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ABSTRACT 

Algebraic complexity of different Algorithms in Signal 

Processing and Cryptography leads to a major problem and 

Researchers are trying to develop new Algorithms to solve 

these problems. To enhance the speed of the existing 

Algorithms, different number system have been found for 

point multiplication in elliptic curve cryptography and 

coefficient multiplication in digital signal processing manly 

for digital filter design. Among the different number system, 

DBNS, DBC, HBTJSF, w-NAF are efficient. Recently, to 

increase the speed again, TBNS, SDTBNS have been 

developed. There are different method to convert any integer 

or fraction into TBNS and hence SDTBNS. Here a new 

algorithm will be discussed which increase the conversion 

efficiency. 
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1. INTRODUCTION 
The complexities of multiplication and addition in multi-

exponentiation operation and points addition in ECC are the 

major problem in current signal processing and different 

cryptographic algorithms. This problem also arises in case 

of the coefficient multiplication in digital filter design. To 

speed-up these multiplication operation, Shamir proposed 

an algorithm [1][2] that eliminates the unnecessary separate 

computation of the two expressions. Shamir stated in [3], 

that two integers x and y can be expanded in the binary form 

at the same time and shown an extra savings of doublers and 

multipliers. He also proposed that if ‘n’ represents the bit 

length of the largest exponent, then average numbers of 

multipliers and doublers required are ‘3n/4’ and ‘n’. In 

ECC, where the operation [x]P + [y]Q is an important part 

to perform, the elements can be easily inverted using 

Shamir’s algorithm. Here the scalars x and y can be 

represented using a 2 n matrix as,  

x = (xn-1 xn-2 ………… x1 x0)  and 

y = (yn-1 yn-2 ………… y1 y0)  where xi and yi   {-1, 0, 1} 

For example 405 and 424 in NAF can be represented as 

405 = (1 0  ̅ 0 0 1 0 1 0 1) 

424 = (1 0  ̅ 0 1 0 1 0 0  ̅) 

Hence 210 and 324 simultaneously can be represented in 

2x9 matrix as  

 

(   
   

) = ( 
 

 
 

 ̅
 ̅

 
 

 
 

 
 

 
 

 
 

 
 

 
 ̅
)                                                    (1) 

 

It is to be noted that there are 7 non-zero columns. Shamir 

claimed that in this method of representation, only 5n/9 

additions and n + 1 doublings on average are required to 

calculate [x]P + [y]Q.  

Solinas in [4][5], introduced Joint Sparse Form(JSF) in 

order further reduce the average number of non-zero 

columns. In JSF, the integers 405 and 423 can be 

represented as  

 (   
   

) = ( 
 

 
 

 
 

 
 

 
 

 ̅
 

 
 

 ̅
 

 ̅
 ̅
)                                                      (2) 

Here it is to be noted that the non-zero columns have been 

reduced to 6. Hence requirement of doublers and adders will 

also be reduced. Solinas claimed in [4], that to calculate 

[x]P + [y]Q, n number of doublers and n/2 adders are 

required on average, where n is the number of column in the 

Solinas’s matrix.   

V. Dimitrov et. al. and C. Doche et al introduced in 

[1][6][8] a new number system, known as Joint Double-

Base Number System (JDBNS) to further reduce the 

number of non-zero columns. In JDBNS, two integers n and 

m can be represented as  

 ( 
 
) = ∑ (  

  
) 

           , where                          (3)                                     

Latter Dimitrov and Cooklev introduced in [6], Hybrid 

Binary-Ternary Number System (HBTNS) [1][7] to speed-up 

modular exponentiation. In HBTNS, an integer can be 

represented  as a sum of powers of 2 and powers of 3, i.e., it 

mixes bits and trits(ternary digits). The use of base 3 naturally 

reduces the number of digits required to represent a n-bit 

integer. It has been shown by Dimitrov et.al. in[6]  that the 

digit length is almost 12% smaller than the binary length. 

More importantly, this number system is also very sparse. The 

average number of non-zero digits in HBTNS is n/3 for an n-

bit number. 

