
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.13, August 2012

28

Preventing SQL Injection Attacks

Asha. N

Assistant Professor
School of Information

Technology and Engineering
Vellore Institute of Technology,

Vellore, India

M. Varun Kumar
Assistant Professor

School of Information
Technology and Engineering

Vellore Institute of Technology,
Vellore, India

Vaidhyanathan.G
M.S. Software Engineering

School of Information
Technology and Engineering

Vellore Institute of Technology,
Vellore, India

ABSTRACT

With the recent rapid increase in web based applications that

employ back-end database services, results show that SQL

Injection and Remote File Inclusion are the two frequently

used exploits rather than using other complicated techniques.

With the rise in use of web applications, SQL injection based

attacks are gradually increasing and is now one of the most

common attacks in the internet. It allows an attacker to gain

control over the database of an application, thereby able to

read and alter confidential data. This paper illustrates few

different forms of SQL injection and based on observation, it

is seen that SQL Injection is interpreted differently on

different databases. Finally, an effective solution is proposed

for the prevention of these kinds of injection attacks, in such a

way that it is independent of the underlying platform and

database. Two levels of user authentication has been proposed

in this method, SQL based authentication and an XML based

authentication, and has been found to be very effective in

preventing such attacks.

General Terms

Web application, Web Security, Authentication, Attacker.

Keywords
Web architecture, SQLIA , HTTP, XML.

1. INTRODUCTION
SQL Injection Attack (SQLIA) is considered one of the top 5

web application vulnerabilities by the Open Web Application

Security Project (OWASP) in the year 2010. A Database is an

essential component that is necessary in modern web

applications. Every web based application that is developed

and deployed over the internet, requires the interaction of a

database, thereby the application becomes fully database

driven. It has been noted that, at an average, applications

experience, 71 attempts an hour. Some applications

experience aggressive attacks and at a peak, were attacked

800–1300 times per hour.

An SQL injection attack involves the insertion or "injection"

of a SQL query by an attacker via the input data from the

client to the application. This injection in the SQL query

involves inserting malicious input statements by an attacker.

The execution of these malicious input statements by the web

server at the database end results in unexpected behaviour

thus compromising the security of the database. The database

just executes the input data provided by a client/attacker as it

is. It does not have the ability to differentiate between a valid

input string and/or a malicious/injected input string.

 A successful SQL injection exploit can

 read sensitive data from the database

 alter database data (Insert/Update/Delete)

1.1 Modern Web Architecture
The diagram below illustrates the general web

architecture. Any web based architecture typically follows the

Client-Server architecture.

Fig 1.1 Web Architecture

The client sends a HTTP request to the Web Server. This

request will have the user input data. This input data will be

sent to the database layer for processing by the web server. At

the database end, the SQL queries will be processed and the

results will be sent to the web server.

Hence, the entire web application is database-driven. The

database server usually contains many databases, and in turn,

each database contains many tables. The database is under

huge threat to the attackers.

1.2 Intent
The attacker’s objective for using the injection technique lies

in gaining control over the application database, thereby able

to access and alter confidential data for which he is not

authorized to. By gaining access to unauthorized data,

information pertaining to other users is available to the

attacker, thereby the system fails to ensure data confidentiality

and integrity.

In a web based application environment, the number of users

accessing the system is huge. Most of the web based

applications, social websites, banking websites, online

shopping websites require a user to sign up for the system.

This usually involves creating user credentials such as a user

identity and a password. A user is identified by the system

based on his identity. This process of validating an individual

based on a username and password, is referred as

authentication. The system identifies the user, and provides

Client Web

Server

Database

HTTP Request

Data

Data

Validation

Processed

Data

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.13, August 2012

29

individual access to the system objects based on his/her

identity. This process is referred as authorization. This user

credential and other information is stored in the database, and

accessing this database is the main goal of the attacker.

