
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.7, August 2012

13

Empirical Comparison of Test Data Generation
Techniques using Activity Diagrams

Ridham Khurana

Guru Gobind Singh Indraprastha University,
 New Delhi, India

 Anju Saha
Guru Gobind Singh Indraprastha University,

 New Delhi, India

ABSTRACT
UML (Unified Modeling Language) is now a leading standard

for defining software processes. Test data generation is

advantageous in early phases of software development.

Activity diagrams are user and developers’ friendly because

of the ease in their understanding. Many papers have

presented techniques for test data generation using activity

diagrams. These techniques have their own specific benefits

considering required test data to be generated. On application

of these techniques on same input i.e. activity diagrams,

differences and similarities emerge evidently. These outcomes

can provide clarity among testers, so as to decide upon the

technique for test data generation depending upon the phase

and type of test data required. In this paper we performed a

comparative study of the five techniques of test data

generation based on activity diagrams using ten examples.

General terms
Comparative study

Keywords
Activity Diagrams, Test Data Generation, Comparison.

1. INTRODUCTION
Presently UML is widely used by researchers for test data

generation. Various UML diagrams like use case, state chart,

class diagram etc are used for test case generation. Benefits

from these diagrams are extracted to ensure simplified test

data generation before actual testing phase. Multiple methods

for test data generation have been developed, keeping in mind

a particular scenario or availability of information or

requirement of test data. Following the same trend, test data is

extracted from activity diagram in many ways depending

upon the priority set by the developers that which type of test

data is required. In this paper we discuss five techniques given

by Kim et al [1], Fan et al [2], Kansoamkeat et al [3],

Heinecke et al [4] and Boghdady et al [5].

The paper is structured as follows. Section 2 provides a

description of activity diagrams, section 3 discusses the

related work of test data generation, section 4 describes the

five techniques for test data generation, section 5 describes the

example used, section 6 details the application of five

techniques on the given example, section 7 provides

comparison among techniques and section 8 presents the

conclusion of the comparison.

2. ACTIVITY DIAGRAMS
The diagram that presents the sequence of activities to be

followed in a system for getting a particular purpose done is

called an activity diagram. Activities are represented by an

oval and sequences are shown by directed arrows.

Conditional branches are shown with a diamond where one

arrow makes an entry and multiple arrows exit. Merging of

multiple branches is also done using a diamond. Parallelism

can also be drawn using join and forks which are horizontal

lines. All these are exemplified in the example activity

diagram example figure 1.

Many times people do make comparison in a flow chart and

an activity diagram but an activity diagram is different from

flow chart in the sense that it can represent parallelism in

activities and it does not allow entering or exiting of two

arrows from a single activity i.e. an oval in a flow chart.

3. RELATED WORK
Testing is the most important phase in the software

development lifecycle as it is the only phase that actually

proves the correctness of the product with respect to any given

specification. It takes the major portion of time of the entire

development. Some may consider it easy but actually even the

simplest code in software can take infinite combination of

inputs for testing. Hence test data generation has acquired an

eminent place in the development life cycle of software.

Historically test data generation has been symbolic or

dynamic with random, goal oriented and path oriented

approach [6]. But strategies have taken a new turn bringing

the test case development to requirement and design phases.

UML diagrams, a strong tool for system design, is serving as

the base for test data generation with each diagram focusing

on different views of the system. By view, here we mean the

perspective with which a designer/user looks at the system.

Usually it is required that a path of execution is traced out

using UML diagram and then the constraints in that path are

solved with basic methods to extract test data. Standards for

solving constraints have been laid out lately and followed

using a number of tools but extraction of the execution path is

what that has wide branches with UML diagrams as the input.