For example, 405 and 423 in HBTNS can be represented as 

Digits[405] =  [0 0 0 0 1 0 1], Base[405] = [3 3 3 3 2 2 2]   

and  

Digits[423] = [0 0 1 1 1 1 0 1], Base[423] = [3 3 2 2 2 2 2 2]    

                                                                                            (4) 

Hence 405 and 423 can be represented as the sum of the 

product terms of the powers of the bases 2 and 3 using the 

above digits[] and base[] as 

405 = 34.20 + 34.22  and  423 = 32.20 + 32.21 + 32.22 + 32.23 + 

32.25   

It is to be noted that the binary length for both 405 and 423 

is 9. In [9], Ciet et. al. has introduced an Algorithm known 

as Joint Binary-Ternary Algorithm [JBTA]. Using this 

Algorithm,  a pair of integer, suppose n and m can be 

represented in the same way as shown by equ.(3), but here 

the upper limit of ‘i' will be less than that using JDBNS. 

This Algorithm, as claimed by Ciet et.al. in [9], further 

reduces the number of nonzero columns and hence speeds 

up modular exponentiation. They claimed that the average 

number of bits eliminated at each step of Algorithm in [9], 

denoted by ‘K’, is greater than or equal to 2.53519 and 

density which measures the ratio of the number of terms in 

the representation of any integer in JBTA and the binary 

length of the number, is proportional to the reciprocal of ‘K’ 

and its maximum value is 0.45. 

 

The expression for K  is given by  

 

K = ∑ ∑                  
   

 
                                     (5) 

Where        
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Again in [8], Adikari et. al. described an Algorithm known 

as  Hybrid Binary-Ternary Joint Sparse Form 

[HBTJSF][10][11] to further reduce the number of nonzero 

columns and hence to speed-up modular exponentiation and 

scalar multiplication. They claimed that to calculate [x]P + 

[y]Q, only 0.43n doublers, 0.36n triplers  and 0.32n adders 

are required. Here the average number of non-zero columns 

is 0.32n, where n is the bit length. 

Example 1: Representation of 405 and 423 in HBTJSF. 

Solution:    405 = [ 1 0 0 0 0  ̅ 0 0] 

                   423 = [ 1 0 0 0 0  ̅ 0 0] 

                  Base[] = [3 3 2 3 2 2 2 2]                                 (6)           

It is to be noted that in HBTJSF representation the number 

of non-zero columns is reduced to 3.  

From (6), it is clear that 405 = 33.24 – 33.20 and  

                                       423 = 33.24 – 32.20. 

 

Since HBTJSF uses the digit set { -2, -1, 0, 1, 2, 3}, total 

number of pre-computation required in this case is 14 which 

are P   Q, P   2Q, P   3Q, 2P   Q, 2P   3Q, 3P   Q and 

3P   2Q to calculate [x]P + [y]Q. In the next section a new 

Algorithm known as Triple-Base Hybrid Joint Sparse Form 

(TBHJSF)[] and its novelty for use in modular 

exponentiation and scalar multiplication will be discussed. 

2. TRIPLE-BASE HYBRID JOINT 

SPARSE FORM 
The algorithm proposed by S. Maitra et. al. in [12], Triple-

Base Hybrid Joint Sparse Form[TBHJSF]  is basically a 

modification of HBTJSF[8]. Here a third base, 5 is to be 

used in Base[] array. S. Maitra et. al. proposed that the base 

5 has been chosen here in order to perform decimal 

shifting[since 5*2 =10 when multiplied with 2.9 gives 29 

and hence if 29 can be represented in TBHJSF, 2.9 can also 

be computed from the representation of 29]. In this 

Algorithm, a pair of integers can be represented in TBHJSF 

by first checking whether the two integers are divisible by 5. 

If they are divisible by 5, the digits for both the integers will 

be set to 0, otherwise they should be checked whether they 

are divisible by 3. If they are divisible by 3, the digits for 

both the integers will be set to 0, otherwise the integers 

should be again checked whether they are divisible by 2. If 

they are divisible by 2, the digits for both the integers will 

be set to 0, otherwise both the integers are made divisible by 

30(2*3*5) by adding or subtracting x, where x   { -14, -13, 

-----, 0, 1, 2, --------- 15} and then the sum are divided by 2. 

