
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.6, August 2012

42

Review of Search based Techniques in Software Testing

Rakesh Roshan
Research Scholar

Manav Bharti University
Solan(HP),INDIA

Rabins Porwal
ITS

Ghaziabad
UP,INDIA

Chandra Mani Sharma
ITS

Ghaziabad
UP, INDIA

ABSTRACT

The most effort seeking job in software testing is the

generation of test cases. The success of testing pursuit highly

depends on the effectiveness of the test cases. Various

approaches have been proposed to ease the task of test case

generation and to perform software testing. It has witnessed a

paradigm shift from manual test case generation to automated

test case generation in the recent time. Search Based Software

Testing (SBST) has evolved as a new domain in software

testing. This paper reviews the various Search Based Software

Testing approaches, foresees trends in the research being

conducted in this area and explores the new possibilities

which future of the software testing envisages. This paper

presents an exhaustive survey on Search Based Software

Testing and also touches upon the other disciplines of modern

day computing which seamlessly overlap with SBST.

General Terms

Survey, Review Article, Theoretical Computer Sciences

Keywords

Software Testing, Model Based Software Testing, Test Case

Generation Approaches.

1. INTRODUCTION
Search-based software testing is the use of random or directed

search techniques such as hill climbing, genetic algorithms

etc. to address problems in the software testing and

verification and validation domain. Search Based techniques

are gaining more and more popularity in software testing,

verification, and validation and is especially very useful in test

data generation. A problem in the software testing and/or

verification and validation domain can be addressed by using

a search strategy such as random search, local search (e.g. hill

climbing, simulated annealing and tabu search), evolutionary

algorithms (e.g. genetic algorithms, evolution strategies and

genetic programming), ant colony optimization and particle

swarm optimization. Other modern buzzwords in the arena of

Software Testing are- model-based testing, real-time testing,

interaction testing, testing of service-oriented architectures,

test case prioritization and generation of whole tests with data.

Testing is the important phase to ensure the quality of a

software development. The main reason to test is to find bugs

in the software. Even though no bugs found, testing cannot

ensure that the software is bug-free [1]. Testing increases our

confidence to software reliability. Also if we predict the

defects, then we can save time as well as cost for software

development.

Firstly testers check the correctness of software and there are

various tools to check the correctness of the software.

Automated generation of test cases reduces the testing effort

and time. Failure of software occurs when any module or part

of software does not work as we required and expected. So,

software needs to be tested on a variety of input data to ensure

its correct working. With the continuous growth of the

software and system complexity, requirement of efficient

testing mechanisms is also in demand. The automation of

testing is a must to reduce efforts laid down by the tester. In

recent time, the concept of search based software testing has

started gaining popularity because of several reasons. Search

based software testing (SBST) is the part of search based

software engineering (SBSE) [2]. Search based software

testing (SBST) naturally draws the attention of researchers

because of the increasing span of search based software

engineering (SBSE). Recent years have witnessed for the rise

of Search Based Software Testing (SBST) and especially for

techniques of generating the test data that meets a given

criterion. McMinn et al, presents a survey on Search based

software test generation, which shows the application of

search based techniques for White Box testing, Black Box

testing, Grey Box testing and for the verification of non-

functional properties[1]. The Search Based Software Testing

can be implemented using White Box approach as well as

using Black Box approach.

2. SURVEY OF THE RELATED WORK
The term Search Based Software Testing was first used by

Miller et al. in 1976. Their approach was brand new approach

for that time, which proved to an effective technique for test

data generation. This approach was efficiently applied for

generating the floating point inputs. With the passage of time

various concepts associated with Search Based Software

testing such as the evolutionary approach. Genetic algorithms

were primarily used for this purpose. Genetic A genetic test

case generation evolves like a tree, in which each node is a

function and its inputs are the children of that node.

