
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.9, August 2012

25

Dynamically Avoiding the Substantial Throughput
Penalty of FRR

Ramesh K

Dept. Of P.G. Studies in Computer Science
Karnatak University Dharwad,

India

Zameer Ahmed
Dept. Of P.G. Studies in Computer Science

Karnatak University Dharwad,
India

ABSTRACT

Disclosed is a system for dynamically suppressing Fast

Retransmission and Recovery (FRR) on high-latency

Transport Control Protocol (TCP) connections with low

ongoing packet loss. This system measures the relative rate of

recent packet loss and adjusts the suppression of FRR based

on the measured rate. Provided that the rate of actual packet

loss is low, high-latency TCP connections can benefit

significantly from suppressing FRR.

Keywords

Latency, Bandwidth, Throughput, Round-Trip Latency, TCP,

FRR, SACK

1. INTRODUCTION
The TCP protocol incorporates flow control mechanisms to

attempt the best utilization of network bandwidth. The most

common mechanism in use is documented by RFC 2581 and

is sometimes called TCP Reno. Most TCP implementations

severely penalize a connection's throughput in case of packet

loss, and regain that throughput as stable packet transmission

occurs. This represents a particular problem for high-latency,

high-bandwidth networks (so-called "long fat pipes"), which

are increasingly common. Because of the high bandwidth of

such networks, a severe cut in connection throughput

represents a substantial loss of throughput, even for

reasonably small rates of packet loss. And because of the

high latency in such networks, it can take quite some time for

the connection to restore its bandwidth, since assurance of

successful packet transmission is delayed by the network

latency.

1. 1 Network Throughput
Network throughput is the average rate of successful message

delivery over a communication channel. This data may be

delivered over a physical or logical link, or pass through a

certain network node. The throughput is usually measured in

bits per second (bit/s or bps), and sometimes in data packets

per second or data packets per time slot. The system

throughput or aggregate throughput is the sum of the data

rates that are delivered to all terminals in a network

1.2 Bandwidth
Bandwidth is technically defined as the amount of information

that can flow through a network at a given period of time.

This is, however, theoretical- the actual bandwidth available

to a certain device on the network is actually referred to as

throughput.

1.3 Round-trip latency
To solve the universal clock problem, some test equipment

has the ability to sync up with a GPS clock and place a

timestamp inside the packet that is sent to measure latency.

The receiving device is a similar piece of equipment that can

also sync up with a GPS clock. This device then compares the

time that the packet is received with the timestamp in the

received packet to obtain an end-to-end latency measurement

for that packet. This option is very expensive. Fortunately,

there is a cost efficient method that provides acceptable

accuracy. If the sender to the receiver path is the same as the

path from the receiver to the sender, the round-trip latency

(latency from the sender to the receiver and back) can be

measured and assumed that the end-to-end latency is half of

this result. Measuring round-trip latency is easy and details of

this will be covered later in this document. Measuring round-

trip latency means that all time comparisons are made from

the same device, which removes the need for devices to sync

to a common clock. It also solves the problem of keeping up

with the send and receives times for each packet since these

times are all associated with one packet in one device.

2. TCP BEHAVIOUR

2.1 Fast Retransmission and Recovery
Fast Retransmit is an enhancement to TCP which reduces the

time a sender waits before retransmitting a lost segment. A

TCP sender uses a timer to recognize lost segments. If an

acknowledgement is not received for a particular segment

within a specified time (a function of the estimated Round-trip

delay time), the sender will assume the segment was lost in

the network, and will retransmit the segment. Duplicate

acknowledgement is the basis for fast retransmit mechanism

which works as follows: after receiving a packet (i.e.,

sequence number 1), the receiver sends an acknowledgement

adding 1 with the sequence number (i.e., sequence number 2)

which means that the receiver receives the packet number 1

and it expects packet number 2 from the sender. Let’s assume

that three subsequent packets have been lost. In the meantime

the receiver receives the packet number 5 and 6. After

receiving packet number 5, the receiver sends an

acknowledgement with the sequence number 2 and 6. When

the receiver receives packet number 6, it sends

acknowledgement with the sequence number 2 and 7. In this

way, the sender receives more than one acknowledgement

with the same sequence number 2 which is called duplicate

acknowledgement. The fast retransmit enhancement works as

follows: if a TCP sender receives a specified number of

acknowledgements which is usually set to three duplicate

acknowledgements with the same acknowledge number (that

is, a total of four acknowledgements with the same

acknowledgement number), the sender can be reasonably

confident that the segment with the next higher sequence

number was dropped, and will not arrive out of order. The

sender will then retransmit the packet that was presumed

dropped before waiting for its timeout.

