other areas. Section 9 is

discussing about the conclusion and future exploration areas

of this field. Section 10 is reference section.

2 BASIC BUILDING BLOCKS
This section introduces the concept of bioinformatics and the

applications of data mining, and neural networks in biological

databases with simple block diagram.

2.1 Data Mining
Data mining is the process of discovering interesting patterns

from massive amounts of data. In biological databases, the

amount of data available is in trillions of bps. In Data mining,

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.14, August 2012

22

as a process of knowledge discovery, the steps typically

involves - data cleaning, data integration, data selection, data

transformation, pattern discovery, pattern evaluation, and

knowledge presentation [3]

So, in short, Data mining is the process of automating

information discovery. It is the process of analyzing data from

different perspectives, summarizing it into useful information,

and finding different patterns. The following flow chart,

figure 1 shows the simple stages of data mining even though

the actual data mining needs minimum 7 building blocks.

Figure 1: A simple flowchart representing the stages of

simplified datamining

Our requirement in species classification is also involves the

process of analyzing the data, summarizing the useful

information and classify them into different groups

2.2 Bioinformatics
Bioinformatics is the field where computers are used to

handle the biological information. It is an inter-disciplinary of

mathematics, biology and computers. Bioinformatics refers to

the use of computers for storing, comparing, retrieving,

analyzing or predicting the composition or the structure of the

biological information mostly available from research centers

and research laboratories. [4] It is a large scale technique to

conceptualize the biology in terms of basic molecules and

apply informatics to understand them and organize them.

Figure 2: The block diagram of Bioinformatics

The biological database is broadly classified as

structural biological database, sequential biological

database and others. We are concentrating on sequential

biological database as the DNA sequence is falling

under this category. The following figure shows the

categories falling under biological database.

 Biological databases

Structure Sequence Others

 Protein Nuclic acid

Figure 3: Broad classification of Biological Database

2.3 Neural Network
A machine that is designed to imitate the way human

brain performs a particular task or function is called as

neural network. To implement neural network in digital

computer, either electronic components or software

simulators will be used. To make neural network to

perform useful computations, the process of learning is

used. Based on the massive interconnections, the

performance of a neural network will vary. The

computing cells of neural networks were referred as

neurons or processing units [5]

Figure 4: A typical neural network

The big Strengths of Neural Networks are, it is generalized

and self organized. The neural network will work with

inadequate and volatile knowledge base also. We can use

incorrect or incomplete or noisy inputs to recall the

information. This characteristic of the neural network is best

suited for biological databases as most of them or noisy and

incomplete. Even though the training phase takes reasonable

time, the project development phase will take short time only.

Even we prefer this characteristic is best suited for biological

database.

3 NEURAL NETWORK AND DATA

MINING
From the above discussions, we can find the clarity about the

relationships of biological data, bioinformatics, data mining

Computational

Biology

Bioinformatics

Computational

model

Problem definition

Data gathering & Preparation

Model building

Knowledge deployment

Biological data

New Knowledge

Input

Input

Input

Input

Input layer
Hidden

layer

Output

layer

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.14, August 2012

23

and the neural networks. So to consolidate it, we need to do

the following steps:

Develop a Neural Network Applications for our classification

problem. Check that the neural network approach is

appropriate and select an appropriate paradigm. Once that is

done, start to give inputs by selecting proper inputs and facts.

Once the inputs are in their proper format, start to train the

network. Once the network is trained, test it with known data

and check its perfectness. Now the neural network application

is ready for run. Run the neural network for different

unknown data sets and find out the similarities of the existing

data and the test data. Table it. Run the same set of data for

different string comparison algorithms and compare it our

neural network’s output. From the table we can conclude

which is the best algorithm for the species classification.

3.1 Back Propagation Algorithm:
This is the common method of teaching artificial neural

networks how to perform for a given task by sending the

signals in the forward direction as well as the propagation of

error in the backward direction. This method is used in the

layered feed forward artificial neural networks. The concept

is, the neurons are organized in layers and the signals are

travelling in forward direction while the errors, if any, will be

propagated in the backward direction. This type of back

propagation is helpful for reducing the errors while the ANN

is in the learning phase. Once the ANN finishes its learning, it

will take the inputs and calculate the outputs more accurately.

