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ABSTRACT 

Efficiency of the wireless communication depends mainly on 

how the Radio Frequency (RF) spectrum is allocated to the 

end users. Inadequacy of the RF spectrum resource transpires 

due to fixed frequency allocation by the regulatory bodies in 

each region is one of the major problems in allocating it to 

specific applications. Moreover the allocated RF spectrum is 

not fully utilized efficiently. Cognitive Radio (CR) is the 

promising technology used for the detection of the spectrum 

holes or white spaces, and to reallocate this idle spectrum to 

Unlicensed Users or Secondary Users (SU) or CR user 

without causing harmful interference to Licensed Users or 

Primary Users (PU). In this paper, we present a novel 

approach for high precession spectrum sensing for CR using 

Hidden Markov Model (HMM). Current research assumes the 

presence of a Markov Chain for sub-band utilization by PU, 

but this consideration has not yet been validated, here we 

validate the existence of a Markov Chain for sub-band 

utilization and formulating the HMM for spectrum sensing by 

Prediction Accuracy (PA). The throughput and accuracy of 

the proposed method is substantiated using extensive 

simulations. 
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1. INTRODUCTION 
The Radio Frequency (RF) spectrum is the natural resource 

for the current wireless communication system, spectrum 

requirement increased as an exponential increase in the 

number of wireless standards every day. Recent research by 

Federal Communication Committee (FCC) shows that an 

enormous portion of the spectrum is not being occupied by 

PUs excessively in the frequency range of 3 GHz [1]. These 

unoccupied frequency bands are called spectrum holes or 

white spaces [2]. Cognitive Radio (CR) is a promising 

technology used for the detection of spectrum holes and to 

allocate them to SUs without causing considerable 

interference to Pus and the spectral efficiency and channel 

capacity can be improved by the CR.  

To sense the resource availability different techniques are 

used and the optimal technique is the Matched Filter (MF) 

proposed by Cabric et.al to maximize the received Signal to 

Noise Ratio (SNR) [3]. MF Method requires the prior 

knowledge of the PU signal and the threshold level varies 

with SNR for different signals and the distinction between 

signal and the interfering noise signals are more difficult, 

throughput is also a major issue in the dynamic change of the 

detection time [4]. Further to minimize the spectrum sensing 

error (SE) by reducing the threshold. Fixing the threshold 

level leads to the detection of noise factor is feeble and prior 

knowledge of the PU that cannot be assured at the real-time 

environment [5], [6] Aleksandar et al. proposed the 

interference reduction method, in this method the throughput 

will degrade if the number SUs are added [7]. In the above 

methods transition from one band to other is done only after 

detecting whether the band is idle or busy. This may lead to a 

time delay. If we can envisage the usage pattern of the PU, 

this time delay can be avoided.  

A single cycle detector matches the ideal spectral correlation 

function for a single value of the cycle frequency proportional 

with a measured value. It is computationally similar to the 

optimum energy detector, except that the ideal Power Spectral 

Density (PSD) is replaced by the ideal spectral correlation 

function, and the measured periodogram is replaced by the 

measured cyclic periodogram. A suboptimal version replaces 

the ideal spectral correlation function with a rectangular 

window over a band of frequencies in which the signal’s 

spectral correlation function is expected to reside if present 

[8]. Hidden Markov Model (HMM) is used to predict the 

usage behavior of a frequency band based on channel usage 

patterns [9].   

The sub-band utilization by PU at any time can be considered 

as a state, which can be either idle state or unoccupied or busy 

state or occupied. Existing research assumes the existence of a 

Markov Chain (MC) for sub-band utilization by the PUs, but 

this assumption has not been validated. In this paper, we 

validate the existence of a MC for the sub-band utilization by 

PUs. Hidden Markov Models (HMMs) can also be used for 

radio scene classification, case recognition, and making 

meaningful predictions based on training the past data 

available [10].  

Initially, the state of the PU is modeled as a uniform random 

sequence for the sake of framework to start with. The true 

states of the sub-band are unknown to the CR instead of 

uniform random sequence a Markov Model is applied. Here 

the state can be either busy or idle. Viterbi Algorithm (VA) is 

used to find the hidden states of HMM [11]. Performance of 

this method can be measured by performing extensive 

simulations using MATLAB.    