2.2 TCP Selective Acknowledgment

Options
Multiple packet losses from a window of data can have a

catastrophic effect on TCP throughput. TCP uses a cumulative

acknowledgment scheme in which received segments that are

not at the left edge of the receive window are not

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.9, August 2012

26

acknowledged. This forces the sender to either wait a

roundtrip time to find out about each lost packet, or to

unnecessarily retransmit segments which have been correctly

received. With the cumulative acknowledgment scheme,

multiple dropped segments generally cause TCP to lose its

ACK-based clock, reducing overall throughput. Selective

Acknowledgment (SACK) is a strategy which corrects this

behavior in the face of multiple dropped segments. With

selective acknowledgments, the data receiver can inform the

sender about all segments that have arrived successfully, so

the sender need retransmit only the segments that have

actually been lost. The selective acknowledgment extension

uses two TCP options. The first is an enabling option,

"SACK-permitted", which may be sent in a SYN segment to

indicate that the SACK option can be used once the

connection is established. The other is the SACK option itself,

which may be sent over an established connection once

permission has been given by SACK-permitted. The SACK

option is to be included in a segment sent from a TCP that is

receiving data to the TCP that is sending that data; we will

refer to these TCPs as the data receiver and the data sender,

respectively. We will consider a particular simplex data flow;

any data flowing in the reverse direction over the same

connection can be treated independently.

3. TO DISABLE TCP/IP TIMESTAMPS
The Problem: TCP timestamps are enabled on the remote

host. This could allow a remote attacker to estimate the

amount of time since the remote host was last booted.
3.1 Resolution:
TCP timestamps are generally only useful for testing, and

support for them should be disabled if not needed.

3.2 To disable TCP timestamps on Linux
Add the following line to the /etc/sysctl.conf

file:net.ipv4.tcp_timestamps = 0.

3.3 To disable TCP timestamps on

Windows
Set the following registry value:

Key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Servi

ces\Tcpip\ParametersValue: Tcp1323Opts. Data: 0 or 1.

3.4 To disable TCP timestamps on Cisco
Use the following command:

no ip tcp timestamp.

4. PREVIOUS WORK
There are numerous existing schemes to correct this problem

and ensure that TCP connection throughput more closely

parallels the actual capacity of the network. Some of these

schemes are as follows:

1. Ravot proposes that the rate of throughput growth

after packet loss be increased by a greater factor than that

allowed by RFC 2581.

2. Mascolo et. al. propose that statistical measures of

packet throughput be used to estimate actual network
capacity, and determine a reasonable TCP connection

throughput; this approach is known as TCP Westwood.

Experimental RFC 2861 proposes adjustments to RFC 2581

that ensure that (1) TCP flow control does not allow excessive

packet bursts after periods of inactivity; and (2) TCP

throughput is penalized less severely in case of packet loss.

Experimental RFC 3649 proposes similar improvements to

the penalization of connections upon packet loss. Bandwidth

reservation may be employed using Resource Reservation

Protocol (RSVP) or underlying network services such as

Asynchronous Transfer Mode (ATM) to assure a specific TCP

connection throughput that can be attained without the need to

estimate network capacity. BIC TCP (Binary Increase

Congestion control for TCP) is used by some platforms (e.g.,

Linux kernels 2.6.8 and above) to improve the rate of

throughput increase after packet loss and throughput

penalization. Binary search is used to more rapidly approach

and discover the optimal throughput rate the network can

tolerate. FAST TCP attempts to statistically measure queuing

capacity in the network and use this to estimate the optimal

throughput for TCP connections. While RFC 2581 is

optimized for the case where individual packet loss occurs,

RFC 2018 documents a "selective acknowledgement"

(SACK) mechanism whereby TCP can more efficiently

recover from multiple packet loss.
4.1 Problem: Above Said
Many of these solutions are independent and can be employed

in combination with one another. Many of these solutions

seek to reduce the impact of penalizing throughput on packet

loss. By contrast, the system proposed herein attempts to

suppress that penalty altogether in cases where packet loss

may not be occurring. Once sufficient packet loss occurs,

other methods such as those cited above may be used to

reduce the impact of throughput penalization. For pages other

than the first page, start at the top of the page, and continue in

double-column format. The two columns on the last page

should be as close to equal length as possible.

