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ABSTRACT 

Disclosed is a system for dynamically suppressing Fast 

Retransmission and Recovery (FRR) on high-latency 

Transport Control Protocol (TCP) connections with low 

ongoing packet loss.  This system measures the relative rate of 

recent packet loss and adjusts the suppression of FRR based 

on the measured rate.  Provided that the rate of actual packet 

loss is low, high-latency TCP connections can benefit 

significantly from suppressing FRR. 
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1. INTRODUCTION 
The TCP protocol incorporates flow control mechanisms to 

attempt the best utilization of network bandwidth.  The most 

common mechanism in use is documented by RFC 2581 and 

is sometimes called TCP Reno.  Most TCP implementations 

severely penalize a connection's throughput in case of packet 

loss, and regain that throughput as stable packet transmission 

occurs.  This represents a particular problem for high-latency, 

high-bandwidth networks (so-called "long fat pipes"), which 

are increasingly common.  Because of the high bandwidth of 

such networks, a severe cut in connection throughput 

represents a substantial loss of throughput, even for 

reasonably small rates of packet loss.  And because of the 

high latency in such networks, it can take quite some time for 

the connection to restore its bandwidth, since assurance of 

successful packet transmission is delayed by the network 

latency.  

1. 1 Network Throughput 
Network throughput is the average rate of successful message 

delivery over a communication channel. This data may be 

delivered over a physical or logical link, or pass through a 

certain network node. The throughput is usually measured in 

bits per second (bit/s or bps), and sometimes in data packets 

per second or data packets per time slot. The system 

throughput or aggregate throughput is the sum of the data 

rates that are delivered to all terminals in a network 

1.2  Bandwidth 
Bandwidth is technically defined as the amount of information 

that can flow through a network at a given period of time. 

This is, however, theoretical- the actual bandwidth available 

to a certain device on the network is actually referred to as 

throughput. 

1.3 Round-trip latency 
To solve the universal clock problem, some test equipment 

has the ability to sync up with a GPS clock and place a 

timestamp inside the packet that is sent to measure latency. 

The receiving device is a similar piece of equipment that can 

also sync up with a GPS clock. This device then compares the 

time that the packet is received with the timestamp in the 

received packet to obtain an end-to-end latency measurement 

for that packet. This option is very expensive. Fortunately, 

there is a cost efficient method that provides acceptable 

accuracy. If the sender to the receiver path is the same as the 

path from the receiver to the sender, the round-trip latency 

(latency from the sender to the receiver and back) can be 

measured and assumed that the end-to-end latency is half of 

this result. Measuring round-trip latency is easy and details of 

this will be covered later in this document. Measuring round-

trip latency means that all time comparisons are made from 

the same device, which removes the need for devices to sync 

to a common clock. It also solves the problem of keeping up 

with the send and receives times for each packet since these 

times are all associated with one packet in one device. 
 

2. TCP BEHAVIOUR 

2.1 Fast Retransmission and Recovery  
Fast Retransmit is an enhancement to TCP which reduces the 

time a sender waits before retransmitting a lost segment. A 

TCP sender uses a timer to recognize lost segments. If an 

acknowledgement is not received for a particular segment 

within a specified time (a function of the estimated Round-trip 

delay time), the sender will assume the segment was lost in 

the network, and will retransmit the segment. Duplicate 

acknowledgement is the basis for fast retransmit mechanism 

which works as follows: after receiving a packet (i.e., 

sequence number 1), the receiver sends an acknowledgement 

adding 1 with the sequence number (i.e., sequence number 2) 

which means that the receiver receives the packet number 1 

and it expects packet number 2 from the sender. Let’s assume 

that three subsequent packets have been lost. In the meantime 

the receiver receives the packet number 5 and 6. After 

receiving packet number 5, the receiver sends an 

acknowledgement with the sequence number 2 and 6. When 

the receiver receives packet number 6, it sends 

acknowledgement with the sequence number 2 and 7. In this 

way, the sender receives more than one acknowledgement 

with the same sequence number 2 which is called duplicate 

acknowledgement. The fast retransmit enhancement works as 

follows: if a TCP sender receives a specified number of 

acknowledgements which is usually set to three duplicate 

acknowledgements with the same acknowledge number (that 

is, a total of four acknowledgements with the same 

acknowledgement number), the sender can be reasonably 

confident that the segment with the next higher sequence 

number was dropped, and will not arrive out of order. The 

sender will then retransmit the packet that was presumed 

dropped before waiting for its timeout. 

