
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.13, August 2012

19

Comparative Analysis of Different TCP Variants in
Mobile Ad-Hoc Network

Hrituparna Paul
Research Scholar
Dept. of Comp. Sc.
Assam University

Anish Kumar Saha

Asstt. Professor
Dept. of Comp Sc & Engg.

N.I.T Agartala

Partha Pratim Deb
M.Tech CSE

 Netaji Subhash Engg
College

West Bengal, India

Partha Sarathi
Bhattacharjee

Research Scholar
 Dept. of Comp. Sc.

Assam University, Silchar

ABSTRACT
Mobile Ad-Hoc Network is an autonomous group of mobile

users that communicate using wireless links with no support

from any pre-existing infrastructure network and used as a

highly reliable end-to-end protocol for transporting

applications. But in wireless networks suffers from significant

throughput degradation and delays. It uses Congestion Control

and Avoidance algorithms which degrades end-to-end

performance in wireless system. In this paper we have

analyzed the performance of tcp algorithms with AODV, DSR

and TORA for throughput. The effect of throughput on the

TCP variants New Reno, Reno and Tahoe with different node

scenarios was studied.

Keyword
TCP Variants, Throughput.

1. INTRODUCTION
Mobile Ad Hoc Networks (MANETs) are wireless mobile

nodes or an autonomous group of mobile users that

cooperatively form a network without infrastructure. This

network allows devices to create a network on demand

without prior coordination or configuration and nodes within a

MANET are involved in routing and forwarding information

between neighbors.

There is a direct communication among neighboring devices

in MANETs but communication between non-neighboring

devices requires a routing algorithm. A lot of work has been

done on routing protocols since they are critical to the

functioning of ad-hoc networks [1], [2], [3] Within the two

categories of routing protocols described in literature:

Proactive and Reactive, it is more suited for highly mobile ad

hoc networks due to its ability to cope with rapidly changing

network topologies. Because there is no coordination or

configuration prior to setup of a MANET, there are several

challenges and these challenges include routing packets in an

environment where the topology is changing frequently and

the task of locating a node and maintain a path to it becomes

increasingly in the face of node mobility.

Transport Control Protocol /Internet Protocol (TCP/IP) is a

connection oriented protocol of the transport layer. It provides

features like flow control, reliability and congestion control. It

has been very effective in data transmission delivery and have

also developed variants to possess the possibility to increase

performance and multiple packet loss recovery.

Today, the TCP is extensively tuned to provide high-quality

performance in the conventional wired network. In fact, the

TCP is responsible for providing reliable data transport in the

Internet. However, it cannot offer reliable service while using

e-mail, internet search and file transmission in a MANET.

This protocol is a standard networking protocol on the internet

and is the most widely used transport protocol for data

services like file transfer, e-mail and WWW browser. It is

primarily designed for wire-line networks, faces performance

degradation when applied to the ad hoc scenario. In addition,

various routing protocols behave differently over the variants

of TCP. It is essential to understand the performance of

different MANET routing protocols under TCP variants. In

this paper, we have done a performance analysis of MANET

Routing Protocols over different TCP Variants.

The paper is organised as follows. Section 1 provides

Introduction. Section 2 describes the Standard TCP

congestion control algorithms. Section 3 describes the various

TCP variants. Section 4 presents the simulation setup of our

work. Finally Section 5 gives the future scope of our work

concludes the paper.

2. TCP CONGESTION CONTROL

ALGORITHMS
The four algorithms, Slow Start, Congestion Avoidance, Fast

Retransmit and Fast Recovery [4][5] are described below:

2.1. Slow Start [9]
Slow Start, a requirement for TCP software implementations

is a mechanism used by the sender to control the transmission

rate, and also known as sender based flow control. This is

accomplished through the return rate of acknowledgements

from the receiver. In other words, the rate of

acknowledgements returned by the receiver determines the

rate at which the sender can transmit data.

When a TCP connection first begins, the Slow Start algorithm

initializes a congestion window to one segment, which is the

maximum segment size (MSS) initialized by the receiver

during the connection establishment phase and when

acknowledgements are returned by the receiver, the

congestion window increases by one segment for each

acknowledgement returned. In this way, the sender can

transmit the minimum of the congestion window and the

advertised window of the receiver, which is simply called the

transmission window.

At some point the congestion window may become too large

for the network or network conditions may change such that

packets may be dropped. Packets lost will trigger a timeout at

the sender and when this happens, the sender goes into

congestion avoidance mode.

2.2. Congestion Avoidance [9]
During data transfer phase of a TCP connection the Slow Start

algorithm is used. There may be a point during Slow Start that

the network is forced to drop one or more packets due to

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.13, August 2012

20

overload or congestion. When this happens, Congestion

Avoidance is used to slow the transmission rate and Slow

Start is used in conjunction with Congestion Avoidance as the

means to get the data transfer going again so it doesn’t slow
down and stay slow.

