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ABSTRACT
Let G be a graph with vertex set V (G) and edge set E(G), and
consider the set A = {0, 1}. A labeling f : V (G) → A
induces a partial edge labeling f ∗ : E(G) → A defined by
f ∗(xy) = f(x), if and only if f(x) = f(y), for each edge
xy ∈ E(G). For i ∈ A, let vf (i) = |{v ∈ V (G) : f(v) = i}|
and ef ∗(i) = |e ∈ E(G) : f ∗(e) = i|. A labeling f of a graph
G is said to be friendly if |vf (0) − vf (1)|≤ 1. A friendly
labeling is called balanced if |ef ∗(0) − ef ∗(1)|≤ 1. The balance
index set of the graph G, Bl(G), is defined as {|ef ∗(0)−ef ∗(1)|:
the vertex labeling f is friendly}. We provide balanced labeling
and balance index set of one point union of two complete graphs.

General Terms:
Balance index set of graph G is denoted by BI(G) and one point union of
two complete graphs is denoted by Km ·Kn.

Keywords:
Vertex labeling, Friendly labeling, Cordial labeling, Balanced la-
beling and Balance index set.

1. INTRODUCTION
We begin with simple, finite, connected and undirected graph
G=(V,E). Here elements of set V and E are known as vertices
and edges respectively. If G and H are graphs with the property
that the identification of any vertex of graph G with an arbitrary
vertex of graph H results in a unique graph(up to isomorphism),
then we write G · H for this graph. This graph is known as
one point union of two graphs. For all other terminologies and
notations we follow Harary [?] .
If the vertices of the graph are assigned values subject to certain
conditions is known as graph labeling.
Most interesting graph labeling problems have three important
characteristics.
∗ a set of numbers from which the labels are chosen;
∗ a rule that assigns a value to each edge;
∗ a condition that these values must satisfy.

For detail survey on graph labeling one can refer Galian
[?]. Vast amount of literature is available on different types of
graph labeling. According to Beineke and Hegde [?] graph la-
beling serves as a frontier between number theory and structure
of graphs.

Labeled graphs are becoming an increasingly useful fam-
ily of mathematical models for a broad range of applications.

The qualitative labelings of graph elements have inspired
research in diverse fields of human enquiry such as conflict
resolution in social psychology, electrical circuit theory and
energy crisis. Quantitative labelings of graphs have led to quite
intricate fields of applications such as coding theory problems,
including the design of good radar location codes, synch-set
codes, missile guidance codes and convolution codes with opti-
mal auto-correlation properties. Labeled graphs have also been
applied in determining ambiguities in X-Ray crystallographic
analysis, to design communication network addressing systems,
to determine optimal circuit layouts and radio-astronomy, etc.

In 1986 Cahit [?] introduced cordial graph labeling.
A function f from V (G) to {0, 1} , where for each edge
xy, f ∗(xy) = |f(x) − f(y)|, vf (i) is the number of vertices
v with f(v) = i, and ef∗(i) is the number of edges e with
f ∗(e) = i is called friendly if |vf (0) − vf (1)|≤ 1. A friendly
labeling f is called cordial if |ef∗(0)− ef∗(1)|≤ 1.

Lee, Liu and Tan [?] considered a new labeling problem
of graph theory. A vertex labeling of G is a mapping f from
V (G) into the set {0, 1} . For each vertex labeling f of G, a
partial edge labeling f ∗ of G is defined in the following way.
For each edge uv in G,

f ∗(uv) =

{
0, if f(u) = f(v) = 0
1, if f(u) = f(v) = 1

Note that if f(u) 6= f(v), then the edge uv is not labeled by
f ∗. Thus f ∗ is a partial function from E(G) into the set {0, 1}.
Let vf (0) and vf (1) denote the number of vertices of G
that are labeled by 0 and 1 under the mapping f respectively.
Likewise, let ef∗ (0) and ef∗ (1) denote the number of edges of G
that are labeled by 0 and 1 under the induced partial function f ∗

respectively.