The quotients are then treated as the two integers and the 

previous steps are then repeated until the quotients reach to 

zero. This Algorithm has been proposed in [12] 

------------------------------------------------------------------------ 

Algorithm  I 

------------------------------------------------------------------------ 

Input: Two positive integers m1 and m2 ; 

Output: Arrays Digit1[], Digit2[], Base[]; 

1. i = 0; 

2. while m1 > 0 or m2 > 0, do 

3. if  m1  0(mod 5) and m2   0(mod 5)   then 

4. base[i] = 5; 

5. Digit1[i] = Digit2[i] = 0; 

6. m1 = m1/5 , m2 = m2/5; 

7. else if m1  0(mod 3) and m2   0(mod 3)   then 

base[i] = 3; 

8. Digit1[i] = Digit2[i] = 0; 

9. m1 = m1/3 , m2 = m2/3; 

10. else if m1  0(mod 2) and m2   0(mod 2)   then 

11. base[i] = 2; 

12. Digit1[i] = Digit2[i] = 0; 

13. m1 = m1/2 , m2 = m2/2; 

14. else 

15. base[i] = 2; 

16. Digit1[i] = m1 mods 30, Digit2[i] = m2 mods 30 ; 

17. m1 = (m1 - Digit1[i])/2, m2 = (m2 - Digit2[i])/2 ; 

18. end if ; 

19. i = i + 1; 

20. end while;   

21. return Digit1[],Digit2[], base[]; 

------------------------------------------------------------------------ 

Example 2: Representation of 1234 and 2302 in TBHJSF.  

 

Sol: 1234 = ( 1    0     0     ̅      0     0        ̅̅̅̅       0 ) 

       2302 =  ( 1    0     0    8      0     0      11       0 ) 

     Base[] =  (2     3     5    2      3     5       2       2 )     

                                                                                           (7)                                                     

Using this Algorithm, the number of non-zero columns can 

be reduced to a large extent at the cost of the size of the pre-

computation look-up-table. Using the above Algorithm, 

1234 and 2302 in TBNS can be represented as  

1234 = 23.32.52 – 9.22. 31.51 – 13.2 and 2302 = 23.32.52 + 

8.22. 31.51 + 11.2 

 

Hence we require only three doublers, two triplers, two 

pentuplers and two adders to compute [x]P + [y]Q, where x 

and y are  1234 and 2302 . From the above example it clear 

that the number of adders required to represent any integer 

in TBNS[13][14][15] has been drastically reduced with 

respect to DBNS, HBTJSF, w-NAF etc. Here in the next 

section we will propose a new Algorithm to represent any 

integer in TBNS form and hence to compute scalar 

multiplication in ECC and co-efficient multiplication in 

DSP.  

3. PROPOSED ALGORITHM 
Here we will discuss a new Algorithm to convert any two 

integers in Joint Triple-Base Number System (JTBNS). It is 

supposed that x and y are two positive integers. At first they 

are divided by                   in order to obtain p and q, 

where p, q   , C being the set of all positive integer ‘m’ 
and ‘n’ so that                    . Here         = 

min              , where                 are the 2-adic 

valuation of m and n respectively.         gives the largest 

power of the base 2, that can divides ‘m’ and ‘n’ 

simultaneously[8][9]. Then the function, gain(p, q) is called. 

The common powers of 2, 3 and 5 are then eliminated in p 

  D and q   E, where D and E are the coefficients to 

maximize the factor gain(p, q). Hence the result will be new 

pair of positive integers in C. The process is the repeated. 

Since ‘p’ and ‘q’ decrease at each step and remain positive 

and at last a new pair can be obtained so that p    and q     

1. Then the process will be terminated. The different steps 

of the proposed algorithm are being discussed here. 