5. PREVIOUS WORK
The system and method proposed herein involves suppressing

the Fast Retransmission and Recovery (FRR) feature of RFC

2581 on high-latency TCP connections until packet loss

occurs and retransmission becomes necessary. This technique

relies on the fact that high-latency high-throughput

connections are particularly susceptible to packet reordering,

which can give the appearance of packet loss but which

should not cause a connection's throughput to be penalized.

However, when genuine packet loss begins to occur on such

connections, FRR should be enabled to recover from the loss

efficiently. This system dynamically measures the rate at

which real packet loss is occurring on a high latency TCP

connection, compared to the rate at which packet reordering is

occurring on that connection. At any given time, when the

recent rate of apparent packet loss due to packet reordering

exceeds the recent rate of genuine packet loss, this system will

suppress FRR for a high-latency connection, recognizing that

the apparent packet loss is likely not real, and the connection

should not be subjected to an FRR throughput penalty.

5.1 Working Mechanism
This system uses a side effect of TCP timestamps to discover

the case where packet reordering is causing only apparent

packet loss. The system maintains a counter for each TCP

connection, dynRetrans that is initialized to zero when the

connection is established. This counter is incremented (but

not greater than a ceiling value, such as 10) whenever TCP

retransmission occurs (either due to retransmission timeout or

due to FRR), representing the fact that packet loss occurred.

If TCP timestamps are enabled, this counter is decremented

by two (but not less than zero) whenever: A packet is

retransmitted, an acknowledgment is received for that packet.

The TCP timestamp echoed in the acknowledgment is less

than the TCP timestamp for the retransmitted packet. This

logic identifies cases where the acknowledgment pertains to

the original packet and not the retransmitted packet. Thus, the

dynRetrans counter is decremented whenever retransmission

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.9, August 2012

27

occurred but it proved unnecessary because the original

packet was not lost. (Since the counter is incremented

whenever retransmission occurs, we decrement by two so that

any unnecessary retransmission results in a net decrement of

one). The dynRetrans counter is thus a dynamic measure of

whether ongoing packet loss is occurring. As packet loss

occurs and real retransmissions take place, it will grow. As

retransmissions prove unnecessary (the original packet

actually arrived at the destination), it will shrink. The TCP

connection then uses this counter to identify whether to

suppress FRR for a high-latency connection. If the counter is

less than or equal to a certain value (e.g., 3), the connection is

considered to have low real packet loss, and FRR is

suppressed for this connection until the rate of packet loss

measured by dynRetrans exceeds that value. The connection

thus dynamically avoids the substantial throughput penalty of

FRR for any time period during which packet loss is

insignificant.

6. MECHANISM

6.1 Algorithm

Step 1 : Set dynRetrans = 0

Step 2 : If Timestamp is invalid then

 For each Retransmission Occurred

 dynRetrans = dynRetrans + 1

 Until dynRetrans = 10

 End for

 Else

 For each retransmission occurred and ack is received

 If timestamp(ack) < timestamp (

 retransmitted packet) then

 dynRetrans = dynRetrans – 2

 End if

 Until dynRetrans > = 3

 End For

 End if

Step 3 : If dynRetrans < = 3

 Stop Retransmission

 Else

 GoTo Step 2

6.2 Implementation

main()

{

int dynRetrans=0,timestamp=0,retrans,ack;

int retranspack;

 if(timestamp=0)

 {

 if(retrans=1)

 {

 while(dynRetrans<=10)

 dynRetrans+=dynRetrans;

 }

}

else

{
if(retrans=1 && ack=1)
 {

 if(ack_timestamp<ack_retrans_pack)

 {

 while(dynRetrans<=3)

{

 dynRetrans=dynRetrans-2;

 }

 }

 }

}

if(dynRetrans<=3)

 retrans=0;

}

6.3 Subroutine to calculate Throughput

int throughput_with_timestamp()

{

 int time = 10;

 while (time< = 100)

 {

 throughput_timestamp =

tcp_window_size/latency/1000000 * time;

 time = time + 10;

 }

 return(throughput);

}

int throughput_notmsstmp()

{

 int time = 10;

 while(time<=100)

 {

throughput_notmsstmp =

tcp_window_size/latency/1000000*time*2;

 time=time+10;