Cle’mentine [7] et al proposed the use of use case diagrams

and sequence diagrams to extract test scenarios through her

elaborate technique using instantiated use cases and use case

transition system in the process. The use of sequence

diagrams with use case template and class diagram to generate

test data is proposed by Monalisa [8]. Dymek [9] proposed to

use relation among different UML diagrams for using test

data generated, at a particular phase, in another phase. Samuel

et al [10] presented an approach to draw valid sequences of

transitions of object’s state in the system and generate test

data in order to traverse those transitions in object’s state.

Bandyopadhyay [11] et al suggests following only sequences

that go through valid states of the objects of the system and

extract test cases. Chen et al [12] introduced an algorithm to

generate Interaction Finite Automaton (IFA) from use cases

and then test cases from IFA automatically. Using class

diagrams with OCL constructs to define constraints and

behavior for test data generation using SMT solver is

prescribed by Fujiwara et al [13] Apart from UML based test

data generation goal oriented test data generation [14] and test

data generation using symbolic evaluation [15] are alternate

ways using code as input and not UML diagrams. Segmenting

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.7, August 2012

14

programs [16] in order to reduce cyclomatic complexity for

easier and complete coverage of the code while test data

generation is proposed by Wang [16]. In this paper, we

present empirical evaluation of the working of five techniques

for test data generation using activity diagrams and a

comparative study is presented further.

DESCRIPTION OF FIVE TECHNIQUES

Technique no 1

Test data generation using IOAD.

This technique converts the activity diagram into an IOAD

(input output explicit activity diagram) that focuses on the

external interaction of the system and ignores internal

processing activities. It is used to derive test paths based on

the inputs/outputs given/received from the user because tester

rarely knows about the internal processing of the system being

tested. Using this strategy and all-path as the coverage

criterion all the interactions are exercised for appropriate

functioning [1].

Technique no 2

Test data generation using sub activity diagrams

This technique analyses an activity diagram and looks for

activities that are not individual activities rather a name for

the group of activities and can be expanded as a separate

activity diagram. This new activity diagram is inclusive in the

previous one therefore called as the sub activity. Using this

sub super activity relation fine details in an activity diagram

can be tested where any particular activity performs a

complete function. This technique uses path coverage with

round robin strategy for sub activities included in the super

activity diagram so that all combinations of paths are avoided

rather only valid and executable combinations are taken [2].

Technique no 3

Test data generation using condition classification tree

method

This technique uses all the conditional branches to find out as

to which test case covers which of the branches of the

conditions in the activity diagram and uses minimal test suite

that covers all the branches [3].

Technique no 4

Test data generation for acceptance testing.

Users while acceptance testing, sometimes, do not know what

is the expected input to the system and what is the expected

output from the system. In order to make the system

understandable the activity diagram of the given system is

converted into Interaction Flow Diagram that shows the

objects (input/output), in which the user will be interested.

IFD also show the role played by the user in each activity

where any input/output is entering/being receiving from the

system, so that the clarity in the system usage is maximized.

The IFD is converted to IFG(Interaction Flow Graph) with

each loop traversed once for test path coverage and using

depth first search on the graph that gives you the all the valid

paths for test case generation.[4]

Techniques no 5

Enhanced test case generation technique

Normally activity diagrams are very complex, having the

presence of forks, joins, conditional branches and merges, the

presence of these symbols make the activity diagram look

very clumsy. Therefore in this technique the activity diagram

is first converted Activity Dependency Table (ADT) and then

into Activity Dependency Graph (ADG) which is a simplified

form of any activity diagram without losing any activity. Test

paths are extracted from ADG using path coverage criterion

with depth first search and are minimized using reduction for

loops [5].

4. DESCRIPTION OF THE EXAMPLE
Here the activity diagram of a shipping company is taken

Figure 1. The company allows the customer to place order in

its system. The system then checks for the availability of

stock specified in order. If available then bill is processed and

shipping choices are specified. On verifying the authenticity

of the payment, mode of delivery is asked. Finally the

receiving is generated.

5. APPLICATION OF 5 TECHNIQUES

ON THE EXAMPLE.