--------------------------------------------------------------------------- 

Algorithm II 

--------------------------------------------------------------------------- 

Input: Two positive integers x and y such that x > 1 and       

y > 1 

Output: Gain, Ai, Bi, Ci, Di and Ei, a Joint Triple-Base 

Chain. 

 

1.  i   0, gain   0, di   0, ei   0. 

 

2. Divide the two integers x and y by the maximum 

value of ai, bi and ci, where ai, bi and ci are the 
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power of 2, 3 and 5 in the form as    .    .     

either by adding 1 or subtracting 1 from the 

integers to make them divisible by    .    .    . 

Gain will be          .          .           and        i 

  1. 

 

3. Ai   0, Bi   0 and Ci   0, Di   0, Ei   0.    

 
4. Now x   (x   di)/( 

        .          .          ) 

and y   (y   ei)/( 
        .          .          ), Ai 

  Ai + max(ai), Bi   Bi + max(bi) and Ci   Ci + 

max(ci) , Di   di, Ei   ei. 

 

5. Repeat step1 to 4 

 

6. Return Gain, Ai, Bi, Ci, Di and Ei 

 

-------------------------------------------------------------------------------

 
Example 3: Convert 1234 and 2302 in JTBNS  

Solution: 

i Gain(G)  integer x   integer y  Di Ei Ai Bi Ci 

0 0  1234  2302  0 0 0 0 0               

1 21  1234   2  2302   2  0 0 0 0 0 

   = 617  = 1151 

2 21.31  (617+ 1)  6 (1151+ 1)   6  ̅   ̅  1 0 0 

   = 103  = 192   

3 31  (103 –1)  3 (192 + 0)  3    1 0 2 1 0 

      = 34  = 64 

4 51  (34+1)  5 (64+1)  5   ̅   ̅  2 2 0 

   = 7  = 13 

5 22  (7 + 1)  4 (13 - 1)  4  ̅  1 2 2 1 

   = 2  = 3 

6 31  (2 + 1)   3 (3 + 0)   3  ̅ 0 4 2 1 

   = 1  = 1 

7 ---  1 – 1 = 0  1 – 1 = 0  1 1 4 3 1 

 

Hence 

(    
     

)  = ( 
 
). 20.30.50 + ( ̅

 ̅
).21.30.50 + ( 

 
). 22.31.50 + ( ̅

 ̅
).22.32.50  + ( ̅

 
).22.32.51 + ( ̅

 
).24.32.51 + ( 

 
). 24.33.51                                 (8)

4. COMPLEXITY ANALYSIS 
Here we will compute the average density of JTBC obtained 

by Algorithm 2 and the average values of the maximal 

power of 2, 3 and 5 in the JTBC expansion. The average 

density gives the number of non-zero columns in the 

expansion and hence gives the average number of additions 

and the average values of the maximal power of 2, 3 and 5 

gives the number of doublers, triplers and pentuplers 

required to compute x[P] + y[Q]. To find out the density of 

expansion, two positive integers x and y, where x, y   C and 

three fixed values     and   are taken into consideration. 

To find the probability of the gain (x, y) =        to occur, 

the total number of pairs having the desired gain in a certain 

square are to be found out and then that number is to be 

divided by the total number of pairs in C       , where C = 

{ (x, y)                            = 0 } and         = { 

(x, y) )                            = 0 and gain(x, y) 

=          }. 

 

Now the total number of pairs in the square        is given 

by the following Lemma. 

 

Lemma 1: The cardinal number of the square         = [ 1, 

         ]2 is                 

                                                                                                                                                                          

Proof: Let A be a set of two positive integers x and y, i.e. A 

= { x, y }. Then the square set, A2 = { (x, x), (x, y), (y, x), 

(y, y) }. Here the cardinal number of A is 2 and that of A2 is 

4= 22. Now the cardinal number of [1,          ] is  

        . So the cardinal number of         = [ 1,          

]2 is (        )2 =            .   

 

Example 4:  The cardinal number of the square        = [1, 

        ]2 = { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), 

(2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), 

(3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (1,1), (5,2), (5,3), 

(5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) } is 

36.         

