
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.5, August 2012

40

New Algorithm to Convert any Integer in TBNS

Subhashis Maitra
Kalyani Government Engineering Collage

Kalyani , Nadia, West Bengal, India

Amitabha Sinha
West Bengal University of Technology
Saltlake, Kolkata, West Bengal, India

ABSTRACT

Algebraic complexity of different Algorithms in Signal

Processing and Cryptography leads to a major problem and

Researchers are trying to develop new Algorithms to solve

these problems. To enhance the speed of the existing

Algorithms, different number system have been found for

point multiplication in elliptic curve cryptography and

coefficient multiplication in digital signal processing manly

for digital filter design. Among the different number system,

DBNS, DBC, HBTJSF, w-NAF are efficient. Recently, to

increase the speed again, TBNS, SDTBNS have been

developed. There are different method to convert any integer

or fraction into TBNS and hence SDTBNS. Here a new

algorithm will be discussed which increase the conversion

efficiency.

Keywords

DBC, DBNS, Digital Filter, DSP, ECC, HBTJSF, JSF, TBC,

TBHJSF, TBNS, w-NAF.

1. INTRODUCTION
The complexities of multiplication and addition in multi-

exponentiation operation and points addition in ECC are the

major problem in current signal processing and different

cryptographic algorithms. This problem also arises in case

of the coefficient multiplication in digital filter design. To

speed-up these multiplication operation, Shamir proposed

an algorithm [1][2] that eliminates the unnecessary separate

computation of the two expressions. Shamir stated in [3],

that two integers x and y can be expanded in the binary form

at the same time and shown an extra savings of doublers and

multipliers. He also proposed that if ‘n’ represents the bit

length of the largest exponent, then average numbers of

multipliers and doublers required are ‘3n/4’ and ‘n’. In

ECC, where the operation [x]P + [y]Q is an important part

to perform, the elements can be easily inverted using

Shamir’s algorithm. Here the scalars x and y can be

represented using a 2 n matrix as,

x = (xn-1 xn-2 ………… x1 x0) and

y = (yn-1 yn-2 ………… y1 y0) where xi and yi {-1, 0, 1}

For example 405 and 424 in NAF can be represented as

405 = (1 0 ̅ 0 0 1 0 1 0 1)

424 = (1 0 ̅ 0 1 0 1 0 0 ̅)

Hence 210 and 324 simultaneously can be represented in

2x9 matrix as

(

) = (

 ̅
 ̅

 ̅
) (1)

It is to be noted that there are 7 non-zero columns. Shamir

claimed that in this method of representation, only 5n/9

additions and n + 1 doublings on average are required to

calculate [x]P + [y]Q.

Solinas in [4][5], introduced Joint Sparse Form(JSF) in

order further reduce the average number of non-zero

columns. In JSF, the integers 405 and 423 can be

represented as

 (

) = (

 ̅

 ̅

 ̅
 ̅
) (2)

Here it is to be noted that the non-zero columns have been

reduced to 6. Hence requirement of doublers and adders will

also be reduced. Solinas claimed in [4], that to calculate

[x]P + [y]Q, n number of doublers and n/2 adders are

required on average, where n is the number of column in the

Solinas’s matrix.

V. Dimitrov et. al. and C. Doche et al introduced in

[1][6][8] a new number system, known as Joint Double-

Base Number System (JDBNS) to further reduce the

number of non-zero columns. In JDBNS, two integers n and

m can be represented as

 (

) = ∑ (

)

 , where (3)

Latter Dimitrov and Cooklev introduced in [6], Hybrid

Binary-Ternary Number System (HBTNS) [1][7] to speed-up

modular exponentiation. In HBTNS, an integer can be

represented as a sum of powers of 2 and powers of 3, i.e., it

mixes bits and trits(ternary digits). The use of base 3 naturally

reduces the number of digits required to represent a n-bit

integer. It has been shown by Dimitrov et.al. in[6] that the

digit length is almost 12% smaller than the binary length.

More importantly, this number system is also very sparse. The

average number of non-zero digits in HBTNS is n/3 for an n-

bit number.