According to a problem specific fitness function, individuals

are used to fill the next population, which is held at each

generation. Antoniol et al. evaluate search based testing

approaches to detect software vulnerabilities [3]. Their work

presents some of the interesting open research problems in the

arena of search based testing while the key thrust area being

software vulnerability as paradoxically, the absence of

software vulnerability does not reduce security risk [3] Also,

security is not limited to a program in isolation, a given

environment or network configuration. A recent NIST

technical guide to information security testing and assessment

[4], lists panorama of penetration testing[5]. Penetration

testing mimics a real world attack and can be conducted in

many different ways. Windisch et al. propose two novel

approaches for generating input signals from within search-

based testing techniques [6]. They apply this technique to

generate the valid signals for continuous systems. These

approaches are then shown to be very effective when

experimentally applied to the problem of approximating a set

of realistic signals. Approximating a signal and reaching a

certain goal within search-based software testing are both

based on fitness value feedback, thus being directly

comparable. The results indicate that both approaches are,

despite some minor issues, well-suited for signal generation

and optimization when applied to software testing. Blanco et

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.6, August 2012

43

al. present an approach based on the meta-heuristic technique

‘Scatter Search’ for the automatic test case generation of the

BPEL business process[5]. A transition coverage is used as

adequacy criterion. The approach presented by Blanco et

al.[5] is an evolution of the TCSS-LS algorithm described in

Blanco et al.; 2008, which generates test cases for the branch

coverage criterion for programs written in C. Marchetto et al.;

2009 investigate a search-based algorithm for the exploration

of the huge space of long interaction sequences, in order to

select those that are most promising, based on a measure of

test case diversity. In another paper, Marchetto et al. 2008

investigate the use of state-based testing for AJAX Web

applications and particularly focus on the specific faults

introduced by this technology. The technique is based on

dynamic extraction of a finite state machine for an Ajax

application and its analysis with the aim of identifying sets of

test cases based on semantically interacting events. Empirical

evidence shows the effectiveness of this kind of technique in

finding faults. Automatically generated test cases are

comparable to those obtained by careful functional testing,

manually performed by expert testers. Unfortunately, one of

the main drawbacks of the technique based on semantically

interacting events is that it generates testing suites composed

of a very large number of test cases and this can limit its

usefulness [7]. Afzal et al.[2] apply experiments targeting

fault prediction using genetic programming and compare the

results with traditional approaches in terms of efficiency

gains. They evaluate the use of genetic programming for

predicting fault count data. Harman et al.; 2010 introduce

three algorithms which do this without compromising the

coverage achieved. Results of the empirical study of

effectiveness of the three algorithms on five benchmark

programs, containing non trivial search spaces for branch

coverage, have also been presented by Harman et al.; 2010.

The results indicate that it is possible to make reductions in

the number of test cases, produced by search based testing,

without loss of coverage. The branch coverage based

approaches of search based testing re-formulate the automated

test data generation problem. They introduce a new

formulation of the search based structural test data generation

problem in which the goal is to maximize coverage, while

simultaneously minimizing the number of test cases, with a

view to taking into account the human oracle cost effort

involved in checking the behavior of the software under test

for a given test suite. Zhao et al.; 2010 present an automated

test data generation system for feasible transition paths (FTP)

on Extended Finite State Machines (EFSM) models. They

investigate the statistical properties of testing efficiency using

statistical tests for correlation and formalization according to

the test data generated by applying the system on four widely

used EFSM models. An important and encouraging finding is

a close positive correlation between test generation cost and

the number of numerical equal operators in conditions

(NNEOC) on a FTP. Li et al.; 2010 perform a simulation

experiment to study five search algorithms for test case

prioritization and compare the performance of these

algorithms. The target of the study is to have an in-depth

investigation and improve the generality of the comparison

results. The simulation study provides two useful guidelines:

(1) Use of efficient search algorithms such as Additional

Greedy Algorithm (AGA) and Optimal Greedy

Algorithm(OGA). These outperform the other three search

algorithms in most of the cases. Hence, these two search

algorithms are recommended to be used preferentially. (2)

Ratio of Overlapping [8], is introduced to better investigate

the performance of these five search algorithms. Results in

paper [9], indicate that the performance of two best search

algorithms, Additional Greedy Algorithm and Optimal

Greedy Algorithm, is maximum when the Ratio of

Overlapping (RO) is around 3 and it starts declining when RO

increases.

Afzal et al.; 2010, evaluate the following five different

techniques for predicting the number of faults slipping

through unit, function, integration and system testing phases.

i. Particle swarm optimization based artificial neural

networks (PSO-ANN),

ii. Artificial immune recognition systems (AIRS),

iii. Gene expression programming (GEP),

iv. Genetic programming (GP)

v. Multiple regression (MR),

The objective of the study in paper [10] is to quantify

improvement potential in different testing phases by finding

the right faults in the right phase. At the unit and function

testing phases, AIRS and PSO-ANN performed better while

GP performed better at integration and system testing phases.

The study concludes that a variety of search-based techniques

are applicable for predicting the improvement potential in

different testing phases with GP showing more consistent

performance across two of the four test phases. This study is

different from the other software quality evaluation studies.