         

Lemma 2: The cardinality of C       , where C = { (x, 

y)                            = 0 } is equal to 

                

 

Proof: In the square S1,1,0, the number of pairs are (1,1), 

(1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), 

(2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), 

(4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), 

(6,2), (6,3), (6,4), (6,5), (6,6) among which (2,2), (2,4), 

(2,6), (3,3), (3,6), (4,2), (4,4), (4,6), (6,2), (6,3), (6,4) and 

(6,6), for these pairs,                           = 0. 

Hence  

 C         = { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), 

(2,3), (2,5), (3,1), (3,2), (3,4), (3,5), (4,1), (4,3), (4,5), (5,1), 

(5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,5)} and hence the 

cardinal number of C        = 24 = 22..1 +1.32..1 – 1. 52.0.  

Thus for any values of           , the cardinal number  of 

C        =                 .   

 

Let us now find out the probability        of the gain(x, y) 

which is the ratio of the total number of pairs having the 

desired gain in a certain square,        and  the total number 

of pairs in C       . Now for a larger square, 
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                     , total number of pairs having the gain 

         and  the total number of pairs in C have the same 

factor            .  

 

Lemma 3: In practice, for small pairs (x, y) and (x + i. 

              , y + j.               ), where (i, j) 

                    cannot have the same gain           

 

Proof: To prove this lemma let us consider a positive pair ( 

39,  139)  belongs to C. 

Gain of the pair ( 39,  139) is 22.30.51, when the coefficients 

are ( -1, -1) or (   ̅  ̅ ).  

 

Let us consider another pair ( 39 + 1.23.31.52, 139 + 2. 

23.31.52) = (639, 1339) belongs to C. 

Gain of the pair (639, 1339) = 22.30.51, when the 

coefficients are ( -1, -1) or (   ̅  ̅ ). 

But for large pairs, Lemma 3 is not true. In that case, we can 

consider Lemma 4, being discussed in the following. 

 

Lemma 4: For any three nonnegative integers,      , gain 

of a pair (                          ) belongs to C, 

where           are nonnegative integers such that     
                        and              , and (i, j) 

belongs to square set , will be equal to the gain of the pair 

(x, y) belongs to C. 

 

Proof: Let us assume that gain (               

          ) =               gain (x, y). If the coefficients 

corresponding the gain(x, y) is D  and E then  

 

   (               )      ,  

   (               )      , 

   (               )     
 
,  

   (               )     
 
 and 

   (               )     
 
,  

   (               )     
 
 

 

Now using the rule         = min              , where 

                are the p-adic valuation of m and n 

respectively and              and         gives the 

largest power of the base p, we get     

                                                                                                                                                        

                       
 
 and            

 
, 

                
        , p = 2, 3 and 5. Now if 

                
         , then it can be prove that 

            , again if                 
        , 

then             and if                 
        , 

then            . In a similar way we can prove that 

                       
 
 and            

 
, 

                
        , p = 2, 3 and 5 and if      

           
         ,             , if         

        
        , then             and if         

        
        , then           . Hence we can say 

that         and         are larger than 

minimum(    ). Similarly         and         are 

larger than minimum(    ) and         and         

are larger than minimum(    ). Now it has been assumed 

that                             and              , 

hence                       and hence gain(x, y) 

           which is contrary to the hypothesis and hence  

gain (                          ) = gain(x, y).          (9) 

Lemma 5:  The probability,        is bounded above by 
 

                for any non-negative integers          . 

 

Proof : There are 30 integers in the set [ 1,               
which are divisible by       . For example, in [1, 

              , the integers are 30, 60, 90, 120, 150, -------

---------, 900 and these are divisible by 30 =        . Again, 

taking into consideration the coefficients that belong to { 1, 

-1}, each elements can be represented into three integers, 

suppose for the element x0, there are three elements like x0 – 

1, x0 and x0 + 1 that are divisible by         Hence, in total 

there will be 90 integers in the set [ 1,               which 

are divisible by       . Hence in the square       , the pairs 

having gain =       , will be of the form (    
              ,                  ), where x0 and y0 are 

one of the 90 elements. Here i and j belong to [0, 

                         2. Hence the maximum 

number of pairs in the square         is 

                              with a gain       . Hence 

the probability         
 

               
 . 