In the Congestion Avoidance [9] algorithm a retransmission

timer expiring or the reception of duplicate ACKs can

implicitly signal the sender that a network congestion

situation is occurring. The sender immediately sets its

transmission window to one half of the current window size

(the minimum of the congestion window and the receiver’s

advertised window size), but to at least two segments. If

congestion was indicated by a timeout, the congestion

window is reset to one segment, which automatically puts the

sender into Slow Start mode. If congestion was indicated by

duplicate ACKs, the Fast Retransmit and Fast Recovery

algorithms are invoked.

As data is received during Congestion Avoidance, the

congestion window is increased. However, Slow Start is only

used up to the halfway point where congestion originally

occurred. This halfway point was recorded earlier as the new

transmission window. After this halfway point, the congestion

window is increased by one segment for all segments in the

transmission window that are acknowledged. This mechanism

will force the sender to more slowly grow its transmission

rate, as it will approach the point where congestion had

previously been detected.

2.3. Fast Retransmit and Fast Recovery [9]
Whenever a packet segment is transmitted, TCP sets a timer

each time and thus it ensures the reliability. TCP retransmits

the packet, if it does not obtain any acknowledgement within

the fixed time-out interval and the reason for not getting any

ACKs within a specific duration is due to either the packet

loss or the network congestion. Therefore the TCP sender

implements the fast retransmit algorithm for identifying and

also repairing the loss. This fast retransmit phase is applied

mainly based on the incoming duplicate ACKs and as TCP is

not able to understand whether a packet loss or an out-of-

order segment causes the generation of the duplicate ACK, it

waits for more duplicate ACKs to be received. Because in

case of out-of order segment, one or two duplicate ACKs will

be received before the reordered segment is processed and on

the other hand, if there are at least three duplicate ACKs in a

row, it can be assumed that a segment has been lost. In that
case, the sender will retransmit the missing data packets for a

retransmission timer to expire without waiting.

After the missing segment is retransmitted, the TCP will

initiate the fast recovery mechanism until a non-duplicate

ACK arrives. The fast recovery algorithm is an improvement

of congestion control mechanism that ensures higher

throughput even during moderate congestion and the receiver

yields the duplicate ACK only when another segment is

reached to it. Therefore this segment is kept in the receiver's

buffer and does not consume any network resources. This

means that data flow is still running in the network, and TCP is

reluctant to reduce the flow immediately by moving into the slow
start phase. Thus, in that case in fast recovery algorithm, congestion

avoidance phase is again invoked instead of slow start phase as soon

as the fast retransmission mechanism is completed

3. TCP VARIANTS

3.1. TCP Tahoe
Tahoe [5] refers to the TCP congestion control algorithm

which was suggested by Van Jacobson in his paper. TCP is

based on a principle of conservation of packets, i.e. if the

connection is running at the available bandwidth capacity then

a packet is not injected into the network unless a packet is

taken out as well. It implements this principle by using the

acknowledgements to clock outgoing packets because an

acknowledgement means that a packet was taken off the wire

by the receiver. It also maintains a congestion window CWD

to reflect the network capacity. It suggests that whenever a

TCP connection starts or re-starts after a packet loss it should

go through a procedure called slow-start. Reason for this

procedure is that an initial burst might overwhelm the network

and the connection might never get started.

The congestion window size is multiplicatively increased that

is it becomes double for each transmission until it encounters

congestion. Slow start suggests that the sender set the

congestion window to 1 and then for each ACK received it

increase the CWD by 1. So in the first round trip time (RTT)

we send 1 packet, in the second we send 2 and in the third we

send 4. Thus we increase exponentially until we lose a packet

which is a sign of congestion. When we encounter congestion

we decreases our sending rate and we reduce congestion

window to one. And start over again. The important thing is

that Tahoe detects packet losses by timeouts. Sender is

notified that congestion has occurred based on the packet loss.

3.2. TCP Reno
This RENO retains the basic principle of Tahoe, such as slow

starts and the coarse grain retransmit timer [8]. However it

adds some intelligence over it so that lost packets are detected

earlier and the pipeline is not emptied every time a packet is

lost. Reno requires that we receive immediate

acknowledgement whenever a segment is received. The logic

behind this is that whenever we receive a duplicate

acknowledgment, then his duplicate acknowledgment could

have been received if the next segment in sequence expected,

has been delayed in the network and the segments reached

there out of order or else that the packet is lost. If we receive a

number of duplicate acknowledgements then that means that

sufficient time have passed and even if the segment had taken

a longer path, it should have gotten to the receiver by now.

There is a very high probability that it was lost. So Reno

suggests Fast Re- Transmit. Whenever we receive 3 duplicate

ACK‘s we take it as a sign that the segment was lost, so we

re-transmit the segment without waiting for timeout.