The rest of the paper is organized as follows. Section 2 covers 

various issues in Spectrum Sensing system model. HMM 

concept is introduced in section 3 and section 4 describes the 

simulation process for the assumed system model. The 

simulation results are presented in section 5. Finally, section 6 

draws the conclusion 
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2. SYSTEM MODEL 

The proposed Spectrum Sensing system model using HMM is 

shown in Fig.1. PU status is the observed sequence, which is a 

binary sequence where binary zero represents the channel is in 

idle state and one assumes the channel is in busy state. It is the 

true state of the PU, the PU excitation model perform air 

interface of CR. Based on the status, it will transmit PU signal 

or noise signal. If the PU is ON, it may transmit the carrier 

signal. Here the carrier signal considered is Binary Phase Shift 

Keying (BPSK) signal. If PU is OFF, it will transmit the noise 

signal. Spectrum Sensing [12] is the primary function of CR.  

Spectrum Sensing Engine (SSE) is created on Energy 

Detection technique [13]. Here, the energy in the concerned 

sub-band is measured and compared against the given 

threshold level. If the energy is greater than the threshold 

level, then it is considered that the channel is in busy state, 

otherwise it is sensed to be in idle state. The output of SSE 

may be prone to errors under the assumption that PU status 

will follow a MC. So the idea is to get a modified or an 

accurate expected output. This is supported by HMM. Finally, 

the predicted state and SSE output are compared with the 

original PU status for the accuracy of prediction of the 

proposed method. FFT Averaging Ratio (FAR) algorithm [14] 

is used to implement energy detection. In FAR algorithm the 

decision variable is independent of the noise level. 

PU status represents true state of the PU. In real time 

applications the true state sequence of PU is unobservable. 

Collecting the real time measurements is complex and time 

consuming one [15]. CR user senses the spectrum band and 

the sensed data gives rise to the sensed output sequence X. 

The readings provided by this sensing mechanism are prone to 

errors in the form of Probability of miss detection Pm and 

Probability of false alarms Pf [16]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: System Model for enhanced Spectrum Sensing 

3. HIDDEN MARKOV MODEL (HMM) 
The main idea of introducing HMM is to model the evolution 

of occupancy / non-occupancy of a sub-band by its PUs over 

time using measurements obtained using CR. In this section, 

we consider the basic operational system model of an HMM.  
A HMM is a stochastic process or technique used for the time 

series of discrete events and this can be continuously 

distributed either by vectors or scalars. HMM model is doubly 

embedded stochastic process with an underlying stochastic 

process that is not observable (it is hidden) and can be only 

observable through another set of stochastic process that 

produce the sequence of observation.  One of these functions 

is MC with finite number of state and the other is a set of 

random function, referred as alphabet, wherein each function 

generates a symbol related to a state in the MC. Here the true 

state Y of sub-band occupancy is never observable and 

needed to be sensed using different sensing techniques. 

Hence, the MC, constituting the true sequence Y, is hidden 

and the model is characterized as HMM [17], [18].    

The general concept of an HMM is illustrated in Fig. 2. Here 

the states correspond to PU occupancy, i.e., the channel can 

be either idle or busy with the initial probability  , transition 

probability, emission probability, and the observation, 

determined using Viterbi Algorithm (VA). Here the transition 

probability and initial distribution are fixed.  

3.1. HMM and its parameters 
An HMM is characterized by five parameters. 

State Space: {0,1}   

       Hidden States: 
iy  , Observed States: 

ix    

       Transition Matrix: ijP p , 0,1i   and  0,1j   

       Initial Distribution: 
0 Pr( 0)ip y    and  

                                        
1 Pr( 1)ip y         

       Emission probabilities: ( )y ie x   

                                               a01 

 

                                      Hidden states 

                                              a10 

 

 

        e0 (0)                                                                     e1 (1) 

                                     e1 (0)        e0 (1)                   

                                      Observed states 

 

 

Fig.2 Representation of HMM in spectrum sensing 

1) The number of states in the model: - Although, the states 

are hidden, for real time applications there is often some 

physical significance related to the states of the model. 

Generally, the states are interconnected.  

2) The number of distinct observation symbols per state: - 

The observation symbols correspond to the physical output of 

the system being modeled. 