From the perspective of an attacker, the main

intentions for applying this technique is to be able to

 Bypass authentication procedure

 Extract the existing data from the system

(Confidentiality lost)

 Alter the existing data (Integrity lost)

Bypassing an authentication is a serious threat, as it

allows an attacker to forge another authorized user identity,

perform certain actions on behalf of the other user, and

importantly access/modify confidential information that

belongs to the user.

This paper mainly focuses on how the attacker uses

various injection techniques to bypass the authentication

procedure in a system and presents an algorithm for

prevention of such attacks.

2. LITERATURE SURVEY
A survey of all recent research works done in the

field of SQL injection attacks has been listed out. A lot of

research has been done in detecting and preventing injection

attacks and few approaches are discussed below.

[1] The system proposed by Mehdi Kiani, Andrew Clark and

George Mohay uses an anomaly based approach which

utilizes the character distribution of certain sections of HTTP

requests to detect previously unseen SQL injection attacks.

The advantage of the system proposed by Mehdi Kiani et.al is

that it does not require any user interaction, or no

modification of, or access to the backend database or the

source code of the web application. The problem faced is the

high rate of false alerts which had to be taken care while

implementing the system in real time environment. This is

because of less information available on attacks to the

administrator, thus making it difficult to differentiate between

false alerts and the real attacks. [2] V.Shanmughaneethi,

C.Emilin Shyni and Dr.S.Swamynathan uses a methodology

which make use of an independent web service which is

intended to generalize the syntactic structure of the SQL

query and validate user inputs. The SQL query inputs

submitted by the user are parsed through an independent

service and the correctness of the syntactic structure of the

query is checked. The main advantage of this paper is that the

error message generated doesn’t contain any Meta data

information about the database which could help the attacker.

Since the web service is not integrated with the web

application, any modification that should be done to the

system should be done in such a way that it should be

supported by the web service.[3] R. Ezumalai, G. Aghila,

proposed a combinatorial approach for shielding web

applications against SQL injection attacks. This combinatorial

approach incorporates signature based method, used to

address security problems related to input validation and

auditing based method which analyze the transactions to find

out the malicious access. This approach requires no

modification of the runtime system, and imposes a low

execution overhead. It can be inferred from this approach that

the public interface exposed by an application becomes the

only source of attack.[4] Yuji Kosuga, Kenji Kono, Miyuki

Hanaoka, et.al proposed a technique called Sania for

detecting SQL injection vulnerabilities during the

development and debugging phases of a web application. It

identifies the vulnerable spots by analyzing the SQL queries

issued in response to the HTTP requests in which an attacker

can insert arbitrary strings. The main feature of Sania is the

generation of attacks using the knowledge by this model, thus

checking if the SQL injection vulnerabilities lie in the web

application. [5] Ke Wei, M. Muthuprasanna, Suraj Kothari

proposed a technique to defend attacks against the stored

procedures. This technique combines a static application code

analysis with a runtime validation to eliminate injection

attacks. In the static part, a stored procedure parser is

designed, and for any SQL statement that depends on user

inputs, and use this parser to instrument the necessary

statements in order to compare the original SQL statement

structure to that including user inputs. The underlying idea of

this technique is that any SQLIA will alter the structure of the

original SQL statement and by detecting the difference in the

structures, a SQLIA can be identified. [9] Kai-Xiang Zhang,

Chia-Jun Lin, et.al proposed a translation and

validation(TransSQL) based approach for detecting and

preventing SQL Injection attacks. The basic idea of this

approach relies on how different databases interpret SQL

queries and those SQL queries with injection. After detailed

analysis on how different databases interpret SQL queries,

Kai-Xiang Zhang, et.al proposed an effective solution

TransSQL, using which the SQL requests are executed in two

different databases to evaluate the responses generated.

3. OVERVIEW OF THE SYSTEM
SQL injection is a technique that exploits a security

vulnerability occurring in the database layer of an application.