Now if the gain(x, y) =       , the sizes of x and y will be 

reduced by                   bits and hence the 

average number of bits(denoted as ψ ) eliminated at each 

step of Algorithm II is given by  

 

Ψ = ∑ ∑ ∑                            
   

 
   

 
    

     = ∑ ∑ ∑
                 

               
 
   

 
   

 
                             (10)    

If we take,              , we get  ψ   3.1253. This 

values of  ,   and   are assumed because they cover almost 

100% of the cases. Density measure the ratio of the number 

of terms in the representation of any integer in any system 

and the binary length of the number and this is proportional 

to the reciprocal of ψ and its maximum value is 0.4 where 

the maximum value of density in JBTRS is 0.45. Since the 

density is less than that for JBTRS, the number of terms in 

the representation of any integer in JTBNS is also less and 

hence the number of adder required is also less which shows 

the novelty of the Proposed Algorithm. Again since the 

sequence in the JTBNS chain is arranged in descending 

order of the power of the bases of 2, 3 and 5, the first 

product term give the maximum power of the bases of 2, 3 

and 5. If these are represented as a1 , b1 and c1, then they can 

be written as  a1 = max{ ai, aj}, b1 = max{bi, bj} and c1 = 

max{ci, cj}, where ai, aj, bi, bj and ci, cj are the power of the 

base 2, 3 and 5 respectively in the joint expansion of the two 

integers m and n. The value of a1, b1 and c1 are max{ 0.3971 

      , 0.3971      },  max{ 0.1985      , 0.1985 

     } and  max{ 0.1241      , 0.1241      } 

respectively which are calculated based on the equation 

(11). Equ. (11) gives the average gain at each step and its 

value is equal to 5.0367. But the average gain at each step  

using JDBNS as mentioned in [8] is 4.3774 and the value of 

a1 and b1 accordingly are max{0.4569     , 

0.4569     } and max{ 0.3427      , 0.3427      } 

respectively, where  a1= max {ai, aj} and b1 = max{ bi, bj}, 

ai, aj and bi , bi being the exponents of the bases of 2 and 3 

respectively in the in the joint expansion of the two integers 

m and n. Table 1 gives a comparative study of JTBNS with 

respect to JDBC, JSF and JBTRS. 
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Average Gain at each step = ∑ ∑ ∑

                                                              

                                                           

                                                                 

            
 
   

 
   

 
                                          (11) 

Table 1 

Comparative study of JTBNS with respect to JSF (Joint Sparse Form), JDBC(Joint Double Base Chain) and 

JBTRS(Joint Binary Ternary Representation System) method for two integers 542788 and 462444. 

 

Method Density Number of 

doublers 

Number of 

triplers 

Number of 

pentuplers  

Number of 

adders 

JSF 0.5 19 - - 9 

JDBC 0.5 14 3 - 9 

JBTA 0.45 11 5 - 8 

HBTNS 0.4 10 5 - 4 

JTBNS 0.4 7 5 1 6 

 

From the above Table, it is clear that JTBNS is only 

comparable with HBTNS, but HBTNS requires a pre-

computation Look-up-table. Also the number of doublers 

required for HBTNS is more than that required for JTBNS at 

the cost of adders. But the complexity to design a doubler is 

more than to design an adder. Hence JTBNS is advantageous 

from all respect.     

5. CONCLUSIONS 
From the above discussions it is clear that using JTBNS 

Algorithm, it is possible to find out the product of the samples 

with the coefficients in designing a digital filter. Also in ECC, 

JTBNS finds it application to perform scalar multiplication 

and multi-scalar exponentiation. The conversion of a pair of 

integer can be achieved easily using the proposed algorithm 

with greater efficiency. The VHDL architecture following this 

Algorithm performs the said coefficient multiplication in DF 

and scalar multiplication in case of ECC. The design of the 

architecture that converts an integer into JTBNS form is also 

simple using less number of hardware as shown in Table 1.  
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