DEFINITION 1. A graph G is said to be a balanced graph
or balanced if there is a vertex labeling f of G such that
|vf (0) − vf (1)|≤ 1 and |vf∗(0) − vf∗(1)|≤ 1. A graph G is
said to be strongly vertex-balanced if G is a balanced graph and
vf (0) = vf (1). Similarly a graph G is strongly edge-balanced
if it is a balanced graph and ef∗(0) = ef∗(1). If G is a strongly
vertex-balanced and strongly edge-balanced graph, then G is a
strongly balanced graph.

EXAMPLE 1. Figure 1 shows a graph with two distinct
balanced labelings of graph G.

The following graphs are studied in [?]

(1) The path Pn is balanced; it is strongly balanced if n is even.
(2) The cycle Cn is balanced; it is strongly balanced if n is even.
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Fig. 1. Two distinct balanced labelings of graph G

(3) The complete graph Kn is strongly balanced if and only if
n is even.

(4) The complete bipartite graph Km,n is balanced if and only
if one of the following conditions holds,
(a) m,n are even,
(b) m,n are odd and |m− n|≤ 2
(c) one of m and n, say m, is odd, n = 2t and t = -1, 0 or

1 [mod(|m− n|)].
(5) If G is k-regular with p vertices, then

(a) G is balanced if p is odd and k =2;
(b) G is strongly balanced if p is even.

In [?] Kim, Lee, and Ng define the balance index set of a graph G
as BI(G) = {|ef∗(0)−ef∗(1)| : f ∗ runs over all friendly labelings
f of G }. The balance index set of star, double star, complete
graphs, complete bipartite graphs and windmill graphs given in
[?].

EXAMPLE 2. BI(G)={0, 1}.
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|ef* (0) - ef* (1)|  = 0 |ef* (0) - ef* (1)|  = 1

Fig. 2. Distinct friendly labelings of G

In number theory and combinatorics, a partition of a positive
integer n, also called an integer partition, is a way of writing
n as a sum of positive integers. Two sums that differ only in the
order of their summands are considered to be the same partition;
if order matters then the sum becomes a composition. For exam-
ple, 4 can be partitioned in five distinct ways:
4 + 0,
3 + 1,
2 + 2,
2 + 1 + 1,
1 + 1 + 1 + 1.

2. BALANCED LABELING OF ONE POINT
UNION OF TWO COMPLETE GRAPHS

First we discuss Balanced Labeling of Km ·Kn. In this paper we
are using the idea of integer partition of numbers. Let G be any
graph with p vertices. Partition of p in to (p1, p2), where p1 and
p2 are the number of vertices labeled by ’0’ and ’1’ respectively.

THEOREM 2. The one point union of two graphs G and H ,
say G · H with m and n vertices respectively, satisfies friendly
labeling if and only if

|(m1 + n1)− (m2 + n2)| =
{

0 or 2, if m+ n is even
1, if m+ n is odd

where m = (m1,m2) and n = (n1, n2).

PROOF. Consider G · H with m and n vertices in G and H
respectively.
Case 1. If m+ n is even, then |V (G ·H) | = m+ n− 1 which
is odd. Therefore every friendly labeling f satisfies the condition
|vf (0)− vf (1)| = 1. This gives, either vf (0) = m1+n1−1 and
vf (1) = m2+n2 or vf (0) = m1+n1 and vf (1) = m2+n2−1.
|vf (0)− vf (1)| = 1
⇔ |(m1 + n1)− (m2 + n2)± 1| = 1
⇔ |(m1 + n1)− (m2 + n2)| = 0 or 2
Case 2. If m+n is odd, then |V (G ·H) | = m+n− 1 which is
even. Therefore every friendly labeling f satisfies the condition
|vf (0)− vf (1)| = 0. This gives, either vf (0) = m1+n1−1 and
vf (1) = m2+n2 or vf (0) = m1+n1 and vf (1) = m2+n2−1.
|vf (0)− vf (1)| = 0
⇔ |(m1 + n1)− (m2 + n2)± 1| = 0
⇔ |(m1 + n1)− (m2 + n2)| = 1

THEOREM 3. A graph Kn ·Kn+1 is strongly balanced.

PROOF. Since |V (G)| = 2n, every friendly labeling of
Kn · Kn+1 gives vf (0) = vf (1) = n. We label the vertices
of Kn by 0 and the remaining vertices by 1.