The key behind this attack is that it alters the structure

of the original SQL statement when malicious input

statements are added along with the original query.

In this scenario, on bypassing authentication, the

injection technique is carried out on login forms where a user

has to provide a username and a password, and any other

places that has to be provided with a user input. In this paper,

we focus the attacker’s concentration on a user login form in

any web page. A typical login form will contain a username

and a password field, and this is where the attacker keeps

trying different injection techniques until he compromises the

security of the database.

3.1 Consequences of SQLIA
With SQL injections, attackers can take complete remote

control of the database, and some of the impacts are:

 Insert a command to obtain access to all account

details in the system, including usernames and

passwords.

 With the username and password in attacker’s hand,

he can alter the password; change the privilege of

the account.

 Forge an user identity

 Shut down a database.

 Upload files.

 Delete a database and its entire contents.

4. TYPES OF SQLIA TECHNIQUES

4.1 Tautology
The general goal of a tautology based attack is to

inject code in one or more conditional statements so that they

always evaluate to true. The most common usages are to

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.13, August 2012

30

bypass the authentication pages and to extract the data. In this

type of injection, an attacker exploits an inject able field that

is used in query’s ‘where’ conditional. Typically, the attack is

successful when the code either displays all of the returned

records or performs some action if at least one record is

returned.

A typical user authentication SQL statement at the database

end will take the following form.

Eg. Select name from users where name=’$name’ and

pass=’$pass’;

In the case of a legitimate user, with username as ‘user1’ and

password as ‘pass1’, the query will take the form,

Select name from users where name=’user1’ and

pass=’pass1’; [No Injection]

And when these user credentials are validated by the database,

the user is authenticated.

Now as an example of a tautology attack, the attacker submits

the malicious code [‘ OR ‘1’=‘1] as input for the username

and password field, and the query takes the form,

select name from user where name= ‘ ‘OR ‘1’=’1’ and

pass= ‘ ‘OR ‘1’=‘1 ’;

Figure 4.1 Tautology

The code injected in the condition [' OR '1'='1]

transforms the entire ‘where’ clause into a tautology. Since

the conditional is a tautology, the query evaluates to a true for

each row in the table and returns all of them, and finally the

attacker will be authenticated into the system with the identity

of the first record returned by the SQL query.

4.2 Logically Incorrect Query
This attack lets an attacker gather important

information about the type and structure of the back-end

database of a web application. The attack is considered to be

an information gathering step for other types of attacks. The

vulnerability leveraged by this attack is that the default error

page returned by the application servers is often overly

descriptive. Such error messages generated can often reveal

vulnerable/inject-able parameters to an attacker. When

performing this attack, an attacker tries to inject statements

that cause a syntax, or logical error into the database.

4.3 Piggy Backed Query
This kind of attack appends additional queries to the

original query string. If the attack becomes successful, the

database receives and executes a query string that contains

multiple distinct queries. The first query is usually the original

legitimate query, whereas the subsequent queries are the

injected/malicious queries. This type of attack can be harmful

because attackers can use it to inject virtually any type of SQL

command.

Eg. By using the other injection techniques discussed above,

the attacker will have the name(s) of authorized user(s). For

subsequent trials and in the case of Piggy Backed queries, he

uses the authorized user name as input for the user field, and

uses the following malicious code for the password field,

pass = ' OR (SELECT COUNT(*) FROM user)=15 AND ''='

The entire SQL statement will take the form,

Select name from users where name=’user1’ and pass= ‘= '

OR (SELECT COUNT(*) FROM user)=15 AND ' '=’ ‘ ;

If this query evaluates to true, then the attacker gains an

insight that, there are exactly 15 users in the system. If it is

evaluated to be false, then the condition is found to be

incorrect and tries different possible techniques. Here, if the

‘INSERT into’ clause is used, and if the condition evaluates to

be true, then the attacker can successfully insert data into the

database.