Figure 1. Example activity diagram

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.7, August 2012

15

Applying Technique 1

Activity Diagram is converted into the form where user

interactions are paid attention for test case derivation.

Converting the Figure 1 into IOAD, shown in Figure 2.

 Figure 2. IOAD of the activity diagram in Fig 1.

Using single stimulus principle as proposed in technique 1.

The following test paths will be generated

P1: I1-O2-I2-I3-I4-O3-O5

P2: I1-O1-O2-I2-I3-I4-O3-O5

P3: I1-O2-I3-I2-I4-O4-O5

P4: I1-O2-I3-I2-O2-I3-I2-I4-O4-O5

Keeping in mind the concurrent case there can be other paths

as well but assuming the single stimulus and user interaction

with the system the above test cases are sufficient to provide

complete path coverage.

Applying Technique 2

Activity diagram is further expanded to show internals of any

activity and more paths are found out that introduce new test

cases.

In the given example “Check Availability” is not a simple

activity rather it can be further expanded in the following

way.

.

There are three paths in this expanded sub activity diagram of

“Check Availability”. If all path combination technique is

employed the then at most 12 test paths can be generated with

4 basic paths and 3 paths of this expanded sub activity making

4*3=12. But using the round robin technique as specified in

[2] at most 7 test scenarios are sufficient to provide complete

path coverage. In actual any path from activity “Check

availability” will cover any one path of “Check availability”

activity diagram hence two more cases are sufficient to

provide complete coverage rather than combining each path of

sub activity diagram Figure 3 with all possible scenarios of

the Figure 1.

Applying technique 3

Conditions (diamonds) in the diagram are used to find out

minimal test suite that covers all conditional branches.

With three conditions in hand the Figure 4 for the condition

classification methodology will be generated. Four test cases

with the shown relation among the conditions in the activity

diagram are sufficient to provide complete path coverage. If

separate test case for each branch of the condition is

developed then there can be eight test cases but relation

among them has reduced the number to four. This count of

test cases is equal to what is produced in technique 1.

Figure 3. Sub activity diagram of “Check

Availability” Activity of the Fig 1

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.7, August 2012

16

Figure 4. Condition classification of the activity diagram in Figure 1.

Applying Technique 4

Activity diagram is converted to IFD Figure 5 and then to IFG

followed by complete path coverage for test data.

This technique converts the activity diagram into Interaction

Flow Diagram (IFD) that fully exploits the view, a tester will

have, while executing the system by adding various objects

and roles a tester plays during an activity’s execution.

Further IFD is converted into Interaction Flow Graph (IFG)

that is traversed to generate four test paths. One each for two

cycles and two for the conditional branches. IFG is not shown

here.

Figure 5. IFD of the given activity diagram in Fig 1.

Applying Technique 5

The activity diagram is converted into less clumsy “Activity

Dependency Graph” which is enough for complete path

coverage and it provides reduction in test paths with the

number of loops it has.

Here the activity diagram has all its components named in the

Activity Diagram Table (ADT) Table 1. Then reduction is

carried out removing all the components other than activities

and Activity Diagram Graph (ADG) is created without and

with reduction here only the reduced/enhanced graph is

shown.

.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.7, August 2012

17

Table 1. ADT of the activity diagram in Fig 1.

Activity name No reduction Reduction

Join 1 A

Place order B B

Check availability C C

Decision D

Show non availability E E

Merge 1 F F

Fork G

Enter choice for shipping H H

Prepare shipping I I

Process billing J J

Show bill K K

Receive payment L L

Authorize payment M M

Join 2 N

Decision 2 O

Decision 3 P

Normal delivery Q Q

Urgent delivery R R

Merge 2 S

Generate receiving T T

Return U U

Figure 6. ADG after reduction of the ADT in Table 1.

The given Figure 6 with “all-path” coverage criterion and

DFS based algorithm will generate following paths.