Then ef∗(0) = ef∗(1) =

(
n
2

)
. Therefore |vf (0) − vf (1)|= 0

and |ef∗(0)−ef∗(1)|= 0 . Hence the graph Kn·Kn+1 is strongly
balanced.

THEOREM 4. A graph Km · Kn is balanced, when
|m− n|6= 1, if

(1) Both m and n are even.
(2) Both m and n are odd with

(a) min{m,n} = 3 and |m− n|≤ 6
(b) min{m,n} ≥ 5 and |m− n|≤ 2.

(3) m+ n is odd and min{m,n}=odd with
(a) min{m,n} = 3 and for all n
(b) min{m,n} ≥ 5 and if there exist an integer

z = 2i(n−m), where i = [m−1
6

], satisfying the condi-
tion m− 3 ≤ z ≤ m+ 1.

(4) m+n is odd, min{m,n}=even and if there exist an integer

z = 2i(n−m), where i = 1, 2, 3, ...,
min{m,n}

2
satisfying

the condition n− 3 ≤ z ≤ n+ 1.

PROOF. Here |V (Km ·Kn)| = m+n−1 and |E(Km ·Kn)|

=

(
m
2

)
+

(
n
2

)
.

Without loss of generality we consider m ≤ n.

(1) Since both m and n are even, |V (Km · Kn)| is odd.
Therefore every friendly labeling satisfying the condition
|vf (0)− vf (1)|= 1.
Consider two complete blocks Km and Kn of Km · Kn.
We label m

2
number of vertices of Km and n

2
number of

vertices of Kn by 1, and the remaining vertices by 0. Then
|vf (0)− vf (1)|= 1 and |ef∗(0)− ef∗(1)|= 0. Hence graph
Km ·Kn is strongly edge-balanced if both m and n are even.

(2) Since both m and n are odd, |V (Km · Kn)| is odd.
Therefore every friendly labeling satisfying the condition
|vf (0)− vf (1)|= 1.
(a) If m = 3.

Since n is odd, n = 2k + 1, k ≥ 1.
Then the graph K3 · Kn is balanced if∣∣∣∣( k + 1

2

)
−
(

k
2

)∣∣∣∣ ≤ 4

⇒ k ≤ 4 or n ≤ 9.
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(b) If m ≥ 5, then Km ·Kn is balanced if∣∣∣∣[( m+1
2
2

)
+

(
n−1
2
2

)]
−
[(

m+1
2
2

)
+

(
n−1
2
2

)]∣∣∣∣ ≤ 1

⇒ |m− n|≤ 2.

(3) Since m+n is odd, |V (Km ·Kn)| is even. Therefore every
friendly labeling satisfying the condition |vf (0) − vf (1)|=
0.
(a) If m = 3. We label two vertices of K3 by 0 and one

vertex by 1, and half the number of vertices of Kn by 0
and remaining half by 1. Then |ef∗(0)− ef∗(1)|= 1.

(b) If m ≥ 5. Consider the partition of m and n as(
m−(2i+1)

2
, m+(2i+1)

2

)
and

(
n
2
+ i, n

2
− i
)

respec-
tively, where i =

[
m−1
6

]
. Then Km ·Kn is balanced if∣∣∣∣[( m−(2i+1)

2
2

)
+

(
n
2
+ i
2

)]
−
[(

m+(2i+1)
2
2

)
+

(
n
2
− i
2

)]∣∣∣∣ ≤ 1

⇒ 1

2
|2i(n−m)− (m− 1)|≤ 1

⇒m− 3 ≤ 2i(n−m) ≤ m+ 1, where i = [m−1
6

].

(4) Since m + n is odd, |V (Km · Kn)| is even. There-
fore every friendly labeling satisfying the condition
|vf (0) − vf (1)|= 0. Consider the partition of m and n

as
(
m
2
− i, m

2
+ i
)

and
(
n+(2i+1)

2
− 1, n−(2i+1)

2
+ 1
)

respectively, where i = 1, 2, 3, ..., m
2

.
Then Km ·Kn is balanced if∣∣∣∣[( m

2
− i
2

)
+

(
n+(2i+1)

2
− 1

2

)]
−
[(

m
2
+ i
2

)
+

(
n−(2i+1)

2
+ 1

2

)]∣∣∣∣ ≤ 1,

⇒ 1
2
|2i(n−m)− (n− 1)|≤ 1,

⇒ n− 3 ≤ 2i(n−m) ≤ n+ 1, i = 1, 2, 3, ..., m
2

.

