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ABSTRACT 
Mobile Ad-Hoc Network is an autonomous group of mobile 

users that communicate using wireless links with no support 

from any pre-existing infrastructure network and used as a 

highly reliable end-to-end protocol for transporting 

applications. But in wireless networks suffers from significant 

throughput degradation and delays. It uses Congestion Control 

and Avoidance algorithms which degrades end-to-end 

performance in wireless system. In this paper we have 

analyzed the performance of tcp algorithms with AODV, DSR 

and TORA for throughput. The effect of throughput on the 

TCP variants New Reno, Reno and Tahoe with different node 

scenarios was studied. 
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1. INTRODUCTION 
Mobile Ad Hoc Networks (MANETs) are wireless mobile 

nodes or an autonomous group of mobile users that 

cooperatively form a network without infrastructure. This 

network allows devices to create a network on demand 

without prior coordination or configuration and nodes within a 

MANET are involved in routing and forwarding information 

between neighbors. 

There is a direct communication among neighboring devices 

in MANETs but communication between non-neighboring 

devices requires a routing algorithm. A lot of work has been 

done on routing protocols since they are critical to the 

functioning of ad-hoc networks [1], [2], [3] Within the two 

categories of routing protocols described in literature: 

Proactive and Reactive, it is more suited for highly mobile ad 

hoc networks due to its ability to cope with rapidly changing 

network topologies. Because there is no coordination or 

configuration prior to setup of a MANET, there are several 

challenges and these challenges include routing packets in an 

environment where the topology is changing frequently and 

the task of locating a node and maintain a path to it becomes 

increasingly in the face of node mobility. 

Transport Control Protocol /Internet Protocol (TCP/IP) is a 

connection oriented protocol of the transport layer. It provides 

features like flow control, reliability and congestion control. It 

has been very effective in data transmission delivery and have 

also developed variants to possess the possibility to increase 

performance and multiple packet loss recovery. 

Today, the TCP is extensively tuned to provide high-quality 

performance in the conventional wired network. In fact, the 

TCP is responsible for providing reliable data transport in the 

Internet. However, it cannot offer reliable service while using 

e-mail, internet search and file transmission in a MANET. 

This protocol is a standard networking protocol on the internet 

and is the most widely used transport protocol for data 

services like file transfer, e-mail and WWW browser. It is 

primarily designed for wire-line networks, faces performance 

degradation when applied to the ad hoc scenario. In addition, 

various routing protocols behave differently over the variants 

of TCP. It is essential to understand the performance of 

different MANET routing protocols under TCP variants. In 

this paper, we have done a performance analysis of MANET 

Routing Protocols over different TCP Variants.  

The paper is organised as follows. Section 1 provides 

Introduction. Section 2 describes the Standard TCP 

congestion control algorithms. Section 3 describes the various 

TCP variants. Section 4 presents the simulation setup of our 

work. Finally Section 5 gives the future scope of our work 

concludes the paper. 

2. TCP CONGESTION CONTROL 

ALGORITHMS 
The four algorithms, Slow Start, Congestion Avoidance, Fast 

Retransmit and Fast Recovery [4][5] are described below: 

2.1. Slow Start [9] 
Slow Start, a requirement for TCP software implementations 

is a mechanism used by the sender to control the transmission 

rate, and also known as sender based flow control. This is 

accomplished through the return rate of acknowledgements 

from the receiver. In other words, the rate of 

acknowledgements returned by the receiver determines the 

rate at which the sender can transmit data. 

When a TCP connection first begins, the Slow Start algorithm 

initializes a congestion window to one segment, which is the 

maximum segment size (MSS) initialized by the receiver 

during the connection establishment phase and when 

acknowledgements are returned by the receiver, the 

congestion window increases by one segment for each 

acknowledgement returned. In this way, the sender can 

transmit the minimum of the congestion window and the 

advertised window of the receiver, which is simply called the 

transmission window. 

At some point the congestion window may become too large 

for the network or network conditions may change such that 

packets may be dropped. Packets lost will trigger a timeout at 

the sender and when this happens, the sender goes into 

congestion avoidance mode. 

 

2.2. Congestion Avoidance [9] 
During data transfer phase of a TCP connection the Slow Start 

algorithm is used. There may be a point during Slow Start that 

the network is forced to drop one or more packets due to 
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overload or congestion. When this happens, Congestion 

Avoidance is used to slow the transmission rate and Slow 

Start is used in conjunction with Congestion Avoidance as the 

means to get the data transfer going again so it doesn’t slow 
down and stay slow. 