[7]

3.2 Example for Neural Network Tool
There are some standard neural network applications available

in the market. For example, according to the website for

NeuralWare (2005):

 “NeuralWorks Predict® is an integrated, state-of-

the-art tool for rapidly creating and deploying prediction and

classification applications. Predict® combines neural network

technology with genetic algorithms, statistics, and fuzzy logic

to automatically find optimal or near-optimal solutions for a

wide range of problems.” [6]

The University of California at Irvine Machine Learning

Repository had used the NeuralWorks Predict® software on

data sets for variety of applications. The applications vary

from USA Space Shuttle database to wine recognition

databases. We can find out from this discussion that

NeuralWorks Predict® can work with any sort of big

databases. So we can even use this product for biological

databases too.

4 PATTERN MINING FROM DNA

SEQUENCE
The first and initial stage of the proposed technique mines the

nucleotide pattern from the DNA sequence. At this stage,

patterns formed by different combinations of nucleotides are

mined using a novel mining algorithm. Let g be the DNA

sequence, which is a combination of four nucleotides A, G, C

and T. For instance, a sample DNA sequence is given as

CGTCGTGGAA. From the sequence, the mining algorithm

extracts different nucleotide patterns and their support. The

algorithm is comprised of two stages, namely, pattern

generation and support finding. In pattern generation, patterns

with different length are generated whereas in support finding,

support values for every generated pattern are determined

from the DNA sequence. [8] The basic structure of the

algorithm is given as a block diagram in Fig. 5.

Figure 5: Block diagram of the pattern mining algorithm

5 ALIGNMENT METHODS

In this section we are trying to list out some of the most

popular alignment algorithms, which were exist from the last

century, their contribution in present day algorithms and their

time complexity. If the sequences are very short or very

similar, they can be aligned easily by hand. But most of the

problems in biological databases require the alignment of

extremely numerous sequences; they are very lengthy and

highly different in similarity. In this case, we cannot align it

by using manual methods. We need a high quality alignment

algorithm for sequence alignment, which will run with very

limited human intervention. This is called as Computational

approach. The computational approach can be categorized

broadly as: global alignment and local alignment.

Global alignment will take care of an end-to-end alignment of

the sequences to be aligned. Calculating a global alignment is

a form of global optimization that "forces" the alignment to

span the entire length of all query sequences.

Local alignments identify regions of similarity within long

sequences that are often widely different. Local alignments

are often preferable, but can be more difficult to calculate

because of the additional challenge of identifying the regions

of similarity. A variety of computational algorithms have been

applied to the sequence alignment problem, including slow

but formally correct methods like dynamic programming, and

efficient, heuristic algorithms or probabilistic methods that do

not guarantee to find best matches designed for large-scale

database search.[9]

5.1 Knuth–Morris–Pratt String Searching

Algorithm (or KMP algorithm)
In this algorithm, we are searching for the occurrences of a

test string “word” W within a main “text string” S. This

algorithm employs the observation that when any mismatch

occurs, the next match will be determined by the word itself

by embedding sufficient information, thus bypassing the re-

examination of previously matched characters. This

algorithm is having two parts. The complexity of each

algorithm is O(k) and O(n). So the overall complexity of

Knuth-Morris-Pratt algorithm is O(n+k). The advantage of

this algorithm is that the complexity is same and not depends

on the size of W and S. [11]

5.1.1 The KMP Algorithm – Pseudo Code
algorithm kmp_search:

 input:

 an array of characters, S

 an array of characters, W

 output:

Extract

nucleotide

patterns

Generate

pattern set

Determine

pattern

support

Generate

constructive

dataset

DNA

sequence

Mined

knowledge

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.14, August 2012

24

 an integer (the zero-based position in S at which W is

found)

 define variables:

 an integer, m ← 0

 an integer, i ← 0

 an array of integers, T

 while m+i is less than the length of S, do:

 if W[i] = S[m + i],

 if i equals the (length of W)-1,

 return m

 let i ← i + 1

 otherwise,

 let m ← m + i - T[i],

 if T[i] is greater than -1,

 let i ← T[i]

 else

 let i ← 0

 (if we reach here, we have searched all of S

unsuccessfully)

 return the length of S

5. 2. Boyer–Moore String Search Algorithm

(or BM algorithm)
This algorithm is the standard benchmark for practical string

search because of its efficiency in string searching. BMS

algorithm will preprocesses the searching string (the pattern),

but will not modify the string being searched in (the text).

