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ABSTRACT 
Closeness is described as a privacy measure and its 

advantages are illustrated through examples and experiments 

on a real dataset. In this Paper the closeness can be verified by 

giving different values for N and T. Government agencies and 

other organizations often need to publish micro data, e.g., 

medical data or census data, for research and other purposes. 

Typically, such data are stored in a table, and each record 

(row) corresponds to one individual. Generally if we want to 

publish micro data A common anonymization approach is 

generalization, which replaces quasi-identifier values with 

values that are less-specific but semantically consistent. As a 

result, more records will have the same set of quasi-identifier 

values. An equivalence class of an anonymized table is 

defined to be a set of records that have the same values for the 

quasi-identifiers 

To effectively limit disclosure, the disclosure risk of an 

anonymized table is to be measured. To this end, k-anonymity 

is introduced as the property that each record is 

indistinguishable with at least k-1 other records with respect 

to the quasi-identifier i.e., k-anonymity requires that each 

equivalence class contains at least k records. While k-

anonymity protects against identity disclosure, it is 

insufficient to prevent attribute disclosure. To address the 

above limitation of k-anonymity, a new notion of privacy, 

called l-diversity is introduced, which requires that the 

distribution of a sensitive attribute in each equivalence class 

has at least l “well represented” values. One problem with l-

diversity is that it is limited in its assumption of adversarial 

knowledge. This assumption generalizes the specific 

background and homogeneity attacks used to motivate l-

diversity. The k-anonymity privacy requirement for 

publishing micro data requires that each equivalence class 

contains at least k records. But k-anonymity cannot prevent 

attribute disclosure. The notion of l-diversity has been 

proposed to address this; l-diversity requires that each 

equivalence class has at least l well-represented values for 

each sensitive attribute. L-diversity has a number of 

limitations. In particular, it is neither necessary nor sufficient 

to prevent attribute disclosure. Due to these limitations, a new 

notion of privacy called “closeness” is proposed.  First the 

base model t- closeness is presented, which requires that the 

distribution of a sensitive attribute in any equivalence class is 

close to the distribution of the attribute in the overall table. 

Then a more flexible privacy model called (n, t)-closeness is 

proposed. The rationale for using  
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1. INTRODUCTION 
Government agencies and other organizations often need to 

publish micro data, e.g., medical data or census data, for 

research and other purposes. Typically, such data are stored in 

a table, and each record (row) corresponds to one individual.  

Each record has a number of attributes, which can be divided 

into the following three categories: 

1) Attributes that clearly identify individuals. These are 

known as explicit identifiers and include, e.g., Social Security 

Number.  

2) Attributes whose values when taken together can 

potentially identify an individual. These are known as quasi-

identifiers, and may include, e.g., Zip code, Birth-date and 

Gender.  

3) Attributes that are considered sensitive, such as Disease 

and Salary. While the released table gives useful information 

to researchers, it presents disclosure risk to the individuals 

whose data are in the table.  

Therefore, the objective is to limit the disclosure risk to an 

acceptable level while maximizing the benefit. This is 

achieved by anonymizing the data before release. The first 

step of anonymization is to remove explicit identifiers. 

However, this is not enough, as an adversary may already 

know the quasi-identifier values of some individuals in the 

table. This knowledge can be either from personal knowledge 

(e.g., knowing a particular individual in person), or from other 

publicly available databases (e.g., a voter registration list) that 

include both explicit identifiers and quasi –identifiers 

A common anonymization approach is generalization, which 

replaces quasi-identifier values with values that are less-

specific but semantically consistent. As a result, more records 

will have the same set of quasi-identifier values. An 

equivalence class of an anonymized table is defined to be a set 

of records that have the same values for the quasi-identifiers 

To effectively limit disclosure, the disclosure risk of an 

anonymized table is to be measured. To this end, k-anonymity 

is introduced as the property that each record is 

indistinguishable with at least k-1 other records with respect 

to the quasi-identifier i.e., k-anonymity requires that each 

equivalence class contains at least k records. While k-

anonymity protects against identity disclosure, it is 

insufficient to prevent attribute disclosure.  