Thus we manage to re-transmit the segment with the pipe

almost full. Another modification that RENO makes is in that

after a packet loss, it does not reduce the congestion window

to 1. Since this empties the pipe. It enters into an algorithm

which we call Fast-Recovery.

3.3. TCP New Reno
New RENO is a slight modification over TCP-RENO. It is

able to detect multiple packet losses and thus is much more

efficient that RENO in the event of multiple packet losses.

Like RENO, New-RENO [7] also enters into fast retransmit

when it receives multiple duplicate packets, however it differs

from RENO in that it doesn‘t exit fast recovery until all the

data which was out standing at the time it entered fast

recovery is acknowledged. The fast recovery phase proceeds

as in Reno, however when a fresh ACK is received then there

are two cases

 If it ACK‘s all the segments which were outstanding

when we entered fast recovery then it exits fast

recovery and sets CWD to threshold value and

continues congestion avoidance like Tahoe.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.13, August 2012

21

 If the ACK is a partial ACK then it deduces that the

next segment in line was lost and it re-transmits that

segment and sets the number of duplicate ACKS

received to zero. It exits Fast recovery when all the

data in the window is acknowledged.

4. SIMULATION
We have evaluated the performance of different variants of

TCP using OPNET simulator. Here AODV, DSR and TORA

are simulated with different TCP algorithms with different

scenarios (three, five node scenarios).

 In three node scenarios the throughput performance between

AODV and DSR at approximately 25 seconds, AODV has

better throughput performance over DSR and comparing

AODV with TORA at the approximation of 95 sec, AODV

provides better throughput performance, in all the three

graphs.

Total time consumed by each protocol for sending the data

through New Reno, Reno and Tahoe is relatively smaller for

AODV followed by DSR and than TORA. That is TORA has

worst throughput performance in each of the three cases for

MANET in 3 nodes. The cause behind the TORA less

performance is considered as the reality of TORA working for

route recreation, maintenance and erasure, if dropping of the

route occurs, that requires more time and have bad impact in

the data performance.

In five nodes scenario five nodes working as clients to

establish connection with a fixed node working as source, and

to transfer a file of the same size over each connection.

Comparing all the three graphs with each other we observe

that as the number of the nodes are increased approximately

75% (3 to 5), throughput has been decreased for every TCP

variant and each desired protocols.

Fig:1 Throughput comparison in three nodes scenario

Fig:2 Throughput comparison in five nodes scenario

5. CONCLUSION
It has been concluded that throughput performance of DSR

and TORA are minutely affected with increase in the number

of nodes and due to mobility. In general, MANET could have

dynamic number of nodes connectivity in mobility, so it’s

important to realize that when the number of nodes is higher,

DSR and TORA would be avoided. AODV has better

throughput performance shown in all three figures as

compared to DSR and TORA and is the best solution for

MANET. However simulation results for AODV with respect

to New Reno, Reno and Tahoe depict that throughput is the

same in all the cases, so our proposed solution in this case will

be New Reno as it offers multiple packet loss recovery.

For future work we propose to study the performance of these

TCP variants for different routing protocols such as OLSR,

DSDV. We would also like to expand the range of analysis by

considering other new TCP's like HSTCP, TCP Westwood,

TCP Veno, TCP Vegas etc.

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.13, August 2012

22

6. REFERENCES
[1] C.E. Perkins and E.M. Royer, “Ad-hoc On-Demand

distance vector routing”, Proceedings of the 2nd IEEE

Workshop on Mobile Computing Systems and

Applications, New Orleans, LA, pp. 90-100, February

1999.

[2] D. Johnson, D. Maltz and Y. Hu., “The dynamic source

routing protocol for mobile ad hoc networks”, IETF

MANET Working Group, Internet Draft, 2003.

[3] M.K.J. Kumar and R.S. Rajesh, “Performance analysis of

MANET routing protocols in different mobility models”,

IJCSNS International Journal of Computer Science and

Network Security, vol. 9 No.2, pp 22-29, Feb 2009

[4] K.Kathiravan, Dr. S. Thamarai Selvi, A.Selvam “Tcp

Performance Analysis For Mobile Ad Hoc Network

Using Ondemand Routing Protocols.

[5] JACOBSON, V. Congestion avoidance and control. In

Proceedings of SIGCOMM ’88 (Stanford, CA, Aug.

1988), ACM.

[6] Laxmi Subedi, Mohamadreza Najiminaini, and Ljiljana

Trajkovi Performance Evaluation of TCP Tahoe, Reno,

Reno with SACK, and NewReno using OPNET Modeler.

[7] S.Floyd, T.Henderson “The New- Reno Modification to

TCP’s Fast Recovery Algorithm” RFC 2582, Apr 1999.

[8] O. Ait-Hellal, E.Altman “Analysis of TCP Reno and TCP

Vegas”.

[9] Suhas Waghmare et. al “Comparative Analysis of

different TCP variants in a wireless environment”, 978-

1-4244-8679-3/11 ©2011 IEEE