This algorithm is best suited for applications where the text

does not continue to be same across multiple searches. The

information gathered during the pre-process will be used to

skip the sections of the text to lower the constant factor. This

advantage is missing in many other algorithms. If the pattern

length increases, this algorithm will run faster.

The Boyer-Moore algorithm has worst-case running time of

O(nm) only if the pattern does not appear in the text.

5.2.1 The Boyer- Moore Algorithm – Pseudo Code
Suppose to alignment P and T, a substring t of T matches a

suffix of P, but a mismatch occurs at the next comparison to

the left. If it exists, the right-most copy t' of t in P such that t'

is not a suffix of P and the character to the left of t' in P differs

from the character to the left of t in P. Shift P to the right so

that substring t' in P is below substring t in T. If t' does not

exist, then shift the left end of P past the left end of t in T by

the least amount so that a prefix of the shifted pattern matches

a suffix of t in T. If no such shift is possible, then shift P by n

places to the right. If an occurrence of P is found, then shift P

by the least amount so that a proper prefix of the shifted P

matches a suffix of the occurrence of P in T. If no such shift is

possible, then shift P by n places; shift P past T. [11]

5.3. Rabin–Karp String Searching

Algorithm
The RK string searching algorithm is a string searching

algorithm that uses hashing to find any one of a set of pattern

strings in a text. For text of length t and patterns of p and their

combined length m. This algorithm’s average and best case

running time is O(n+m). It’s worst-case time is O(nm). [23]

5.3.1 The RK Algorithm – Pseudo Code
Function rabin_karp

Let m is the length of the text string t

Let n is the length of the pattern string p

Let si denote the length-n contiguous substring of t beginning

at offset i ≥ 0

use a hash function h to map each si to a good sized set of the

first k nonnegative integers

compute h(p)

for every I, h(si) = h(p), check for a match as in the naive

algorithm

If h(si) = h(p), stop the checking operation

5.4. The Aho–Corasick String Matching

Algorithm
The AC string matching algorithm is dictionary-matching

algorithm that locates elements of a finite set of strings (the

"dictionary") within an input text. It matches all patterns

simultaneously. Because all matches are found, there can be a

quadratic number of matches if every substring matches.

Basically, the algorithm constructs a finite state machine that

resembles a prefix tree with additional links between the

various internal nodes. These extra internal links allow fast

transitions between failed pattern matches, to other branches

of the prefix tree that share a common prefix. This allows the

automaton to transition between pattern matches without the

need for backtracking. [24]

The complexity of the algorithm depends on the length of the

patterns plus the length of the searched text plus the number

of output matches. This algorithm has asymptotic worst-time

complexity O(n+m) in space O(m).

5.4.1 Aho-Corasick Algorithm – Pseudo Code
Pattern matching machine

Input: A text string x and a pattern matching machine M with

goto function g, failure function f, and output function output

Output: locations at which keywords occur in x.

begin

state  0

for i 1 until n do

begin

while g(state, ai) = fail do state  f(state)

state  g(state, ai)

if output (state) ≠ empty then

begin

print i

print output(state)

end

end

end

5.5. The Brute-Force Pattern Matching

Algorithm
The Brute-force pattern matching algorithm compares the

pattern P with the text T for each possible shift of P relative to

T, until either a match is found or all placements of the pattern

have been tried. Its time complexity is O(nm) [12]

5.5.1 The Brute-Force Algorithm – Pseudo Code
function BruteForceMatch(T, P, m, n)

Input text T of size n and pattern P of size m

Output starting index of a substring of T equal to P or -1if no

such substring exists

for I  0 until n do

begin

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.14, August 2012

25

j  0

while j < m and T[i + j] = P[j]

begin

increment j by one

if j = m

return i

else return -1

end

end

5.6. Boyer–Moore–Horspool Algorithm or

Horspool Algorithm
The Boyer-Moore algorithm uses two heuristics in order to

determine the shift distance of the pattern in case of a

mismatch. They are referred as bad-character and the good-

suffix heuristics. The idea behind this algorithm is, instead of

considering the bad character for mismatch, they consider the

rightmost character of the current text window to determine

the shift distance in each case. [13]

BMH is an algorithm for finding substrings in the given

strings. It is a simplified form of the Boyer–Moore string

search algorithm. The time complexity for an average case is

of O(N) on random text, and O(MN) in the worst case.