To address the above limitation of k-anonymity, a new notion 

of privacy, called l-diversity is introduced, which requires that 

the distribution of a sensitive attribute in each equivalence 

class has at least l “well represented” values. One problem 

with l-diversity is that it is limited in its assumption of 

adversarial knowledge. This assumption generalizes the 

specific background and homogeneity attacks used to 

motivate l-diversity. Therefore, the proposed privacy measure 
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limits the amount of individual-specific information an 

observer can learn. 

2. PROBLEM DEFINITION 
The objective of this work is to limit the disclosure risk to an 

acceptable level while maximizing the benefit. While k-

anonymity protects against identity disclosure, it does not 

provide sufficient protection against attribute disclosure. The 

notion of ‘l-diversity attempts to solve this problem. L-

diversity presents two attacks. Due to these limitations, a 

novel privacy notion called “closeness” is proposed .Two 

instantiations are proposed: a base model called t-closeness 

and a more flexible privacy model called (n, t)-closeness.  

 

3. K-ANONIMITY  
Definition 1. K-anonymity 

Let RT (A1... An) be a released table and QIRT be the quasi-

identifier associated with it. RT is said to satisfy k-anonymity 

if and only if each sequence of values in T[QIRT] appears with 

at least k occurrences in RT[QIRT]. 

Example 1. Table adhering to k-anonymity 
Figure 1 provides an example of a table T that adheres to k-

anonymity. The quasi-identifier for the table is QIT= {Race, 

Birth, Gender, ZIP} and k=2. Therefore, for each of the tuples 

contained in the table T, the values of the tuple that comprise 

the quasi-identifier appear at least twice in T. That is, for each 

sequence of values in T[QIT] there are at least 2 occurrences 

of those values in T[QIT]. In particular, t1[QIT] = t2[QIT], 

t3[QIT] = t4[QIT], t5[QIT] = t6[QIT], t7[QIT] = t8[QIT] = 

t9[QIT], and t10[QIT] = t11[QIT]. 

 

Table1:  Example of K-anonymity 

 

 

Example 2. K occurrences of each value under k-

anonymity 

Table T in Figure 1 adheres to k-anonymity, where QIT = 

{Race, Birth, Gender, ZIP} and k=2. Therefore, each value 

that appears in a value associated with an attribute of QI in T 

appears at least k times. |T[Race ="black"]| = 6. |T[Race 

="white"]| = 5. |T[Birth ="1964"]| = 5. |T[Birth ="1965"]| = 4. 

|T[Birth ="1967"]| = 2. |T[Gender ="m"]| = 6. |T[Gender 

="f"]| = 5. |T[ZIP ="0213*"]| = 9. And, |T[ZIP ="0214*"]| = 2 

[3]. Table 3   4-anonymous Inpatient Micro data 

A table satisfies k-anonymity if every record in the table is 

indistinguishable from at least k − 1 other records with respect 

to every set of quasi-identifier attributes; such a table is called 

a k-anonymous table. Hence, for every combination of values 

of the quasi-identifiers in the k-anonymous table, there are at 

least k records that share those values. This ensures that 

individuals cannot be uniquely identified by linking attacks. 

An attribute is marked sensitive if an adversary must not be 

allowed to discover the value of that attribute for any 

individual in the dataset. Attributes not marked sensitive are 

non-sensitive. Let the collection of attributes {zip code, age, 

nationality}  

Let the collection of attributes {zip code, age, nationality} be 

the quasi-identifier for this dataset. Figure 3 shows a 4-

anonymous table derived from the table in Figure 2 (here “*” 

denotes a suppressed value so, for example, “zip code = 

1485*” means that the zip code is in the range [14850−14859] 

and “age=3*”means the age is in the range [30 − 39]). Note 

that in the 4-anonymous table, each tuple has the same values 

for the quasi-identifier as at least three other tuples in the table 

 

Table 2: Inpatient Micro data 

 

 
 Let the collection of attributes {zip code, age, nationality} be 

the quasi-identifier for this dataset. Figure 3 shows a 4-

anonymous table derived from the table in Figure 2 (here “*” 

denotes a suppressed value so, for example, “zip code = 

1485*” means that the zip code is in the range [14850−14859] 

and “age=3*”means the age is in the range [30 − 39]). Note 

that in the 4-anonymous table, each tuple has the same values 

for the quasi-identifier as at least three other tuples in the 

table. 