2.2 TCP Selective Acknowledgment 

Options 
Multiple packet losses from a window of data can have a 

catastrophic effect on TCP throughput. TCP uses a cumulative 

acknowledgment scheme in which received segments that are 

not at the left edge of the receive window are not 
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acknowledged. This forces the sender to either wait a 

roundtrip time to find out about each lost packet, or to 

unnecessarily retransmit segments which have been correctly 

received. With the cumulative acknowledgment scheme, 

multiple dropped segments generally cause TCP to lose its 

ACK-based clock, reducing overall throughput. Selective 

Acknowledgment (SACK) is a strategy which corrects this 

behavior in the face of multiple dropped segments. With 

selective acknowledgments, the data receiver can inform the 

sender about all segments that have arrived successfully, so 

the sender need retransmit only the segments that have 

actually been lost. The selective acknowledgment extension 

uses two TCP options. The first is an enabling option, 

"SACK-permitted", which may be sent in a SYN segment to 

indicate that the SACK option can be used once the 

connection is established. The other is the SACK option itself, 

which may be sent over an established connection once 

permission has been given by SACK-permitted. The SACK 

option is to be included in a segment sent from a TCP that is 

receiving data to the TCP that is sending that data; we will 

refer to these TCPs as the data receiver and the data sender, 

respectively. We will consider a particular simplex data flow; 

any data flowing in the reverse direction over the same 

connection can be treated independently. 

 

3. TO DISABLE TCP/IP TIMESTAMPS 
The Problem: TCP timestamps are enabled on the remote 

host. This could allow a remote attacker to estimate the 

amount of time since the remote host was last booted. 
3.1 Resolution: 
TCP timestamps are generally only useful for testing, and 

support for them should be disabled if not needed. 

3.2 To disable TCP timestamps on Linux  
Add the following line to the /etc/sysctl.conf 

file:net.ipv4.tcp_timestamps = 0.  

3.3 To disable TCP timestamps on 

Windows 
Set the following registry value:  

Key: 

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Servi

ces\Tcpip\ParametersValue: Tcp1323Opts. Data: 0 or 1. 

3.4 To disable TCP timestamps on Cisco 
Use the following command:  

no ip tcp timestamp. 

 

4. PREVIOUS WORK 
There are numerous existing schemes to correct this problem 

and ensure that TCP connection throughput more closely 

parallels the actual capacity of the network.  Some of these 

schemes are as follows: 

1. Ravot proposes that the rate of throughput growth 

after packet loss be increased by a greater factor than that 

allowed by RFC 2581. 

2. Mascolo et. al. propose that statistical measures of 

packet throughput be used to estimate actual network 
capacity, and determine a reasonable TCP connection 

throughput; this approach is known as TCP Westwood. 

Experimental RFC 2861 proposes adjustments to RFC 2581 

that ensure that (1) TCP flow control does not allow excessive 

packet bursts after periods of inactivity; and (2) TCP 

throughput is penalized less severely in case of packet loss.  

Experimental RFC 3649 proposes similar improvements to 

the penalization of connections upon packet loss. Bandwidth 

reservation may be employed using Resource Reservation 

Protocol (RSVP) or underlying network services such as 

Asynchronous Transfer Mode (ATM) to assure a specific TCP 

connection throughput that can be attained without the need to 

estimate network capacity. BIC TCP (Binary Increase 

Congestion control for TCP) is used by some platforms (e.g., 

Linux kernels 2.6.8 and above) to improve the rate of 

throughput increase after packet loss and throughput 

penalization.  Binary search is used to more rapidly approach 

and discover the optimal throughput rate the network can 

tolerate. FAST TCP attempts to statistically measure queuing 

capacity in the network and use this to estimate the optimal 

throughput for TCP connections. While RFC 2581 is 

optimized for the case where individual packet loss occurs, 

RFC 2018 documents a "selective acknowledgement" 

(SACK) mechanism whereby TCP can more efficiently 

recover from multiple packet loss.  
4.1 Problem: Above Said 
Many of these solutions are independent and can be employed 

in combination with one another.  Many of these solutions 

seek to reduce the impact of penalizing throughput on packet 

loss.  By contrast, the system proposed herein attempts to 

suppress that penalty altogether in cases where packet loss 

may not be occurring.  Once sufficient packet loss occurs, 

other methods such as those cited above may be used to 

reduce the impact of throughput penalization. For pages other 

than the first page, start at the top of the page, and continue in 

double-column format.  The two columns on the last page 

should be as close to equal length as possible. 

 

5. PREVIOUS WORK 
The system and method proposed herein involves suppressing 

the Fast Retransmission and Recovery (FRR) feature of RFC 

2581 on high-latency TCP connections until packet loss 

occurs and retransmission becomes necessary.  This technique 

relies on the fact that high-latency high-throughput 

connections are particularly susceptible to packet reordering, 

which can give the appearance of packet loss but which 

should not cause a connection's throughput to be penalized.  

However, when genuine packet loss begins to occur on such 

connections, FRR should be enabled to recover from the loss 

efficiently. This system dynamically measures the rate at 

which real packet loss is occurring on a high latency TCP 

connection, compared to the rate at which packet reordering is 

occurring on that connection.  At any given time, when the 

recent rate of apparent packet loss due to packet reordering 

exceeds the recent rate of genuine packet loss, this system will 

suppress FRR for a high-latency connection, recognizing that 

the apparent packet loss is likely not real, and the connection 

should not be subjected to an FRR throughput penalty. 