5.6.1 Horspool Algorithm – Pseudo Code
Horspool (P = p1p2…pm,T = t1t2…tn)

preprocessing

for c  ∑ do d[c] ← m

for j  1…m-1 do d[pj] ← m - j

searching

pos←0

while pos ≤ n-m do

j ←m

while j > 0 and tpos+j = pj do j ← j-1

if j = 0 then report an occurrence at pos+1

pos ← pos +d[tpos+m]

end of while

Figure 6: HpBc table used by Horspool algorithm

5.7 Reverse Factor Algorithm
Most of the algorithms match the suffixes of the test pattern

like Boyer-Moore string algorithm. It is possible to match the

prefix of the pattern also by scanning from the right to left of

the string. We can do this by using the smallest suffix

automaton of the reverse pattern of the string. This

methodology is called as Reverse Factor algorithm. This

algorithm parses the character of the window from right to left

with the help of the automaton in its searching phase. This

process continues till there is no more transition defined for

the current character in the current automaton. By this we can

find the length of the longest prefix of the pattern, which is

matching. Knowing the longest matching prefix’s length, we

can calculate how much the right shift is required. The time

complexity for the preprocessing phase is O(m) and for the

searching phase is O(mn). [12]

5.7.1 The Reverse Factor Algorithm – Pseudo

code
Input: A text string T and a pattern string P with lengths n

and m respectively

Output: All occurrences of P inT.

Set i to 1;

Step 1: if i+m-1 >n then exit.

else let W is equal to T(i, i+m-1) be a window.

find LSP(W,P)

if |LSP(W,P)| is equal to m,

report an exact match is found at ti and a is equal to m-

|LSP(W,P)|.

else, set a=m-|LSP(W,P)|.

increment i by a

go to Step 1.

5.8 The Turbo-BM Algorithm
The Turbo BM algorithm is a corrective measure or

improvisation of the Boyer-Moore algorithm. Here the

preprocessing is same but there is extra space is added

comparing with the original Boyer-Moore algorithm. In this

algorithm, we remember the last time suffix pattern which

was matching. The major two advantages are: possible to

jump over factor and enable to perform a turbo-shift. The time

complexity for the preprocessing phase is O(m+) and the

time complexity for the search is O(n). [14]

5.8.1 The Turbo BM Algorithm – Pseudo Code
let I is equal to 0 and memory allocated is nil;

while i ≤ n-m do

begin

align pattern with positions t[i + 1 . . i + m] of the text;

scan the text right-to-left from the position i + m,

using memory to reduce number of inspections;

let x’ be the part of the text scanned;

if x = p then report a match at position i;

compute the shift shifti according to x and memory;

take i as i + shifti; update memory using x;

end

end.

5.9 Boyer-Moore-Smith Algorithm
In Smith Algorithm just compute the shift with the text

character just next the rightmost text character of the window.

This operation gives sometimes shorter shift than using the

rightmost text character of the window. The preprocessing

phase of the Smith algorithm consists in computing the bad-

character shift function and the Quick Search bad-character

shift function. Smith will take the maximum between the

values. [11]

The preprocessing phase is in O(m+σ) time and the searching

phase has a quadratic worst case time complexity.