 Non-Sensitive Sensitive 

 Zip Code Age Nationality Condition 

1 13053 28 Russian Heart Disease 

2 13068 29 American Heart Disease 

3 13068 21 Japanese Viral Infection 

4 13053 23 American Viral Infection 

5 14853 50 Indian Cancer 

6 14853 55 Russian Heart Disease 

7 14850 47 American Viral Infection 

8 14850 49 American Viral Infection 

9 13053 31 American Cancer 

10 13053 37 Indian Cancer 

11 13068 36 Japanese Cancer 

12 13068 35 American Cancer 

Race Birth Gender ZIP Problem 

Black 1965 M 0214* Short breath 

Black 1965 M 0214* Chest pain 

Black 1965 F 0213* Hypertension 

Black 1965 F 0213* Hypertension 

Black 1964 F 0213* Obesity 

Black 1964 F 0213* Chest pain 

White 

White 

1964 

1964 

M 

M 

0213* 

0213* 

Chest pain 

Obesity 

White 1964 M 0213* Short breath 

White 1967 M 0213* Chest pain 

White 1967 M 0213* Chest pain 
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3.1. Attacks on k-Anonymity 
This section presents two attacks, the homogeneity attack and 

the background knowledge attack, and shows how they can be 

used to compromise a k-anonymous dataset. Homogeneity 

Attack: Alice and Bob are antagonistic neighbors. One day 

Bob falls ill and is taken by ambulance to the hospital. Having 

seen the ambulance, Alice sets out to discover what disease 

Bob is suffering from. Alice discovers the 4-anonymous table 

of current inpatient records published by the hospital (Figure 

3), and so she knows that one of the records in this table 

contains Bob’s data. Since Alice is Bob’s neighbor, she knows 

that Bob is a 31-year-old American male who lives in the zip 

code 13053. Therefore, Alice knows that Bob’s record number 

is 9, 10, 11, or 12.Now, all of those patients have the same 

medical condition (cancer), and so Alice concludes that Bob 

has cancer. 

 

Table 3:  4-Anonymous Inpatient Micro data 

 

 Non-Sensitive Sensitive 

 
Zip 

Code 
Age Nationality Condition 

1 

2 

3 

4 

130** 

130** 

130** 

130** 

<30 

<30 

<30 

<30 

* 

* 

* 

* 

Heart Disease 

Heart Disease 

Viral Infection 

Viral Infection 

5 

6 

7 

8 

1485* 

1485* 

1485* 

1485* 

>_40 

>_40 

>_40 

>_40 

* 

* 

* 

* 

Cancer 

Heart Disease 

Viral Infection 

Viral Infection 

9 

10 

11 

12 

130** 

130** 

130** 

130** 

3* 

3* 

3* 

3* 

* 

* 

* 

* 

Cancer 

Cancer 

Cancer 

Cancer 

 

Observation 1: k-Anonymity can create groups that leak 

information due to lack of diversity in the sensitive attribute. 

Note that such a situation is not uncommon. As a back-of- 

the-envelope calculation, suppose we have a dataset 

containing 60,000 distinct tuples where the sensitive attribute 

can take 3 distinct values and is not correlated with the no 

sensitive attributes. A 5-anonymization of this table will have 

around 12,000 groups2 and, on average, 1 out of every 81 

groups will have no diversity (the values for the sensitive 

attribute will all be the same). Thus we should expect about 

148 groups with no diversity. Therefore, information about 

740 people would be compromised by a homogeneity attack. 