3. BALANCE INDEX SET OF ONE POINT
UNION OF TWO COMPLETE GRAPHS

Now we are discussing the Balance index set of Km ·Kn

THEOREM 5. The balance index set of Km · Kn (where
m ≤ n) is

(1) {∣∣∣∣ (2i− 1)n− (2i+ 1)m

2

+1

∣∣∣∣ , (2i+ 1) |n−m|
2

: i= 0, 1, 2, ...,
m− 1

2

}⋃
{∣∣∣∣ (2i+ 3)n− (2i+ 1)m

2
− 1

∣∣∣∣ : i = 0, 1, 2, ...,
m− 3

2

}
,

if m and n are odd.

(2)
{
|i(n−m)− (n− 1)| , i |(n−m)| : i = 0, 1, 2, ...

m

2

}⋃{
|i(n−m) + (n− 1) : i = 0, 1, 2, ...

m

2
− 1
}

,

if m and n are even.

(3)

{
|2i(n−m)− (m− 1)|

2
: i = 0, 1, 2, ...

m− 1

2

}⋃{
|2(i+ 1)(n−m) + (m− 1)|

2
: i = 0, 1, 2, ...

m− 3

2

}
,

if m+ n = odd and min{m,n} is odd.

(4)

{
|2i(n−m)− (n− 1)|

2
: i = 0, 1, 2, ...

m

2

}⋃{
|2i(n−m) + (n− 1)|

2
: i = 0, 1, 2, ...

m

2
− 1

}
,

if m+ n = odd and min{m,n} is even.

PROOF. (1) If m and n are odd.
The possible distinct partitions of m and n, for friendly
labeling given in table 1.
Case 1. If the partition of m and n are(
m− (2i+ 1)

2
,
m+ (2i+ 1)

2

)
and(

n+ (2i+ 1)

2
− 1,

n− (2i+ 1)

2
+ 1

)
,

where i=0, 1, 2, ...,
m− 1

2
.

Then |ef∗(0)− ef∗(1)| =∣∣∣∣[( m−(2i+1)
2
2

)
+

(
n+(2i+1)

2
− 1

2

)]
−
[(

m+(2i+1)
2
2

)
+

(
n−(2i+1)

2
+ 1

2

)]∣∣∣∣
=

∣∣∣∣ (2i− 1)n− (2i+ 1)m

2
+ 1

∣∣∣∣,
where i = 0, 1, 2, ...,

m− 1

2
.

Case 2. If the partition of m and n are(
m− (2i+ 1)

2
,
m+ (2i+ 1)

2

)
and(

n+ (2i+ 1)

2
,
n− (2i+ 1)

2

)
, where i=0, 1, 2,

...,
m− 1

2
.

Then |ef∗(0)− ef∗(1)| =∣∣∣∣[( m−(2i+1)
2
2

)
+

(
n+(2i+1)

2
2

)]
−
[(

m+(2i+1)
2
2

)
+

(
n−(2i+1)

2
2

)]∣∣∣∣
=
(2i+ 1) |n−m|

2
, where i = 0, 1, 2, ...,

m− 1

2
.

Case 3. If the partition of m and n are(
m− (2i+ 1)

2
,
m+ (2i+ 1)

2

)
and(

n+ (2i+ 1)

2
+ 1,

n− (2i+ 1)

2
− 1

)
,

where i=0, 1, 2, ...,
m− 3

2
.