5.1 Working Mechanism 
This system uses a side effect of TCP timestamps to discover 

the case where packet reordering is causing only apparent 

packet loss.  The system maintains a counter for each TCP 

connection, dynRetrans that is initialized to zero when the 

connection is established.  This counter is incremented (but 

not greater than a ceiling value, such as 10) whenever TCP 

retransmission occurs (either due to retransmission timeout or 

due to FRR), representing the fact that packet loss occurred.  

If TCP timestamps are enabled, this counter is decremented 

by two (but not less than zero) whenever: A packet is 

retransmitted, an acknowledgment is received for that packet. 

The TCP timestamp echoed in the acknowledgment is less 

than the TCP timestamp for the retransmitted packet. This 

logic identifies cases where the acknowledgment pertains to 

the original packet and not the retransmitted packet.  Thus, the 

dynRetrans counter is decremented whenever retransmission 
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occurred but it proved unnecessary because the original 

packet was not lost.  (Since the counter is incremented 

whenever retransmission occurs, we decrement by two so that 

any unnecessary retransmission results in a net decrement of 

one). The dynRetrans counter is thus a dynamic measure of 

whether ongoing packet loss is occurring. As packet loss 

occurs and real retransmissions take place, it will grow.  As 

retransmissions prove unnecessary (the original packet 

actually arrived at the destination), it will shrink. The TCP 

connection then uses this counter to identify whether to 

suppress FRR for a high-latency connection.  If the counter is 

less than or equal to a certain value (e.g., 3), the connection is 

considered to have low real packet loss, and FRR is 

suppressed for this connection until the rate of packet loss 

measured by dynRetrans exceeds that value.  The connection 

thus dynamically avoids the substantial throughput penalty of 

FRR for any time period during which packet loss is 

insignificant. 

 

6. MECHANISM 

6.1 Algorithm 
--------------------------------------------------------------------------- 

Step 1 : Set dynRetrans = 0 

Step 2 :  If Timestamp is invalid then 

              For each Retransmission Occurred 

              dynRetrans = dynRetrans + 1 

              Until dynRetrans = 10 

              End for 

              Else 

               For each retransmission occurred and ack is received 

               If timestamp(ack) < timestamp ( 

               retransmitted packet) then 

               dynRetrans = dynRetrans – 2 

               End if 

               Until dynRetrans > = 3 

               End For 

               End if 

Step 3 :  If dynRetrans < = 3 

               Stop Retransmission 

               Else 

               GoTo Step 2 

--------------------------------------------------------------------------- 

6.2 Implementation 
------------------------------------------------------------------- 

main() 

{ 

int dynRetrans=0,timestamp=0,retrans,ack; 

int retranspack;      

     if(timestamp=0) 

      { 

          if(retrans=1) 

          { 

               while(dynRetrans<=10) 

               dynRetrans+=dynRetrans; 

           } 

} 

else 

{  
if(retrans=1 && ack=1) 
     { 

          if(ack_timestamp<ack_retrans_pack) 

           { 

               while(dynRetrans<=3) 

                 

 

 

{ 

                   

 dynRetrans=dynRetrans-2; 

                 } 

            } 

      } 

} 

if(dynRetrans<=3) 

    retrans=0; 

} 

------------------------------------------------------------------- 

6.3 Subroutine to calculate Throughput 
------------------------------------------------------------------- 

int throughput_with_timestamp( ) 

{ 

     int time = 10; 

     while (time< = 100) 

     { 

          throughput_timestamp = 

tcp_window_size/latency/1000000 * time; 

  time = time + 10; 

     } 

     return(throughput); 

} 

int throughput_notmsstmp( ) 

{ 

      int time = 10; 

      while(time<=100) 

     { 

throughput_notmsstmp = 

tcp_window_size/latency/1000000*time*2; 

  time=time+10; 

     } 

     return(throughput); 

} 

------------------------------------------------------------------- 

7. RESULTS AND COMPARISONS 
 

Table 1. Throughput with and without timestamp 

Time 

(mSec) 

Throughput with 

timestamp (Mbps) 

Throughput without 

timestamp (Mbps) 

10 
87.381 174.76 

20 
174.763 349353 

30 
262.144 524.29 

40 
349.525 699.05 

50 
436.907 873.81 

60 
524.288 1048.58 

70 
611.669 1223.34 

80 
699.051 1398.10 

90 
786.432 1572.86 

100 
873.813 1747.63 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 51– No.9, August 2012 

28 

 
Fig 1: Throughput with timestamp 

 

 

 
Fig 2: Throughput without timestamp 

 

8. CONCLUSION 
Dynamical suppression of FRR for TCP implementations will 

avoid the severe penalize of connection's throughput in case 

of packet loss, this mechanism will regain the throughput as 

stable packet transmission occurs.  This solves a particular 

problem for high-latency, high-bandwidth networks, which 

are increasingly common. Because of the high bandwidth of 

such networks, a severe cut in connection throughput 

represents a substantial loss of throughput, even for 

reasonably smaller rate of packet loss.  And because of the 

high latency in such networks, it can take quite some time for 

the connection to restore its bandwidth, since assurance of 

successful packet transmission is delayed by the network 

latency. Study of TCP behavior is still an active area of 

research and requires further investigation since not much of 

the work is done beside the ones described in this article. 
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