5. PROPOSED ALGORITHM

5.1 Existing Technique
In the existing web applications, authentication

process takes place as follow. The user enters his assigned

user name and password. The database checks if the particular

user name, password combination exists in the database, and

if it exists, authenticates the user. If we look at the tautology

based attack, an attacker might be able to break into the

system even without entering a valid user name in the user

field. This is the main issue in few of the existing web

applications, that there is no proper authentication procedure.

This necessitates the need for a strong user authentication

procedure.

This algorithm presents an efficient user

authentication procedure, in a way that, an input SQL

statement will be processed by the database only if the user is

found to be a valid user of the system. This totally isolates the

database from such injection attacks. A user is validated

against two different databases of the same system.

5.2 Proposed Technique
The proposed methodology here is to provide two levels

of User authentication at the database level.

1. SQL Authentication

2. XML Authentication

The HTTP request sent by the Client is passed to the Web

server. The input user credentials entered in the form are

passed to the web server for processing at the database end.

Now, the Web server has to pass it to the database. In any

form of a SQL based database, Relational Database

management system is used.

The problem faced here is that, the same SQL query no matter

in which relational database it is executed, it does not have the

select name from users where

name= ‘ ‘OR ‘1’= ‘1’ and pass=‘ ‘OR ‘1’=‘1’;

T T T T

T T

T

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.13, August 2012

31

ability to differentiate the response or result obtained from the

query processed by the database. That is, if a particular SQL

request is evaluated to be true in a database, then the same

request would evaluate to true on all the other SQL based

databases, which happens because all of these databases work

based on the relational database management systems.

Fig 5.1 Proposed System Architecture

Therefore, if the same malicious/injected SQL request is run

on hierarchal based database management system, then the

response would be different. In a relational database

management system like Microsoft Access, SQL Server,

MySQL, data is stored in the form of rows and columns in

tables, whereas in a hierarchical database, data is stored in the

hierarchical tree structures, with the bottom most nodes that

store the value. Hence the way of data processing among

relational and hierarchical database management will differ,

and this is the core concept of this work.

5.2.1 Using XML
Though XML is a widely used language for transportation of

data in the web, there have many instances of using the XML

language as a means of just storing the data, thus acting as a

database. Also XML, stores data in hierarchical structures of

trees, that stores data in terminal nodes, with each of the node

constituting a root node. The major advantage of using XML

is that, it is widely portable, platform independent and can be

integrated very easily into different web technologies. Other

existing hierarchical database management systems like

Microsoft Active Directory, Apache Directory Studio, Open

LDAP for Windows are not as flexible as XML, and require a

lot of overhead in initial configuration and, not totally reliable

in terms of compatibility.

So, the idea proposed is to replicate or make a copy

of the SQL user database in an XML database format. But the

retrieval time in a hierarchical database is slow as compared

to relational databases if the number of users of the system is

high. This is because when data is searched in a XML or

hierarchical database, all the nodes in present in the database

from the beginning are searched and this consumes a lot of

time. So, instead of storing the entire user database in a single

database file, a single XML file is created for every user of

the system, and the corresponding password alone is stored in

the XML file. This reduces the search complexity to a huge

extent and also the size of individual file is minimal.

5.3 Preventing SQLIA
So, when a user tries to gain access to a system,

initially, SQL authentication is done, which might evaluate to

true, even in the case of an input by an attacker. But during

the XML authentication, initially the corresponding XML

database file is searched in the system, and if present the

password is checked and only then is the user validated. So,

the attacker can hack into a system only in the case of a

authorized username. So in the case of an attacker

input/injection, even if the SQL authentication evaluates to

true, the XML authentication will fail and hence the request

will not be processed by the database, thus preventing the

direct access to the database. This is the method implemented

in this work.