First, the dependent variable of interest here is the number of

faults slipping through to various testing phases with the aim

of triggering corrective actions for avoiding unnecessary

rework late in software testing. Second, Afzal et al.; 2010

make use of several independent variables at the project level,

i.e. variables depicting work status, testing progress status and

fault-inflow. Lindlar et al.; 2010 present an approach in which

evolutionary functional testing is performed using an actual

electronic control unit for test case evaluation. A test

environment designed to be used for large-scale industrial

systems is introduced. An extensive case study has been

carried out to assess its capabilities. Results indicate that the

approach proposed in this work is suitable for automated

functional testing of embedded control systems within a

Hardware-in-the-Loop test environment. De-Souza et al.;

2010 report a comprehensive experimental study regarding

the human competitiveness of search based software

engineering (SBSE). The experiments are performed over four

well-known SBSE problem formulations: next release

problem, multi-objective next release problem, workgroup

formation problem and the multi-objective test case selection

problem. For each of these problems, two instances, with

increasing sizes, are synthetically generated and solved by

both meta-heuristics and human subjects. De-Souza et

al.;2010 conduct an experiment, in which 63 professional

software engineers participated for solving some or all

problem instances, producing together 128 responses. The

comparison analysis strongly suggests that the results

generated by search based software testing can be said to be

human competitive. The research, reported in paper [11],

addresses human competitiveness of search based software

engineering results precisely under this criterion. Therefore,

controlled experiments, as described later, designed to

compare the automatically generated results with the results

obtained from human subjects were performed and analyzed.

In another search-based test data generation approach

proposed by Romano et al.; 2011 identification of NPEs is

done. The approach consists of two steps: (i) an inter-

procedural data and control flow analysis—relying on existing

technology—that identifies paths between input parameters

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.6, August 2012

44

and potential NPEs, and (ii) a genetic algorithm that evolves a

population of test data with the aim of covering such paths.

The algorithm is able to deal with complex inputs containing

arbitrary data structures.

The approach, proposed in paper [12], has been evaluated on

to test class clusters from six Java open source systems, where

NPE bugs have been artificially introduced. Results show that

the approach is, indeed, able to identify the NPE bugs, and it

outperforms random testing. Also, they show how the

approach is able to identify real NPE bugs some of which are

posted in the bug tracking system of the Apache libraries.

Yano et al.; 2011 introduce a multi-objective evolutionary

approach to test case generation from extended finite state

machines (EFSM), named MOST. Testing from an EFSM

generally involves executing various transition paths, until a

given coverage criterion such as coverage of all transitions is

met. As traditional test generation methods from FSM only

consider the control aspects, they can produce many infeasible

paths when applied to EFSMs, due to conflicts in guard

conditions along a path.

3. FUTURE DIRECTIONS IN SEARCH

BASED SOFTWARE TESTING
Although, the concept of Search Based Testing is much old

and was introduced by Miller et al.; 1976, yet the progress in

this field was almost negligible decades after. Here, we

present the progress made in this direction during the last two

decades. This can be envisaged from Table 1 that in from

1990 to 2000, the progress in the field of Search Based

Software Testing has been very slow. Only 59 research papers

appear during the whole decade on the topic. During the

decade of 2001-2010, this area of research became more

active and during the year 2008-09 only, a huge number of

120 research papers were published on Search Based Software

Testing. In the days to come it can be projected that more and

more researchers will be attracted to this field because of its

increasing applications in software testing. As in the days to

come, majority of the software applications would be web

based. Various new technologies including SAS(Software As

a Service), Cloud Computing, and Search Engine

Optimization(SEO) will definitely provide a thrust to the

growth of the Search Based Software Testing.

Table 1: Year-wise Research Publications on Search Based Software Testing

Year 1990-

1991

1992-

1993

1994-

1995

1996-

1997

1998-

1999

2000-

2001

2002-

2003

2004-

2005

2006-

2007

2008-

2009

2010-

2011

Research

Publications

2 3 7 11 18 18 35 50 77 120 62+

Number of Publication in Search-

Based software Testing

(Approximations)

1
9

9
0

-

1
9

9
1

1
9

9
4

-

1
9

9
5

1
9

9
8

-

1
9

9
9

2
0

0
2

-

2
0

0
3

2
0

0
6

-

2
0

0
7

2
0

1
0

-

2
0

1
1

0

20

40

60

80

100

120

 Figure 1: Growing Interest of Research Community Towards Search Based Software Testing