3
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Table 1. Possible distinct partitions of m and n, for friendly labeling.
m n

(
m−(2i+1)

2 ,
m+(2i+1)

2

) (
n+(2i+1)

2 − 1,
n−(2i+1)

2 + 1
)

and
(
n+(2i+1)

2 ,
n−(2i+1)

2

)
, i=0, 1, 2, ...,m−12

(
n+(2i+1)

2 + 1,
n−(2i+1)

2 − 1
)

, i = 0, 1, 2, ..., m−3
2

Then |ef∗(0)− ef∗(1)| =∣∣∣∣[( m−(2i+1)
2
2

)
+

(
n+(2i+1)

2
+ 1

2

)]
−
[(

m+(2i+1)
2
2

)
+

(
n−(2i+1)

2
− 1

2

)]∣∣∣∣
=

∣∣∣∣ (2i+ 3)n− (2i+ 1)m

2
− 1

∣∣∣∣,
where i = 0, 1, 2, ...,

m− 3

2
.

Therefore BI(Km ·Kn) ={∣∣∣∣ (2i− 1)n− (2i+ 1)m

2

+ 1

∣∣∣∣ , (2i+ 1) |n−m|
2

: i = 0, 1, 2, ...,
m− 1

2

}
⋃{∣∣∣∣ (2i+ 3)n− (2i+ 1)m

2
− 1

∣∣∣∣ : i = 0, 1, 2, ...,
m− 3

2

}
.

(2) If m and n are even.
The possible distinct partitions of m and n, for friendly
labeling given in table 2.
Case 1. If the partition of m and n are(
m

2
− i,

m

2
+ i
)

and
(
n

2
+ i− 1,

n

2
− i+ 1

)
, where

i=0, 1, 2, ...,
m

2
.

Then |ef∗(0)− ef∗(1)| =∣∣∣∣[( m
2
− i
2

)
+

(
n
2
+ i− 1
2

)]
−
[(

m
2
+ i
2

)
+

(
n
2
− i+ 1
2

)]∣∣∣∣
=|i(n−m)− (n− 1)|, where i = 0, 1, 2, ...,

m

2
.

Case 2. If the partition of m and n are
(
m

2
− i,

m

2
+ i
)

and
(
n

2
+ i,

n

2
− i
)

, where i=0, 1, 2, ...,
m

2
.

Then |ef∗(0)− ef∗(1)| =∣∣∣∣[( m
2
− i
2

)
+

(
n
2
+ i
2

)]
−
[(

m
2
+ i
2

)
+

(
n
2
− i
2

)]∣∣∣∣
= i |n−m|, where i = 0, 1, 2, ...,

m

2
.

Case 3. If the partition of m and n are(
m

2
− i,

m

2
+ i
)

and
(
n

2
+ i+ 1,

n

2
− i− 1

)
, where

i=0, 1, 2, ...,
m

2
− 1.

Then |ef∗(0)− ef∗(1)| =∣∣∣∣[( m
2
− i
2

)
+

(
n
2
+ i+ 1
2

)]
−
[(

m
2
+ i
2

)
+

(
n
2
− i− 1
2

)]∣∣∣∣

= |i(n−m) + (n− 1)|, where i = 0, 1, 2, ...,
m

2
− 1.

Therefore BI(Km ·Kn)={
|i(n−m)− (n− 1)| , i |(n−m)| : i = 0, 1, 2, ...,

m

2

}
⋃{
|i(n−m) + (n− 1) : i = 0, 1, 2, ...,

m

2
− 1
}

(3) If m is odd and n is even.
The possible distinct partitions of m and n, for friendly
labeling given in table 3.
Case 1. If the partition of m and n are(
m− (2i+ 1)

2
,
m+ (2i+ 1)

2

)
and

(
n

2
+ i,

n

2
− i
)

,

where i=0, 1, 2, ...,
m− 1

2
.

Then |ef∗(0)− ef∗(1)| =∣∣∣∣[( m−(2i+1)
2
2

)
+

(
n
2
+ i
2

)]
−
[(

m+(2i+1)
2
2

)
+

(
n
2
− i
2

)]∣∣∣∣
=

∣∣∣∣2i(n−m)− (m− 1)

2

∣∣∣∣, where i = 0, 1, 2, ...,
m− 1

2
.

Case 2. If the partition of m and n are(
m− (2i+ 1)

2
,
m+ (2i+ 1)

2

)
and(

n

2
+ i+ 1,

n

2
− i− 1

)
, where i=0, 1, 2, ...,

m− 3

2
.