6. CONCLUSION AND FUTURE WORK
SQL injection is a common technique hackers

employ to attack these web based applications. SQL Injection

attack has also been specified under the top five web security

threats by the Open Web Application Security Project in the

year 2010. These attacks reshape the SQL queries, thereby

altering the behavior of the program for the benefit of the

hacker. In the work carried out, a method is put forward to

detect and prevent SQL injection.The technique is based on

the intuition that injection codes implicitly perform a different

meaning from general queries. An elaborate environment

based on XML for distinguishing between legitimate and

malicious users has been presented. Here, the main idea is to

secure the database from external users/attackers. Also this

method helps us to achieve the same by allowing the web

server to access the database only if both the levels of

authentication have been satisfied. This is the unique

functionality of this proposed method. And also there is no

necessity to modify/update the legacy application code, as

XML can be easily integrated into other languages. There are

other various ways of detecting injection attacks and this is

just one of them.

 Further, the same method can be extended by

adding different levels of authentication within the same

application. Hidden web crawling, Syntactic and Semantic

Analysis for Automated Testing (Sania), Query Tokenization

are the other kinds of methods available.

7. REFERENCES
[1] Mehdi Kiani, Andrew Clark and George , “Evaluation of

Anomaly Based Character Distribution Models in the

Detection of SQL Injection Attacks”.The Third

International Conference on Availability, Reliability and

Security,0-7695-3102-4/08, 2008 IEEE.

[2] V.Shanmughaneethi, C.Emilin Shyni and

Dr.S.Swamynathan, “SBSQLID: Securing Web

Applications with Service Based SQL Injection

Detection” 2009 International Conference on Advances

Client End User

Web Server

SQL

Authentication

XML

Authentication

Request Translation

Data Storage

Database (Tables)

HTTP

Request

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.13, August 2012

32

in Computing, Control, and Telecommunication

Technologies, 978-0-7695-3915-7/09, 2009 IEEE

[3] R. Ezumalai, G. Aghila, “Combinatorial Approach for

Preventing SQL Injection Attacks”, 2009 IEEE

International Advance Computing Conference (IACC

2009) Patiala, India, 6-7 March 2009.

[4] Yuji Kosuga, Kenji Kono, Miyuki Hanaoka, Hiyoshi

Kohoku-ku, Yokohama, Miho Hishiyama, Yu Takahama,

Kaigan Minato-ku, “Sania: Syntactic and Semantic

Analysis for Automated Testing against SQL Injection”

23rd Annual Computer Security Applications

Conference, 2007, 1063-9527/07, 2007 IEEE

[5] Ke Wei, M. Muthuprasanna, Suraj Kothari, “Preventing

SQL Injection Attacks in Stored

Procedures”.Proceedings of the 2006 Australian

Software Engineering Conference (ASWEC’06).[6]

NTAGW ABIRA Lambert, KANG Song Lin, “Use of

Query Tokenization to detect and prevent SQL Injection

Attacks”, 978-1-4244-5540-9/10/2010 IEEE.

[7] Prof (Dr.) Sushila, Madan Supriya Madan, “Shielding

Against SQL Injection Attacks Using ADMIRE Model”,

2009 First International Conference on Computational

Intelligence, Communication Systems and Networks,

978-0-7695-3743-6/09 2009 IEEE

[8] A S Yeole, B B Meshram, “Analysis of Different

Technique for Detection of SQL Injection”, International

Conference and Workshop on Emerging Trends in

Technology (ICWET 2011) – TCET, Mumbai, India,

ICWET’11, February 25–26, 2011, Mumbai,

Maharashtra, India. 2011 ACM.

[9] Kai-Xiang Zhang, Chia-Jun Lin, Shih-Jen Chen, Yanling

Hwang, Hao-Lun Huang, and Fu-Hau Hsu, “TransSQL:

A Translation and Validation-based Solution for SQL-

Injection Attacks”, First International Conference on

Robot, Vision and Signal Processing, IEEE, 2011.