 

This suggests that in addition to k-anonymity, the sanitized 

table should also ensure “diversity” – all tuples that share the 

same values of their quasi-identifiers should have diverse 

values for their sensitive attributes. Background Knowledge 

Attack: Alice has a pen friend named Umeko who is admitted 

to the same hospital as Bob, and whose patient records also 

appear in the table shown in Figure 3. Alice knows that 

Umeko is a 21 year old Japanese female who currently lives 

in zip code 13068. Based on this information, Alice learns that 

Umeko’s information is contained in record number 1, 2, 3, or 

4. Without additional information, Alice is not sure whether 

Umeko caught a virus or has heart disease. However, it is well 

known that Japanese have an extremely low incidence of heart 

disease. Therefore Alice concludes with near certainty that 

Umeko has a viral infection. 

Observation 2: k-Anonymity does not protect against attacks 

based on background knowledge [4] 

 

4. l-DIVERSITY 
To address these limitations of k-anonymity, l-diversity is 

introduced as a stronger notion of privacy. The l-diversity 

principle: An equivalence class is said to have l-diversity if 

there are at least l “well-represented” values for the sensitive 

attribute. A table is said to have l- diversity if every 

equivalence class of the table has l-diversity. 

Following are a number of interpretations of the term “well 

represented” in this principle: 

1. Distinct l-diversity. The simplest understanding of “well 

represented” would be to ensure that there are at least l 

distinct values for the sensitive attribute in each equivalence 

class. Distinct l-diversity does not prevent probabilistic 

inference attacks. An equivalence class may have one value 

appear much more frequently than other values, enabling an 

adversary to conclude that an entity in the equivalence class is 

very likely to have that value. This motivated the development 

of the following stronger notions of l-diversity. 

2. Entropy l-diversity. The entropy of an equivalence class E 

is defined to be   

  

Entropy (E) = -
Ss

sEpsEp ),(log),(  

 

in which S is the domain of the   sensitive attribute and p(E, s) 

is the fraction of records in E that have sensitive value s. A 

table is said to have entropy l-diversity if for every 

equivalence class E, Entropy (E) ≥ log l. Entropy l-diversity is 

stronger than distinct l-diversity. As pointed out in [4], in 

order to have entropy l- diversity for each equivalence class, 

the entropy of the entire table must be at least log (l). 

Sometimes, this may too restrictive, as the entropy of the 

entire table may be low if a few values are very common. This 

leads to the following less conservative notion of l-diversity. 

3.  Recursive (c, l)-diversity. Recursive (c, l)-diversity (c is a 

float number and l is an integer) makes sure that the most 

frequent value does not appear too frequently, and the less 

frequent values do not appear too rarely. Let m be the number 

of values in an equivalence class, and ri, 1 ≤ i ≤ m be the 

number of times that the i th most frequent sensitive value 

appears in an equivalence class E.Then, E is said to have 

recursive (c, l)-diversity if r1 < c (rl + rl+1+…+rm). A table is 

said to have recursive (c, l) -diversity if all of its equivalence 

classes have recursive (c, l)-diversity [5]. 
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Limitations of l -Diversity  

While the l-diversity principle represents an important step 

beyond k-anonymity in protecting against attribute disclosure, 

it has several shortcomings shown below l-diversity is 

insufficient to prevent attribute disclosure. Two attacks on l-

diversity are shown below. 

Skew ness Attack: When the overall distribution is skewed, 

satisfying l-diversity does not prevent attribute disclosure. 

Consider again Example 5. Suppose that one equivalence 

class has an equal number of positive records and negative 

records. It satisfies distinct 2-diversity, entropy 2-diversity, 

and any recursive (c, 2)-diversity requirement that can be 

imposed. However, this presents a serious privacy risk, 

because anyone in the class would be considered to have 50% 

possibility of being positive, as compared with the 1% of the 

overall population.  