5.9.1 The Smith String Matching – Pseudo Code
void SMITH(character x, integer m, character y, integer n)

begin

a A C G T

HpBc[a] 1 6 2 8

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.14, August 2012

26

 initialize j, bmBc[ASIZE], qsBc[ASIZE];

 /* Preprocessing */

 preprocess preBmBc(x, m, bmBc);

 preprocess preQsBc(x, m, qsBc);

 /* Searching */

 initialize j = 0;

 while (j<= n - m)

 begin

 if (memcmp(x, y + j, m) is equal to 0)

 OUTPUT(j);

 Equal j to j + max of bmBc[y[j + m - 1]], qsBc[y[j + m]]

 end

end

5.10 Quick Search
This is one of the fastest algorithms available for string

matching and faster than Boyer-Moore algorithm. The time

complexity of this algorithm is O(m+n). Quick search

algorithm resembles Boyer-Moore algorithm while detecting

the matches between two strings. Quick search algorithm uses

only the bad-character shift table, but Boyer-Moore algorithm

uses both bad-character table as well as good suffix shift

table. This is the major difference between them. The quick

search operation will not depend on scanning the string

pattern in any particular order. [25]

5.10.1 Quick Search Algorithm – Pseudo Code
quick_search(P,T)

n = length (T)

m = length(P)

T’ = T.P

bcp = precompute_bad_character (P)

gsp = precompute_good_suffix(P)

s = 0

while bcp(T’[s+m-1]) > 0 do

s = s + bcp(T’[s+m-1])

while s ≤ n-m do

j = m – 2

while j ≥ 0 and p[i] = T’(s+j) do

 j = j-1

if j < 0 then print (s)

s = s + gsp (j + 1)

while bcp (T’[s+m-1]) > 0 do

s = s+ bcp(T’[s+m-1])

end

5. 11 Backward Nondeterministic Dawg

Matching algorithm
It is the variant of the Reverse Factor algorithm. It uses bit-

parallelism simulation of the suffix automaton of xR. This

algorithm is efficient if the pattern length is no longer than the

memory-word size of the machine. The automaton is

simulated with bit parallelism even without constructing it. In

this algorithm, for each character, associated tables B will be

precomputed with a bit mask expressing its occurrences. [26]

5. 11.1 BNDM Algorithm – Pseudo Code
/* Preprocessing */

begin

memset (B,0,arraysize *sizeof(integer))

initialize s to 1

for i = m-1 to i ≥ 0 do

begin

B(x(i)) = B(x(i)) or S

left shift s by one bit

end

/* searching phase */

Initialize j to 0

While j<=n-m

begin

 i=m-1;

 last=m;

d is not equal to 0

while(i>=0 and d !=0)

begin

 d EQUALTO d and s(y(j+1));

 i=i-1;

 if (d != 0)

 begin

if i >= 0

 last=i+1;

else

 output(j);

end

left shift d by one bit

if end

 j=j+last

end

end

6. GLOBAL SEARCH ALGORITHM
As our concentration is on local search algorithms, we are

listing out very few global searching algorithms for our

comparison purpose. Here we took only two algorithms even

though there are a huge variety of algorithms available in

present day scenario.

6.1. The Needleman–Wunsch Algorithm
This algorithm takes two sequences A and B and performs

global alignment between them. The main usage of this

algorithm is in protein and nucleotide sequence alignment in

bioinformatics. This algorithm is using dynamic programming

technique. This is the first application for dynamic

programming in biological sequence comparison. This

algorithm is also known as optimal matching algorithm. The

time complexity of this algorithm is O(nm). [27]

6.1.1 NW Algorithm – Pseudo Code
F : {1, 2, . . . , n} × {1, 2, . . . ,m} → R

in which F(i, j) equals the best score of the alignment of the

two prefixes (x1, x2, . . . , xi) and (y1, y2, . . . , yj).

Input: two sequences X and Y

Output: optimal alignment and score α

Initialization:

Set F(i, 0) := −i x d for all i = 0 to n

Set F(0, j) := −j x d for all j = 0 to m

For i = 1 to n do:

For j = 1 to m do:

Set F(i, j) := max (F(i − 1, j − 1) + s(xi, yj), F(i − 1, j) – d, F(i,

j − 1) – d)

Set backtrace T(i, j) to the maximizing pair (i’,j’)

The score is α := F(n, m)

Set (i, j) := (n, m)

repeat

if T(i, j) = (i − 1, j − 1) print (xi, yj)

else if T(i, j) = (i − 1, j) print (xi, −)

else print (−, yj)

Set (i, j) := T(i, j)

until (i, j) = (0, 0).

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.14, August 2012

27

6.2. Hirschberg's Algorithm
 Hirschberg's algorithm is a dynamic programming algorithm

that finds the least cost sequence alignment between

two strings. The cost is measured as Levenshtein distance.