TEST PATHS

1. B-C-B-C

2. B-C-HIJKLM-HIJKLM

3. B-C-HIJKLM-Q-T

4. B-C-HIJKLM-R-T

TEST PATHS AFTER REDUCTION

1. B-C-B-C-HIJKLM-Q-T

2. B-C-HIJKLM-HIJKLM-R-T

This technique handles loops to the benefit of testers by

reducing the number of test case equally to the number of

loops.

6. COMPARISON
From above and other 10 examples on which these five

techniques have been applied the following observations are

concluded. Individual comparison between techniques is

given as follows.

Technique 1 and 2 are only similar with regard to the input i.e.

activity diagram, but then they take a different turn where

input in Technique 1 is converted in IOAD and Input in

Technique 2 is expanded for sub-activities.

Technique 1 and 3 are opposite because in technique 1

concern is the input to, and the output from the system and

internal processing of the system is completely ignored

whereas technique 3 give immediate importance to internal

conditions and branches that will be followed with the given

input test data.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.7, August 2012

18

Technique 1 and 4 are similar since they deal with activity

diagram from user’s perspective. Difference occurs in the

detail the conversions in two, provide us. It is also observed

that technique 1 focuses on concurrent situations only.

Manual effort involved in the technique 4 for making tests of

acceptance level reduces its benefits to some extent.

Technique 1 focuses on concurrent events whereas technique

5 focuses on simplification, coverage and reduction of test

data.

Technique 2 expands activity diagram using sub-activity

diagrams and technique 3 focuses on condition classification

trees with valid sequences of execution of conditions as they

are encountered. These two follow a different way but if a

collaborated diagram from technique 2 is given as input to

technique 3 they will generate same test cases as output.

Technique 2 and 4 follow a completely different view and two

differently skilled testers are required to work upon the input

activity diagrams for output i.e. test cases.

Technique 2 and 5 can be collaborated to provide an excellent

test data generation technique since technique 2 provides you

with maximal detail of the system and technique 5 can be

helpful in reducing complexities of the detailed activity

diagram and can produce lesser number of test cases.

Test cases generated using Technique 3 comes into action

during coding phase while test cases designed using technique

4 are useful in acceptance phase. It is evident that these two

follow a different perspective but with the same input can

generate same test cases.

Technique 3 and 5 can generate same test cases but technique

5 has an edge over 3 because it reduces the test cases with the

number of loops the system has. Technique 3 also holds an

edge because of its simplicity.

Technique 4 and 5 are both detailed and well explained

techniques for implementing automatic test data generation

but they have a different focus. They take their inputs and

convert them in very different form but may generate same set

of test cases if there are no loops in the system.

7. CONCLUSION
1. Both technique 1 and 4 are develop test cases with user’s

perspective giving complete focus to what user expects

from the system.

2. Technique 2 is beneficial when detailed test data is to be

extracted wholly from activity diagrams for a system.

Else if a nested activity diagram is used in all other

techniques, the number of test cases generated equals test

cases generated from techniques 1 and 3.

3. Technique 3 is a simplistic form of test data generation

with less of effort required though basic execution style

of the system and inter-relation of the subsequent

conditions must be known to the tester for best

application of the technique.

4. Technique 5 requires some time resource because of the

tables and conversions it involves but complete

automation can solve this problem and with clear

observation it is the most efficient technique.

With various constraints, one or the other technique is suitable

depending on the requirement and focus of the tester. All five

techniques work well with different perspective but the fifth

one introduces a special high by reducing the number of test

cases in a loop condition as compared to other techniques.

Future work for the given study can be taking more and more

of real life examples and deducing the most effective and

suitable technique, out of these five, in different domains.

8. REFERENCES
[1] Hyungchoul Kim, Sungwon Kang, Jongmoon Baik,

Inyoung Ko , “Test Cases Generation from UML

Activity Diagrams”, Eighth ACIS International

Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed

Computing, 2007. SNPD 2007, VOL 3 pp. 556-561.