Now consider an equivalence class that has 49 positive 

records and only 1 negative record. It would be distinct 2- 

diverse and has higher entropy than the overall table (and thus 

satisfies any Entropy l-diversity that one can impose), even 

though anyone in the equivalence class would be considered 

98% positive, rather than 1% percent. In fact, this equivalence 

class has exactly the same diversity as a class that has 1 

positive and 49 negative record, even though the two classes 

present very different levels of privacy risks. 

 

5. (n, t)-Closeness: A NEW PRIVACY 

MEASURE 
The (n, t)-closeness principle: An equivalence class E1 is said 

to have (n, t)-closeness if there exists a set E2 of records that is 

a natural superset of E1 such that E2 contains at least n 

records, and the distance between the two distributions of the 

sensitive attribute in E1 and E2 is no more than a threshold t. A 

table is said to have (n, t)-closeness if all equivalence classes 

have (n, t)-closeness. 

The intuition is that to learn information about a population of 

a large-enough size (at least n). One key term in the above 

definition is “natural superset”. Assume that we want to 

achieve (1000, 0.1)-closeness for the above example. The first 

equivalence class E1 is defined by (zip code=“476**”, 20 ≤ 

Age ≤ 29) and contains 600 tuples. One equivalence class that 

naturally contains it would be the one defined by (zip code= 

“476**”, 20 ≤ Age ≤ 39). Another such equivalence class 

would be the one defined by (zip code= “47***”, 20 ≤ Age ≤ 

29). If both of the two large equivalence classes contain at 

least 1,000 records, and E1’s distribution is close to (i.e., the 

distance is at most 0.1) either of the two large equivalence 

classes, then E1 satisfies (1,000, 0.1)-closeness. 

In the above definition of the (n, t)-closeness principle, the 

parameter n defines the breadth of the observer’s background 

knowledge. Smaller n means that the observer knows the 

sensitive information about a smaller group of records. The 

parameter t bounds the amount of sensitive information that 

the observer can get from the released table. A smaller t 

implies a stronger privacy requirement. 

In fact, Table 5 satisfies (1,000, 0.1)-closeness. The second 

equivalence class satisfies (1,000, 0.1)-closeness because it 

contains 2,000 > 1,000 individuals, and thus, meets the 

privacy requirement (by setting the large group to be itself). 

 

 

 

 

 

 

 The first and the third equivalence classes also satisfy (1,000, 

0.1)-closeness because both have the same distribution (the 

distribution is (0.5, 0.5)) as the large group which is the union 

of these two equivalence classes and the large group contains 

1,000 individuals. Choosing the parameters n and t would 

affect the level of privacy and utility. The larger n is and the 

smaller t is, one achieves more privacy and less utility. 

 

Table 4: Original Patients Table 

 ZIP Code Age Disease Count 

1 

2 

3 

4 

47673 

47674 

47605 

47602 

29 

21 

25 

23 

Cancer 

Flu 

Cancer 

Flu 

100 

100 

200 

200 

5 

6 

7 

8 

47905 

47904 

47906 

47907 

43 

48 

47 

41 

Cancer 

Flu 

Cancer 

Flu 

100 

900 

100 

900 

9 

10 

11 

12 

47603 

47605 

47602 

47607 

34 

30 

36 

32 

Cancer 

Flu 

Cancer 

Flu 

100 

100 

100 

100 

 

 

Table 5: An Anonymous Version of Table 4 

 ZIP Code Age Disease Count 

1 

2 

476** 

476** 

2* 

2* 

Cancer 

Flu 

300 

300 

3 

4 

479** 

479** 

4* 

4* 

Cancer 

Flu 

100 

900 

5 

6 

476** 

476** 

3* 

3* 

Cancer 

Flu 

100 

100 
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6. ANONYMIZATION ALGORITHM 
One challenge is designing algorithms for anonymizing the 

data to achieve (n, t)-closeness. This section, describes how to 

adapt the Mondrian multidimensional algorithm for (n, t)-

closeness model. Since t-closeness is a special model of (n, t)-

closeness, Mondrian can also be used to achieve t-closeness. 