 }

 return(throughput);

}

7. RESULTS AND COMPARISONS

Table 1. Throughput with and without timestamp

Time

(mSec)

Throughput with

timestamp (Mbps)

Throughput without

timestamp (Mbps)

10
87.381 174.76

20
174.763 349353

30
262.144 524.29

40
349.525 699.05

50
436.907 873.81

60
524.288 1048.58

70
611.669 1223.34

80
699.051 1398.10

90
786.432 1572.86

100
873.813 1747.63

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.9, August 2012

28

Fig 1: Throughput with timestamp

Fig 2: Throughput without timestamp

8. CONCLUSION
Dynamical suppression of FRR for TCP implementations will

avoid the severe penalize of connection's throughput in case

of packet loss, this mechanism will regain the throughput as

stable packet transmission occurs. This solves a particular

problem for high-latency, high-bandwidth networks, which

are increasingly common. Because of the high bandwidth of

such networks, a severe cut in connection throughput

represents a substantial loss of throughput, even for

reasonably smaller rate of packet loss. And because of the

high latency in such networks, it can take quite some time for

the connection to restore its bandwidth, since assurance of

successful packet transmission is delayed by the network

latency. Study of TCP behavior is still an active area of

research and requires further investigation since not much of

the work is done beside the ones described in this article.

9. REFERENCES
[1] "Results on High Throughput and Quos Between the US

and CERN." HENP Special Interest Group. Retrieved

September 4, 2007, from

http://henp.internet2.edu/Ravot.ppt.

[2] Mascolo, Saverio et. al. "TCP WESTWOOD Home

Page." UCLA Computer Science Department. Retrieved

September 4, 2007, from

http://www.cs.ucla.edu/NRL/hpi/tcpw/.

[3] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The

Protocols. Addison-Wesley, 1994

[4] Van Jacobson. Congestion Avoidance and Control. In

proceedings of ACM SIGCOMM, 1988.

[5] V. Jacobson, Modified TCP Congestion Avoidance

Algorithm, end2end internet mailing list.

[6] W.Stevens, “TCP Slow Start, Congestion Avoidance

Algorithm, Fast Retransmit and Fast Recovery

Algorithms”, RFC 2001. Jan 1997.

[7] M. Allman, V. Paxson, W. Stevens, “ TCP Congestion

Control”, RFC 2581, Apr.1999

[8] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On

the Self-Similar Nature of Ethernet Traffic (Extended

Version), IEEE/ACM Transactions on Networking, Vol

2, Feb. 1994

[9] B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson,

G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan,

S. Shenkar, J. Wroc lawski, L. Zhang,

“Recommendations on Queue Management and

Congestion Avoidance in the internet”, RFC 2309, April.

1998.

[10] Sally Floyd and Van Jacobson, Random Early Detection

Gateways for congestion Avoidance”, IEEE/ACM

Transaction on Networking, Aug. 1993.

[11] Eman Hashem. Analysis of random gateway congestion

control. Master’s thesis, Massauchusetts Institute of

Technology, 1989. MTL/LCS/TR-465.

[12] Scott Shankar, Lixia Zhang and David Clark. Some

observations on the dynamics of a congestion control

algorithm. In proceedings of a ACM SIGCOMM, 1990.

[13] Sally Floyd and Van Jacobson. On traffic phase effects in

packet-switched gateways. Internetworking: Research

and Experience, 3(3), September 1992.

[14] Allison Mankin. Random drop congestion control. In

proceedings of ACM SIGCOMM, 1990.

[15] John Nagle, RFC 896 : Congestion control in IP/TCP

internetworks. Technical Report, internet Assigned

numbers Authority, Jon Postel, USC/ISI, 4676

Admoralty Way, Marina Del Rey, DA 90292, 1984.

http://info.internet.isi.edu/in-notes/rfc/files/rfc896.txt.

[16] Raj Jain. A timesout-based congestion control scheme

for window flow-controlled networks. IEEE Journal on

Selected Areas in Communications, SAC-4(7):1162-

1167, October 1986.

[17] Phil Karn and Craig Partridge. Improving round-trip time

estimates in reliable transport protocols. In proceedings

of ACM SIGCOMM, 1993.

[18] Mark Handley. An examination of mbone performance.

Technical report, University of southern California

Information sciences Institute, 1997. ISI/RR-97-450.