Then |ef∗(0)− ef∗(1)| =∣∣∣∣[( m−(2i+1)
2
2

)
+

(
n
2
+ i+ 1
2

)]
−
[(

m+(2i+1)
2
2

)
+

(
n
2
− i− 1
2

)]∣∣∣∣
=

∣∣∣∣2(i+ 1)(n−m) + (m− 1)

2

∣∣∣∣,
where i = 0, 1, 2, ...,

m− 3

2
.

Therefore BI(Km ·Kn) ={∣∣∣∣2i(n−m)− (m− 1)

2

∣∣∣∣ : i = 0, 1, 2, ...,
m− 1

2

}⋃{∣∣∣∣ (2(i+ 1)(n−m) + (m− 1)

2

∣∣∣∣ : i = 0, 1, 2, ...,
m− 3

2

}
.

(4) If m is even and n is odd.
The possible distinct partitions of m and n, for friendly
labeling given in table 4.

Case 1. If the partition of m and n are
(
m

2
− i,

m

2
+ i
)

and

(
n+ (2i+ 1)

2
− 1,

n− (2i+ 1)

2
+ 1

)
, where

i=0, 1, 2, ...,
m

2
.

4
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Table 2. Possible distinct partitions of m and n, for friendly labeling.
m n

(
m
2 − i, m

2 + i
) (

n
2 + i− 1, n

2 − i+ 1
)

and
(
n
2 + i, n

2 − i
)

, i=0, 1, 2, ...,m2

(
n
2 + i+ 1, n

2 − i− 1
)

, i = 0, 1, 2, ..., m
2 − 1

Table 3. Possible distinct partitions of m and n, for friendly labeling.
m n

(
m−(2i+1)

2 ,
m+(2i+1)

2

) (
n
2 + i, n

2 − i
)

, i=0, 1, 2, ...,m−12

(
n
2 + i+ 1, n

2 − i− 1
)

, i = 0, 1, 2, ..., m−3
2

Table 4. Possible distinct partitions of m and n, for friendly
labeling.

m n

(
m
2 − i, m

2 + i
) (

n+(2i+1)
2 − 1,

n−(2i+1)
2 + 1

)
, i = 0, 1, 2, ...,m2

(
n+(2i+1)

2 ,
n−(2i+1)

2

)
, i = 0, 1, 2, ..., m

2 − 1

Then |ef∗(0)− ef∗(1)| =∣∣∣∣[( m
2
− i
2

)
+

(
n+(2i+1)

2
− 1

2

)]
−
[(

m
2
+ i
2

)
+

(
n−(2i+1)

2
+ 1

2

)]∣∣∣∣
=

∣∣∣∣2i(n−m)− (n− 1)

2

∣∣∣∣, where i = 0, 1, 2, ...,
m

2
.

Case 2. If the partition of m and n are
(
m

2
− i,

m

2
+ i
)

and

(
n+ (2i+ 1)

2
,
n− (2i+ 1)

2

)
, where i=0, 1, 2,

...,
m

2
− 1.

Then |ef∗(0)− ef∗(1)| =∣∣∣∣[( m
2
− i
2

)
+

(
n+(2i+1)

2
2

)]
−
[(

m
2
+ i
2

)
+

(
n−(2i+1)

2
2

)]∣∣∣∣
=

∣∣∣∣2i(n−m) + (n− 1)

2

∣∣∣∣, where i = 0, 1, 2, ...,
m

2
− 1.

Therefore BI(Km ·Kn) =

{∣∣∣∣2i(n−m)− (n− 1)

2

∣∣∣∣ : i = 0, 1, 2, ...,
m

2

}⋃{∣∣∣∣ (2i(n−m) + (n− 1)

2

∣∣∣∣ : i = 0, 1, 2, ...,
m

2
− 1

}
.

4. CONCLUSION
Labeled graph is the topic of current interest for many re-
searchers as it has diversified applications. We discuss here bal-
anced labeling and balance index set of one point union of two
complete graphs. The derived labeling pattern is demonstrated
by means of elegant illustrations which provides better under-
standing of the derived results. This study can be extended
to chain graphs whose blocks are complete and its compliment.
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