------------------------------------------------------------------------- 

input: P is partitioned into r partitions {P1, P2,…..,Pr} 

output: true if (n, t)-closeness is satisfied, false otherwise 

------------------------------------------------------------------------- 

for every Pi 

if  Pi contains less than n records find=false 

for every Q ε Parent(P) and |Q| ≥ n 

if D[Pi, Q] ≤ t, find=true 

if find=false, return false 

return true 

-------------------------------------------------------------------------- 

Figure1. The Checking Algorithm 

The algorithm consists of three components:  

1) Choosing a dimension on which to partition;  

2) Choosing a value to split; and  

3) Checking if the partitioning violates the privacy 

requirement.  

Figure 1 gives the algorithm for checking if a partitioning 

satisfies the (n, t)-closeness requirement. Let P be a set of 

tuples. Suppose that P is partitioned into r partitions {P1; P 2; . 

. . ; P r}, i.e., Ui {Pi}= P and Pi ∩  P j =Ø ; for any i ≠ j. Each 

partition Pi can be further partitioned and all partitions form a 

partition tree with P being the root. Let Parent (P) denote the 

set of partitions on the path from P to the root, which is the 

partition containing all tuples in the table. If Pi (1 ≤ i ≤ r) 

contains at least n records, then Pi satisfies the (n, t)-closeness 

requirement. If Pi (1 ≤ i ≤ r) contains less than n records, the 

algorithm computes the distance between Pi and each partition 

in Parent (P). If there exists at least one large partition 

(containing at least n records) in Parent (P) whose distance to 

Pi (D [Pi; Q]) is at most t, then Pi satisfies the (n, t)-closeness 

requirement. Otherwise, Pi violates the (n, t)-closeness 

requirement. The partitioning satisfies the (n, t)-closeness 

requirement if all Pi s have (n, t)-closeness 

 

7. DISTANCE MEASUREMENT 
Now, the problem is to measure the distance between two 

probabilistic distributions. There are a number of ways to 

define the distance between them. Given two distributions P = 

( p1, p2, . . . , pm ), Q = ( q1, q2, . . . , qm ), two well-known 

distance measures are as follows:  

The variational distance is defined as  

D [P, Q] = ii

1

q-p 21


m

i

 

And the Kullback-Leibler (KL) distance is defined as  

      D [P, Q] = 
i

i
m

i

i

q

p
p log

1




 = H (P) – H (P, Q), 

Where H (P) = i
m

i
i pp log

1 
 is the entropy of P and H 

(P, Q) = i
m

i
i qp log

1 
 is the cross entropy of P and Q.  

These distance measures do not reflect the semantic distance 

among values. Recall Example 6 (Tables 2.6 and 2.7), where 

the overall distribution of the Income attribute is Q = {3k, 4k, 

5k, 6k, 7k, 8k, 9k, 10k, 11k}. The first equivalence class in 

Table 2.7 has distribution P1 = {3k, 4k, 5k} and the second 

equivalence class has distribution P 2 = {6k, 8k, 11k}. Our 

intuition is that P1 results in more information leakage than P 

2, because the values in P1 are all in the lower end; thus we 

would like to have D [P 2, Q] > D [P 2; Q]. The distance 

measures mentioned above would not be able to do so, 

because from their point of view, values such as 3k and 6k are 

just different points and have no other semantic meaning.  

In short, there is a metric space for the attribute values so that 

a ground distance is defined between any pair of values. Then 

there are two probability distributions over these values, and 

the distance between the two probability distributions to be 

dependent upon the ground distances among these values. 

This requirement leads to the Earth Mover’s distance (EMD). 

EMD is described and how to use EMD in the closeness 

measures.  