[2] Xin Fan, Jian Shu, LinLan Liu, QiJun Liang, “Test Case

Generation from UML Subactivity and Activity

Diagram”, 2009 Second International Symposium on

Electronic Commerce and Security(ISECS ‘09) , VOL 2,

pp. 244-288.

[3] Supaporn Kansomkeat, Phachayanee Thiket Jeff Offutt,

“Generating Test Cases from UML Activity Diagrams

using the Condition-Classification Tree Method”, 2010

2nd International Conference on Software Technology

and Engineering(ICSTE), pp. V1-62 – V1-66.

[4] Andreas Heinecke, Tobias Br¨uckmann, Tobias Griebe,

Volker Gruhn, “Generating Test Plans for Acceptance

Tests from UML Activity Diagrams”, 2010 17th IEEE

International Conference and Workshops on Engineering

of Computer-Based Systems(ECBS), pp. 57-66.

[5] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed A.

Hashim, Mohamed F. Tolba , ‘An Enhanced Test Case

Generation Technique Based on Activity Diagrams”,

2011 International Conference on Computer Engineering

& Systems (ICCES), pp. 289-294.

[6] J. Edvardsson, “A survey on automatic test data

generation”, Proceedings of the Second Conference

on Computer Science and Engineering in Linkoping,

pp.21-28, ECSEL, Oct 1999.

[7] Cle´mentine Nebut, Franck Fleurey, Yves Le Traon,

Member, IEEE, and Jean-Marc Je´ze´ quel, Member,

IEEE, “Automatic Test Generation: A Use Case Driven

Approach”, IEEE Transactions on Software Engineering,

VOL. 32, NO. 3, March 2006, pp. 140-155.

[8] Monalisa Sarma, Debasish Kundu, Rajib Mall

“Automatic Test Case Generation from UML Sequence

Diagrams”, 15th International Conference on Advanced

Computing and Communications, 2007(ADCOM ’07)

pp. 60-67.

[9] Dariusz Dymek, Leszek Kotulski, “Using UML(VR) for

supporting the automated test data Generation”, Third

International Conference on Dependability of Computer

Systems DepCoS-RELCOMEX 2008, pp. 3-8.

[10] P. Samuel R. Mall A.K. Bothra, “Automatic test case

generation using unified modeling language (UML) state

diagrams”, IET Software, VOL. 2, NO. 2, pp.79-93,

April 2008.

[11] Aritra Bandyopadhyay, Sudipto Ghosh ,“Using UML

Sequence Diagrams and State Machines for Test Input

Generation”, 19th International Symposium on Software

Reliability Engineering, Nov 2008 , pp. 309-310.

[12] Lizhe Chen, Qiang Li, “Automated Test Case Generation

from Use Case: A Model Based Approach”, 2010 3rd

International Conference on Computer Science and

Information Technology (ICCSIT), VOL 1, pp. 372-377.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.7, August 2012

19

[13] Shoichiro Fujiwara , Kazuki Munakata , Yoshiharu

Maeda , Asako Katayama , Tadahiro Uehara ,” Test data

generation for web application using a UML class

diagram with OCL constraints”, Innovations in Sytems

and Software Engineering, VOL. 7, No. 4, Dec 2011,

Springer-Verlag London Limited.

[14] Bogden Korel, “Automated Test Data Generation for

Programs with Procedures”, Proceedings of the 1996

ACM SIGSOFT International Symposium on Software

Testing and Analysis, ACM SIGSOFT Software

engineering Notes Vol. 21 Issue 3, May 1996, NY, USA.

[15] Lori A. Clarke, “A System to Generate Test Data and

Symbolically Execute Programs” IEEE Transactions on

Software Engineering, September 1976, VOL. SE-2, No

3, pp. 215-222.

[16] Lixin Wang, “A Program Segmentation Method For

Testing Data Generating Based On Path Coverage”, 2010

IEEE International Conference on Software Engineering

and Service Sciences(ICSESS), pp. 565-568.