The Levenshtein distance is defined as the sum of the costs of

insertions, replacements, deletions, and null actions needed to

change one string to the other. Hirschberg's algorithm is the

modified version of Needleman–Wunsch algorithm by

adding divide and conquers technique. The general use

of Hirschberg's algorithm is in computational biology to find

maximal global alignments of DNA and protein sequences.

This algorithm is generally used for optimal sequence

alignment technique. BLAST and FASTA are suboptimal

heuristics. Hirschberg's algorithm takes O(nm) time, but needs

only O(min{n,m}) space. This algorithm is a space efficient

one to calculate the longest common sequence between the

test string and the available database. [28]

6.2.1 Hirschberg's Algorithm – Pseudo Code
Hirschberg(x,y) is

n = length(x); m = length(y)

If n <= 1 or m <= 1:

OUTPUT Alignment(x,y) using Needleman-Wunsch.

else:

 A. mid = floor(n/2)

 B. x_left = Prefix[x,mid]

 C. x_right = Suffix[x,n-mid]

 D. Edit[x_left] = Forwards(x_left,y)

 E. Edit[x_right] = Backwards(x_right,y)

 F. cut = ArgMin{Edit[x_left,Prefix[y,j]] +

 Edit[x_right,Suffix[y,m-j]]}

 G. Hirschberg(x_left,Prefix[y,cut])

 H. Hirschberg(x_right,Suffix[y,m-cut])

7. EXPERIMENTAL RESULTS
In this chapter we will run the 9 most general local algorithms

for different length of test strings and find the time taken by

them to find matching.[29] The values are entered in terms of

seconds. The graphical representation will help us to visualize

it and got clearer picture of which one is better for which

string length. Here as we know the DNA alphabet consists of

the four nucleotides A, C, G and T (standing for adenine,

cytosine, guanine, and thymine, respectively) used to encode

DNA. Therefore, the set of alphabet used are O = {a, c, g, t}.

In this example the test text is consisted of 9,97,650 characters

and we search 50 different patterns of each length from 10 to

100 characters in steps of 10. The text and the patterns used

were taken from the GenBank DNA database. Kindly refer

table 1 for understanding the comparisons.

We can notice from the graph that, for the test pattern the

running time of the Reverse Factor algorithm (RF) is efficient

in practice for our small set of alphabets used in DNA

sequence. Even though the time taken by the KR algorithm is

constant throughout the operation, the overall time taken is

more than the RF algorithm. So it is not best suited for our

application. The good choice will be RF algorithm for DNA

pattern matching algorithms. Kindly refer the figure 7 for our

understanding.

8. APPLICATION OF SPEICIES

CLASSIFICATION ALGORITHMS IN

OTHER AREAS
Species identification and classification technique can be

extended as disease identification, classification of diseases

and patients accordingly. While doing so, the personal details

of the patients, their disease details, and the treatment they are

undergoing, etc will be accessed from their clinical databases.

To keep the secrecy of the patients and their personal details,

we need to protect them. To do so, privacy preserving is

needed. [16][21] As privacy preserving the database is

another huge area, we didn’t touch that in this paper.

9. CONCLUSION
The paper aims to incorporate data mining concepts in the

classification technique. The paper is planned in such a way

that features are extracted from the DNA sequence of different

species with the aid of data mining concepts. A supervised

classifier will be developed using artificial Neural Network

(ANN) technique and the classifier will be trained using the

extracted features. Because of the training process, the

classifier will be well-prepared to classify the DNA sequence

of the different species. So, given a DNA sequence, the

classifier can classify effectively by identifying the species

class to which the sequence belongs. The planned

methodology will be evaluated using DNA sequence of

different species and its performance will be appraised. The

methodology can be implemented in the MATALB platform

and can be evaluated. It is expected that the methodology can

classify the sequence on the basis of its species class with

remarkable classification accuracy.