7.1 Earth Movers Distance 
The EMD is based on the minimal amount of work needed to 

transform one distribution to another by moving distribution 

mass between each other. Intuitively, one distribution is seen 

as a mass of earth spread in the space and the other as a 

collection of holes in the same space. EMD measures the least 

amount of work needed to fill the holes with earth. A unit of 

work corresponds to moving a unit of earth by a unit of 

ground distance. EMD can be formally defined using the well-

studied transportation problem. Let   P = (p1, p2, … pm ), Q = 

(q1, q2, … qm ),and dij be the ground distance between element i 

of P and element j of Q. We want to find a flow F = [ fij ], 

where fij is the flow of mass from element i of P to element j 

of Q that minimizes the overall work: 

                    WORK (P, Q, F) = ij

m

i

m

j

ij fd
 1 1

 , 

In the next section, formulas are derived for calculating EMD 

for the special cases that are needed to consider. 
7.2 EMD for Numerical Attributes  
Numerical attribute values are ordered. Let the attribute 

domain be {v1, v2 . . . vm}, where vi is the ith smallest value. 

Ordered distance: The distance between two values of which 

is based on the number of values between them in the total 

order, i.e., ordered_ dist (vi; vj) = |i-j| /m-1 It is 

straightforward to verify that the ordered-distance measure is 

a metric. It is nonnegative and satisfies the symmetry property 

and the triangle inequality. To calculate EMD under ordered 

distance, it is only needed to consider flows that transport 

distribution mass between adjacent elements, because any 

transportation between two more distant elements can be 

equivalently decomposed into several transportations between 

adjacent elements. Based on this observation, minimal work 

can be achieved by satisfying all elements of Q sequentially. 

First consider element 1, which has an extra amount of p1 - q1. 

Assume, without loss of generality, that p1 - q1< 0, an amount 
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of q1 - p1 should be transported from other elements to element 

1. We can transport this from element 2. After this 

transportation, element 1 is satisfied and element 2 has an 

extra amount of (p1 - q1 ) +  ( p2 – q2 ). Similarly, we can satisfy 

element 2 by transporting an amount of |(p1 - q1 ) + ( p2 – q2 ) | 

between element 2 and element 3. This process continues until 

element m is satisfied and Q is reached.  

Formally, let ri = pi - qi, (i = 1, 2. . . m), then the distance 

between P and Q can be calculated as  

             

D [P, Q] = 121211 ......(
1

1



mrrrrrr

m
) 

               =    
1

1

m
 








mi

i

ij

j

jr
1 1

. 

 

8. RESULTS 
Here N can take any numeric value and T represents threshold 

value. For each group having less than N value is compared 

with all other groups and distance is calculated between them. 

If closeness is achieved for greater N value and small T value 

it represents more privacy. 

AnonymousData                                                              

When the Anonymous Data button is clicked on the output 

screen it displays all the patients’ records which are 

anonymized and grouped. After entering values for N and T 

click on NT Closeness button and save button, Then the EMD 

distance is calculated between the groups present in the 

anonymous table and the result is displayed as shown in the 

following figure 

9. CONCLUSION 
Initially the patients table having 60 records is created in the 

database. Then the quasi-identifier values in the table are 

replaced with the values that are less specific but semantically 

consistent. The table is anonymized which contains 9 groups 

i.e.., 27 records (9* 3=27). The proposed algorithm is 

implemented on the anonymized table to calculate the 

distance between the groups. A series of values for n ant t are 

taken to show the capability of the proposed algorithm 

 

10. SCOPE FOR FUTURE WORK 
Multiple sensitive attributes present additional challenges. 

Suppose if there are two sensitive attributes U and V. One can 

consider the two attributes separately, i.e., an equivalence 

class E has (n, t)-closeness if E has (n, t)-closeness with 

respect to both U and V. Another approach is to consider the 

joint distribution of the two attributes. To use this approach, 

one has to choose the ground distance between pairs of 

sensitive attribute values. A simple formula for calculating 

EMD may be difficult to derive, and the relationship between 

(n, t) and the level of privacy become more complicated. 

 

 

Fig 1. Anonymous Data Table 

  

Fig.2. The closeness can be verified by giving different values for N and T 
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