For example, 405 and 423 in HBTNS can be represented as

Digits[405] = [0 0 0 0 1 0 1], Base[405] = [3 3 3 3 2 2 2]

and

Digits[423] = [0 0 1 1 1 1 0 1], Base[423] = [3 3 2 2 2 2 2 2]

 (4)

Hence 405 and 423 can be represented as the sum of the

product terms of the powers of the bases 2 and 3 using the

above digits[] and base[] as

405 = 34.20 + 34.22 and 423 = 32.20 + 32.21 + 32.22 + 32.23 +

32.25

It is to be noted that the binary length for both 405 and 423

is 9. In [9], Ciet et. al. has introduced an Algorithm known

as Joint Binary-Ternary Algorithm [JBTA]. Using this

Algorithm, a pair of integer, suppose n and m can be

represented in the same way as shown by equ.(3), but here

the upper limit of ‘i' will be less than that using JDBNS.

This Algorithm, as claimed by Ciet et.al. in [9], further

reduces the number of nonzero columns and hence speeds

up modular exponentiation. They claimed that the average

number of bits eliminated at each step of Algorithm in [9],

denoted by ‘K’, is greater than or equal to 2.53519 and

density which measures the ratio of the number of terms in

the representation of any integer in JBTA and the binary

length of the number, is proportional to the reciprocal of ‘K’

and its maximum value is 0.45.

The expression for K is given by

K = ∑ ∑

 (5)

Where

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.5, August 2012

41

Again in [8], Adikari et. al. described an Algorithm known

as Hybrid Binary-Ternary Joint Sparse Form

[HBTJSF][10][11] to further reduce the number of nonzero

columns and hence to speed-up modular exponentiation and

scalar multiplication. They claimed that to calculate [x]P +

[y]Q, only 0.43n doublers, 0.36n triplers and 0.32n adders

are required. Here the average number of non-zero columns

is 0.32n, where n is the bit length.

Example 1: Representation of 405 and 423 in HBTJSF.

Solution: 405 = [1 0 0 0 0 ̅ 0 0]

 423 = [1 0 0 0 0 ̅ 0 0]

 Base[] = [3 3 2 3 2 2 2 2] (6)

It is to be noted that in HBTJSF representation the number

of non-zero columns is reduced to 3.

From (6), it is clear that 405 = 33.24 – 33.20 and

 423 = 33.24 – 32.20.

Since HBTJSF uses the digit set { -2, -1, 0, 1, 2, 3}, total

number of pre-computation required in this case is 14 which

are P Q, P 2Q, P 3Q, 2P Q, 2P 3Q, 3P Q and

3P 2Q to calculate [x]P + [y]Q. In the next section a new

Algorithm known as Triple-Base Hybrid Joint Sparse Form

(TBHJSF)[] and its novelty for use in modular

exponentiation and scalar multiplication will be discussed.

2. TRIPLE-BASE HYBRID JOINT

SPARSE FORM
The algorithm proposed by S. Maitra et. al. in [12], Triple-

Base Hybrid Joint Sparse Form[TBHJSF] is basically a

modification of HBTJSF[8]. Here a third base, 5 is to be

used in Base[] array. S. Maitra et. al. proposed that the base

5 has been chosen here in order to perform decimal

shifting[since 5*2 =10 when multiplied with 2.9 gives 29

and hence if 29 can be represented in TBHJSF, 2.9 can also

be computed from the representation of 29]. In this

Algorithm, a pair of integers can be represented in TBHJSF

by first checking whether the two integers are divisible by 5.

If they are divisible by 5, the digits for both the integers will

be set to 0, otherwise they should be checked whether they

are divisible by 3. If they are divisible by 3, the digits for

both the integers will be set to 0, otherwise the integers

should be again checked whether they are divisible by 2. If

they are divisible by 2, the digits for both the integers will

be set to 0, otherwise both the integers are made divisible by

30(2*3*5) by adding or subtracting x, where x { -14, -13,

-----, 0, 1, 2, --------- 15} and then the sum are divided by 2.