A set of algorithms for string matching on binary strings and

encoded DNA sequences has been presented. The

experimental results shows which local searching algorithm is

best suited for the DNA sequence searching. The same

searching algorithm can be extended further in medical field

for identifying and classifying the diseases. The use of ANN

will help us to speed up our process as the neurons are already

trained from known data. The only job pending there is to

compare them with the test data. How fast the comparison is

done and how effectively the memory space is utilized will

depend on which algorithm is used in implementing the

comparison task. As most of the species DNA databases are

huge and they will occupy a vast amount of memory space,

the efficient algorithm both in time complexity and space

complexity will be the best suitable one. In this paper, we

took only the time complexity into consideration. The space

complexity has to be explored and the combination of these

two will be the best among the best.

10. REFERENCES
[1] The website and Glossary maintained by Amateur

Entomologists Society

[2] Zoheir Ezziane, Applications of artificial intelligence in

bioinformatics: A review, Expert Systems with

Applications 30 (2006) 2–10

[3] Jiawei Han and Micheline Kamber, Data Mining:

Concepts and Techniques, Second Edition, Morgan

Kaufmann publications, 2006.

[4] Arthur Lesk, Introduction to Bioinformatics, Oxford

University Press, USA, 3 Edition, 2008.

[5] Simon Haykin, Neural Networks a Comprehensive

Foundation, Prentice Hall Publications, II Edition, 1998.

[6] NeuralWare (2003), NeuralWorks Predict® Getting

Started Guide for Windows, Carnegie, PA.

[7] Dr Yeshpal Singh and Alok Singh Chauhan, “Neural

Networks in Data Mining” Journal of Theoretical and

Applied Information Technology, 2005 - 2009

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.14, August 2012

28

[8] Kwong-Sak Leung, Ka-Chun Wong, Tak-Ming Chan,

Man-Hon Wong, Kin-Hong Lee, Chi-Kong Lau, and

Stephen K. W. Tsui, . Discovering protein–DNA binding

sequence patterns using association rule mining, Nucleic

Acids Res. 2010 October; 38(19): 6324–6337. Published

online 2010 June 6.

[9] Felix Autenrieth, Barry Isralewitz, Zaida Luthey-

Schulten, Anurag Sethi, Taras Pogorelov, Bioinformatics

and Sequence Alignment, June 2005

[10] Thompson JD, Plewniak F, Poch O. (1999). "A

comprehensive comparison of multiple sequence

alignment programs". Nucleic Acids Res 27 (13): 2682–

90.

[11] Boyer, Robert S.; Moore, J Strother (October 1977). "A

Fast String Searching Algorithm.". Comm. ACM (New

York, NY, USA: Association for Computing

Machinery) 20 (10): 762–772.

[12] CROCHEMORE, M., HANCART, C., 1999, Pattern

Matching in Strings, in Algorithms and Theory of

Computation Handbook, M.J. Atallah ed., chapter 11, pp

11-1--11-28, CRC Press Inc., Boca Raton, FL

[13] HORSPOOL R.N., 1980, Practical fast searching in

strings, Software - Practice & Experience, 10(6):501-

506.

[14] Evolutionary Computation 2 - Advanced Algorithms and

Operations, edited by Thomas Baeck, D.B Fogel, Z

Michalewicz, Taylor & Francis; I edition, November

2000

[15] Timothy Masters, Advanced algorithms for neural

networks: a C++ sourcebook, Volume 1, Wiley, I edition,

Apr-1995

[16] Kiran P, S Sathish Kumar and Dr Kavya N P, A Novel

Framework using Elliptic Curve Cryptography for

Extremely Secure Transmission in Distributed Privacy

Preserving Data Mining, Advanced Computing: An

International Journal (ACIJ), Vol.3, No.2, March 2012

[17] Jianbo Gao, Yan Qi, Yinhe Cao, and Wen-wen Tung,

"Protein Coding Sequence Identification by

Simultaneously Characterizing the Periodic and Random

Features of DNA Sequences", Journal of Biomedicine

and Biotechnology, Vol. 2, pp. 139–146, 2005.

[18] Shital Shah and Andrew Kusiak, "Cancer gene search

with data-mining and genetic algorithms, Computers in

Biology and Medicine", Vol.37, No.2, pp.251-261,

February 2007

[19] Riccardo Bellazzi and Blaz Zupan, "Towards

knowledge-based gene expression data mining", Journal

of Biomedical Informatics, Vol.40, No.6, pp.787-802,

December 2007

[20] Fayyad, Piatetsky-Shapiro, Smyth and Uthurusamy,

"Advances in knowledge discovery and data mining",

AAAI/MIT Press, 1995

[21] Kiran P, Sathish Kumar S and Dr Kavya N P, An

Extended Conceptual Modelling for ETL Processes in

Privacy Preserving Data Mining, International

Conference on Computing and Computer Vision

(ICCCV 2012).