In the Congestion Avoidance [9] algorithm a retransmission 

timer expiring or the reception of duplicate ACKs can 

implicitly signal the sender that a network congestion 

situation is occurring. The sender immediately sets its 

transmission window to one half of the current window size 

(the minimum of the congestion window and the receiver’s 

advertised window size), but to at least two segments. If 

congestion was indicated by a timeout, the congestion 

window is reset to one segment, which automatically puts the 

sender into Slow Start mode. If congestion was indicated by 

duplicate ACKs, the Fast Retransmit and Fast Recovery 

algorithms are invoked. 

As data is received during Congestion Avoidance, the 

congestion window is increased. However, Slow Start is only 

used up to the halfway point where congestion originally 

occurred. This halfway point was recorded earlier as the new 

transmission window. After this halfway point, the congestion 

window is increased by one segment for all segments in the 

transmission window that are acknowledged. This mechanism 

will force the sender to more slowly grow its transmission 

rate, as it will approach the point where congestion had 

previously been detected. 

2.3. Fast Retransmit and Fast Recovery [9]  
Whenever a packet segment is transmitted, TCP sets a timer 

each time and thus it ensures the reliability. TCP retransmits 

the packet, if it does not obtain any acknowledgement within 

the fixed time-out interval and the reason for not getting any 

ACKs within a specific duration is due to either the packet 

loss or the network congestion. Therefore the TCP sender 

implements the fast retransmit algorithm for identifying and  

also repairing the loss. This fast retransmit phase is applied 

mainly based on the incoming duplicate ACKs and as TCP is 

not able to understand whether a packet loss or an out-of-

order segment causes the generation of the duplicate ACK, it 

waits for more duplicate ACKs to be received. Because in 

case of out-of order segment, one or two duplicate ACKs will 

be received before the reordered segment is processed and on 

the other hand, if there are at least three duplicate ACKs in a 

row, it can be assumed that a segment has been lost. In that 
case, the sender will retransmit the missing data packets for a 

retransmission timer to expire without waiting. 

 

After the missing segment is retransmitted, the TCP will 

initiate the fast recovery mechanism until a non-duplicate 

ACK arrives. The fast recovery algorithm is an improvement 

of congestion control mechanism that ensures higher 

throughput even during moderate congestion and the receiver 

yields the duplicate ACK only when another segment is 

reached to it. Therefore this segment is kept in the receiver's 

buffer and does not consume any network resources. This 

means that data flow is still running in the network, and TCP is 

reluctant to reduce the flow immediately by moving into the slow 
start phase. Thus, in that case in fast recovery algorithm, congestion 

avoidance phase is again invoked instead of slow start phase as soon 

as the fast retransmission mechanism is completed 

3. TCP VARIANTS 

3.1. TCP Tahoe 
Tahoe [5] refers to the TCP congestion control algorithm 

which was suggested by Van Jacobson in his paper. TCP is 

based on a principle of conservation of packets, i.e. if the 

connection is running at the available bandwidth capacity then 

a packet is not injected into the network unless a packet is 

taken out as well. It implements this principle by using the 

acknowledgements to clock outgoing packets because an 

acknowledgement means that a packet was taken off the wire 

by the receiver. It also maintains a congestion window CWD 

to reflect the network capacity. It   suggests that whenever a 

TCP connection starts or re-starts after a packet loss it should 

go through a procedure called slow-start. Reason for this 

procedure is that an initial burst might overwhelm the network 

and the connection might never get started. 

The congestion window size is multiplicatively increased that 

is it becomes double for each transmission until it encounters 

congestion. Slow start suggests that the sender set the 

congestion window to 1 and then for each ACK received it 

increase the CWD by 1. So in the first round trip time (RTT) 

we send 1 packet, in the second we send 2 and in the third we 

send 4. Thus we increase exponentially until we lose a packet 

which is a sign of congestion. When we encounter congestion 

we decreases our sending rate and we reduce congestion 

window to one. And start over again. The important thing is 

that Tahoe detects packet losses by timeouts. Sender is 

notified that congestion has occurred based on the packet loss. 