3) The state transition probability, { }ijP p  where 

        { }ijP p  

1Pr n ny j y i   --- (1) 

4) The emission probability, ( )ke b  

( ) Prk n ne b X b Y k   --- (2) 
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Given appropriate values of above five elements, the HMM 

can be used as a generator to give an observation sequence. 

It can be seen that a complete specification of an HMM 

requires two model parameters and the specification of three 

probability measures P , ( )ke b  and  [19]. 

3.2. The Viterbi Algorithm 
It is a dynamic programming algorithm used for finding the 

most likelihood sequence of hidden states in a given sequence 

of observations. VA can be efficiently computed using a 

Trellis Structure and the process is as follows 

i. Metric Calculation: - It includes path metric and branch 

metric calculation. 

Path metric: - Calculation of the probability of the survivor 

path.  

Branch metric: - Calculation of the probability between input 

states and the possible output states. 

ii. Finding the survivor path: - All other paths are 

discarded except the maximum path metric. 

iii. Trace Back: - It is used to build the correct state by 

tracing the maximum likelihood path backwards according to 

the footprints of the previous state. 

4. SIMULATION PROCESS 

We have considered a typical case to validate our proposed 

model and to determine the prediction accuracy of Viterbi 

Algorithm (VA). The Transition Matrix is defined as 

0.8 0.2

0.9 0.1
TranstionmatrixP

 
  
 

--- (3) 

The initial distribution for each case is determined by the 

steady-state equation 

0 1 0 1( ; ) ( ; )p p xP p p --- (4) 

0 1 1p p   --- (5) 

We have simulated the VA under four different values of 

probability of errors. In the simulation work for each case, the 

initial distribution and Transition Matrix P are fixed. The 

process consists of the following steps. 

• Step 1: Using the initial distribution and Transition 

Matrix, simulate the Markov chain of length 100L   leading 

to a path
1 2 100, ,...y y y .  

• Step 2: Under each scenario of probability of error, 

generate 
1 2 100, ,...x x x  using the simulated path

1 2 100

* * *, ,...y y y . 

• Step 3: Apply the Viterbi Algorithm to the data 

1 2 100, ,...x x x  to predict the path 
1 2 100

* * *, ,...y y y . 

• Step 4: Calculate the Prediction Accuracy (PA) by using 

the formula 

*#{1 100 : }
100

100

i iI y y
PA x

  
  --- (6) 

 

 

 

Steps 1 to 4 repeated for 10,000 times. The histogram of these 

percentages is plotted. 

5. SIMULATION RESULTS 

This section presents the simulated results using MATLAB 

for the proposed system model. Fig. 3 shows the percentage of 

accuracy for different number of iterations with the allowed 

probability of error (PE) of 0.1 and in this case the percentage 

of the Prediction Accuracy is 95%. 

Fig. 4 shows the Prediction Accuracy over the frequency 

distribution for the probability of error for 0.15 and Fig.5 and 

Fig.6 shows for the different values of probability of error 0.2 

and 0.25. From the Histogram we see that Prediction 

Accuracy decreases with increase in probability of error and 

vice versa. For the second case it is about 90 %. It is about 85 

% and 80 % for last two cases. 

 

Fig.3 Frequency distribution of Prediction Accuracy 

percentage for probability of error 0.1 

 

Fig.4 Frequency distribution of prediction accuracy 

percentage for probability of error 0.15 
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Fig.5 Frequency distribution of Prediction Accuracy 

percentage for probability of error 0.2. 

 

Fig.6 Frequency distribution of prediction accuracy 

percentage for probability of error 0.25 

6. CONCLUSION 

The requirement of high precision spectrum sensing plays 

important role in the proper utilization of the spectrum.  In 

real time analysis the true path of the states is hidden to the 

SU and only the data available to the SU is the sensed data. 

Hence, the Spectrum Sensing is prone to errors in the form of 

Miss-Detection (MD) and False Alarm (FA). Therefore, here 

we exploit these probabilities to frame the spectrum sensing 

problem into a Hidden Markov Model paradigm. We have 

used Viterbi Algorithm for implementation of the HMM. 

Finally, we have performed MATLAB simulations to 

illustrate the Prediction Accuracy of the Viterbi Algorithm. 

We have simulated the Viterbi algorithm for four different 

values of probability of errors and that shows the percentage 

of accuracy decreases as probability of error increases. 
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