[22] Jianbo Gao, Yan Qi, Yinhe Cao, and Wen-wen Tung,

"Protein Coding Sequence Identification by

Simultaneously Characterizing the Periodic and Random

Features of DNA Sequences", Journal of Biomedicine

and Biotechnology, Vol. 2, pp. 139–146, 2005.

[23] Cormen, Thomas H.; Leiserson, Charles E.; Rivest,

Ronald L.; Stein, Clifford (2001-09-01). "The Rabin–

Karp algorithm”. Introduction (2nd ed.). Cambridge,

Massachusetts: MIT Press. pp. 911–916.

[24] Aho, Alfred V.; Margaret J. Corasick (June 1975).

"Efficient string matching: An aid to bibliographic

search". Communications of the ACM 18 (6): 333–340

[25] 25 CROCHEMORE, M., LECROQ, T., 1996, Pattern

matching and text compression algorithms, in CRC

Computer Science and Engineering Handbook, A.

Tucker ed., Chapter 8, pp 162-202, CRC Press Inc., Boca

Raton, FL.

[26] NAVARRO G., RAFFINOT M., 1998. A Bit-Parallel

Approach to Suffix Automata: Fast Extended String

Matching, In Proceedings of the 9th Annual Symposium

on Combinatorial Pattern Matching, Lecture Notes in

Computer Science 1448, Springer-Verlag, Berlin, 14-31.

[27] Needleman, Saul B.; and Wunsch, Christian D.

(1970). "A general method applicable to the search for

similarities in the amino acid sequence of two

proteins". Journal of Molecular Biology 48 (3): 443–53

[28] http://www.cs.tau.ac.il/~rshamir/algmb/98/scribe/html/

[29] lec02/node10.html

[30] P.D. Michailidis and K.G. Margaritis On-line String

Matching Algorithms: Survey and Experimental Results,

International Journal of Computer Mathematics, Vol. 76,

No. 4. (2001), pp. 411-434

[31] E.W.T. Ngai, Yong Hu, Y.H. Wong, Yijun Chen, Xin

Sun, “The application of datamining techniques in

financial fraud detection: A classification framework and

an academic review of literature” Decision Support

Systems, Volume 50, Issue 3, February 2011, Pages 559–

569

[32] Arzu Şencan Şahin, İsmail İlke Köse & Reşat Selba,

“Comparative analysis of neural network and neuro –

fuzzy system for thermodynamic properties of

refrigerants” Applied Artificial Intelligence: An

International Journal, Volume 26, Issue 7, 2012, DOI:

10.1080/08839514.2012.701427

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.14, August 2012

29

Table 1: Number of character comparisons for a DNA alphabet

m BF KMP BM BMH QS BMS TBM RF KR

10 1.346732 1.116931 0.301635 0.373474 0.356066 0.242178 0.299615 0.26149 1.000031

20 1.348057 1.109472 0.271363 0.39388 0.365869 0.246332 0.269731 0.154379 1.000009

30 1.335037 1.097344 0.231094 0.357166 0.332303 0.218819 0.229967 0.110341 1.000023

40 1.342449 1.103267 0.209129 0.349426 0.332189 0.215021 0.208034 0.087277 1.000018

50 1.34136 1.106258 0.223401 0.365487 0.351301 0.225939 0.222463 0.074325 1.000022

100 1.3453 1.106325 0.19552 0.362155 0.350235 0.212253 0.19623 0.05325 1

Average 1.343156 1.1066 0.23869 0.366931 0.347994 0.226757 0.237673 0.12351 1.000017

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 20 30 40 50 100 Average

N
u

m
b

e
r

o
f

C
h

ar
ac

te
r

C
o

m
p

ar
is

o
n

s

Pattern length

DNA Alphabet

BF

KMP

BM

BMH

QS

BMS

TBM

RF

KR

Figure 7: The graph for DNA alphabet