Figure1 depicts the increasing interest towards Search Based

Software Testing. On horizontal axis, the corresponding years

have been depicted, while vertical axis marks the number of

publications in the respective years. Although initial growth

in the field of Search Based Software Testing was moderate,

yet the involvement of active research community has made

growth of the filed ever increasing. The popularity of the

domain can be measured from the fact that various

International conferences are having the special sessions on

SBST. In last five years, IEEE has been organizing the

International workshops on Search Based Software Testing in

conjunction with the International Conference on Software

Testing, Verification and Validation (ICST). First IEEE

workshop was held in 2008 at Lillehammer, Norway, second

in 2009 at Denver, Colorado, USA, third in 2010 at Paris,

France , fourth in 2011 at Berlin, Germany and fifth workshop

on Search Based Software Testing (SBST 12) is scheduled to

be held in April ,2012 at Montreal, Canada. The area of

Search Based Software Testing promises of vast possibilities

in the days to come.

4. CONCLUSIONS
This paper reviews the recent advancements in this field of

Search Based Software Testing. The area spawns an all new

domain ining the arena of modern Software Testing. Search

Based Software Test has many advantages including reduced

efforts and improved reliability over state-of-the-art

approaches of Software Testing. Search Based Software

http://www.cse.unl.edu/~myra/sbst2010/index.html
http://www.cse.unl.edu/~myra/sbst2010/index.html

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.6, August 2012

45

Testing can be implemented in various forms, including

White Box and Black Box Testing. It can exploit the potential

of other modern day computing approaches including

evolutionary approaches of computing such as Genetic

Algorithms and Finite State Machines (FSM). This paper also

projects the increasing interest of research community

towards this highly promising area of Software Testing in

terms of increasing number of publications on Search Based

Software Testing, year after year. .

5. ACKNOWLEDGMENTS
The first author of the paper is thankful to MBU, Solan for

encouragement and support.

6. REFERENCES
[1] P. McMinn, “Search-based software test data generation:

A survey,” Journal of Software Testing Verification and

Reliability, pp. 105-156, June, 2004.

[2] W. Afzal, R. Torkar and R. Feldt, “A systematic review

of search based testing for non-functional system

properties,” Journal of Information and Software

Technology, vol. 51, 2009.

[3] G. Antoniol, “Search Based Software Testing for

Software Security: Breaking Code to Make it,” in

Proceedings of the International Conference on Software

Testing Verification and Validation Workshops, pp 87-

100, 2009.

[4] K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh,

“Technical guide to information security testing and

assessment,” U.S. Dept. Of Commerce - National

Institute of Standards and Technology, Technical Report,

pp. 800-811, September 2008.

[5] R. Blanco, J. Tuya, B. Adenso-Díaz, “Automated test

data generation using a scatter search approach”, Journal

of Information and Software Technology, vol. 51,

pp.708-720,2008.

[6] A. Windisch and N.A.Moubayed, “Signal Generation for

Search-Based Testing of Continuous Systems,” in

Proceedings of IEEE International Conference on

Software Testing Verification and Validation, pp 121-

130, 2009.

[7] X. Yuan and A. M. Memon, “Using GUI run-time state

as feedback to generate test cases,” in Proceedings of the

29th International Conference on Software Engineering,

Washington, DC, USA, May 23–25, pp. 396–405, 2007.

[8] A.Marchetto and P.Tonella,“Search-Based Testing of

AjaxWeb Applications,” in Proceedings of IEEE

International Symposium on Search Based Software

Engineering, pp 3-12, 2009.

[9] S.Li, N.Bian, Z.Chen, D.You, Y.He, “A Simulation

Study on Some Search Algorithms for Regression Test

Case Prioritization” 10th IEEE International Conference

on Quality Software, pp 72-81, 2010.

[10] W.Afzal, R.Torkar and R.Feldt,“Search-based prediction

of fault-slip-through in large software projects”, 2nd IEEE

International Symposium on Search Based Software

Engineering, pp 79-88, 2010.

[11] J.T. De-Souza, C. L. Maia, F. G. De-Freitas and D.P.

Coutinho, “The Human Competitiveness of Search Based

Software Engineering,” 2nd IEEE International

Symposium on Search Based Software Engineering, pp

143-152, 2010.

[12] D. Romano, M. Di Penta, G.Antoniol,“An Approach for

Search Based Testing of Null Pointer Exceptions,”

Fourth IEEE International Conference on Software

Testing, Verification and Validation, pp 160-169, 2011.