3.2. TCP Reno 
This RENO retains the basic principle of Tahoe, such as slow 

starts and the coarse grain retransmit timer [8]. However it 

adds some intelligence over it so that lost packets are detected 

earlier and the pipeline is not emptied every time a packet is 

lost. Reno requires that we receive immediate 

acknowledgement whenever a segment is received. The logic 

behind this is that whenever we receive a duplicate 

acknowledgment, then his duplicate acknowledgment could 

have been received if the next segment in sequence expected, 

has been delayed in the network and the segments reached 

there out of order or else that the packet is lost. If we receive a 

number of duplicate acknowledgements then that means that 

sufficient time have passed and even if the segment had taken 

a longer path, it should have gotten to the receiver by now. 

There is a very high probability that it was lost. So Reno 

suggests Fast Re- Transmit. Whenever we receive 3 duplicate 

ACK‘s we take it as a sign that the segment was lost, so we 

re-transmit the segment without waiting for timeout. 

Thus we manage to re-transmit the segment with the pipe 

almost full. Another modification that RENO makes is in that 

after a packet loss, it does not reduce the congestion window 

to 1. Since this empties the pipe. It enters into an algorithm 

which we call Fast-Recovery. 

3.3. TCP New Reno 
New RENO is a slight modification over TCP-RENO. It is 

able to detect multiple packet losses and thus is much more 

efficient that RENO in the event of multiple packet losses. 

Like RENO, New-RENO [7] also enters into fast retransmit 

when it receives multiple duplicate packets, however it differs 

from RENO in that it doesn‘t exit fast recovery until all the 

data which was out standing at the time it entered fast 

recovery is acknowledged. The fast recovery phase proceeds 

as in Reno, however when a fresh ACK is received then there 

are two cases 

 If it ACK‘s all the segments which were outstanding 

when we entered fast recovery then it exits fast 

recovery and sets CWD to threshold value and 

continues congestion avoidance like Tahoe. 
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 If the ACK is a partial ACK then it deduces that the 

next segment in line was lost and it re-transmits that 

segment and sets the number of duplicate ACKS 

received to zero. It exits Fast recovery when all the 

data in the window is acknowledged. 

4. SIMULATION 
We have evaluated the performance of different variants of 

TCP using OPNET simulator. Here AODV, DSR and TORA 

are simulated with different TCP algorithms with different 

scenarios (three, five node scenarios). 

 In three node scenarios the throughput performance between 

AODV and DSR at approximately 25 seconds, AODV has 

better throughput performance over DSR and comparing 

AODV with TORA at the approximation of 95 sec, AODV 

provides better throughput performance, in all the three 

graphs. 

Total time consumed by each protocol for sending  the data 

through New Reno, Reno and Tahoe is relatively smaller for 

AODV followed by DSR and than TORA. That is TORA has 

worst throughput performance in each of the three cases for 

MANET in 3 nodes. The cause behind the TORA less 

performance is considered as the reality of TORA working for 

route recreation, maintenance and erasure, if dropping of the 

route occurs, that  requires more time and have bad impact in 

the data performance. 

In five nodes scenario five nodes working as clients to 

establish connection with a fixed node working as source, and 

to transfer a file of the same size over each connection. 

Comparing all the three graphs with each other we observe 

that as the number of the nodes are increased approximately 

75% (3 to 5), throughput has been decreased for every TCP 

variant and each desired protocols. 

 

 
Fig:1 Throughput comparison in three nodes scenario 

 

 
 

Fig:2 Throughput comparison in five nodes scenario 

 

5. CONCLUSION 
It has been concluded that throughput performance of DSR 

and TORA are minutely affected with increase in the number 

of nodes and due to mobility. In general, MANET could have 

dynamic number of nodes connectivity in mobility, so it’s 

important to realize that when the number of nodes is higher, 

DSR and TORA would be avoided. AODV has better 

throughput performance shown in all three figures as 

compared to DSR and TORA and is the best solution for  

 

MANET. However simulation results for AODV with respect 

to New Reno, Reno and Tahoe depict that throughput is the 

same in all the cases, so our proposed solution in this case will 

be New Reno as it offers multiple packet loss recovery. 

For future work we propose to study the performance of these 

TCP variants for different routing protocols such as OLSR, 

DSDV. We would also like to expand the range of analysis by 

considering other new TCP's like HSTCP, TCP Westwood, 

TCP Veno, TCP Vegas etc.     
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