The quotients are then treated as the two integers and the

previous steps are then repeated until the quotients reach to

zero. This Algorithm has been proposed in [12]

--

Algorithm I

--

Input: Two positive integers m1 and m2 ;

Output: Arrays Digit1[], Digit2[], Base[];

1. i = 0;

2. while m1 > 0 or m2 > 0, do

3. if m1 0(mod 5) and m2 0(mod 5) then

4. base[i] = 5;

5. Digit1[i] = Digit2[i] = 0;

6. m1 = m1/5 , m2 = m2/5;

7. else if m1 0(mod 3) and m2 0(mod 3) then

base[i] = 3;

8. Digit1[i] = Digit2[i] = 0;

9. m1 = m1/3 , m2 = m2/3;

10. else if m1 0(mod 2) and m2 0(mod 2) then

11. base[i] = 2;

12. Digit1[i] = Digit2[i] = 0;

13. m1 = m1/2 , m2 = m2/2;

14. else

15. base[i] = 2;

16. Digit1[i] = m1 mods 30, Digit2[i] = m2 mods 30 ;

17. m1 = (m1 - Digit1[i])/2, m2 = (m2 - Digit2[i])/2 ;

18. end if ;

19. i = i + 1;

20. end while;

21. return Digit1[],Digit2[], base[];

--

Example 2: Representation of 1234 and 2302 in TBHJSF.

Sol: 1234 = (1 0 0 ̅ 0 0 ̅̅̅̅ 0)

 2302 = (1 0 0 8 0 0 11 0)

 Base[] = (2 3 5 2 3 5 2 2)

 (7)

Using this Algorithm, the number of non-zero columns can

be reduced to a large extent at the cost of the size of the pre-

computation look-up-table. Using the above Algorithm,

1234 and 2302 in TBNS can be represented as

1234 = 23.32.52 – 9.22. 31.51 – 13.2 and 2302 = 23.32.52 +

8.22. 31.51 + 11.2

Hence we require only three doublers, two triplers, two

pentuplers and two adders to compute [x]P + [y]Q, where x

and y are 1234 and 2302 . From the above example it clear

that the number of adders required to represent any integer

in TBNS[13][14][15] has been drastically reduced with

respect to DBNS, HBTJSF, w-NAF etc. Here in the next

section we will propose a new Algorithm to represent any

integer in TBNS form and hence to compute scalar

multiplication in ECC and co-efficient multiplication in

DSP.

3. PROPOSED ALGORITHM
Here we will discuss a new Algorithm to convert any two

integers in Joint Triple-Base Number System (JTBNS). It is

supposed that x and y are two positive integers. At first they

are divided by in order to obtain p and q,

where p, q , C being the set of all positive integer ‘m’
and ‘n’ so that . Here =

min , where are the 2-adic

valuation of m and n respectively. gives the largest

power of the base 2, that can divides ‘m’ and ‘n’

simultaneously[8][9]. Then the function, gain(p, q) is called.

The common powers of 2, 3 and 5 are then eliminated in p

 D and q E, where D and E are the coefficients to

maximize the factor gain(p, q). Hence the result will be new

pair of positive integers in C. The process is the repeated.

Since ‘p’ and ‘q’ decrease at each step and remain positive

and at last a new pair can be obtained so that p and q

1. Then the process will be terminated. The different steps

of the proposed algorithm are being discussed here.

Algorithm II

Input: Two positive integers x and y such that x > 1 and

y > 1

Output: Gain, Ai, Bi, Ci, Di and Ei, a Joint Triple-Base

Chain.

1. i 0, gain 0, di 0, ei 0.

2. Divide the two integers x and y by the maximum

value of ai, bi and ci, where ai, bi and ci are the

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.5, August 2012

42

power of 2, 3 and 5 in the form as . .

either by adding 1 or subtracting 1 from the

integers to make them divisible by . . .

Gain will be . . and i

 1.

3. Ai 0, Bi 0 and Ci 0, Di 0, Ei 0.

4. Now x (x di)/(

 . .)

and y (y ei)/(
 . .), Ai

 Ai + max(ai), Bi Bi + max(bi) and Ci Ci +

max(ci) , Di di, Ei ei.

5. Repeat step1 to 4

6. Return Gain, Ai, Bi, Ci, Di and Ei

Example 3: Convert 1234 and 2302 in JTBNS

Solution:

i Gain(G) integer x integer y Di Ei Ai Bi Ci

0 0 1234 2302 0 0 0 0 0

1 21 1234 2 2302 2 0 0 0 0 0

 = 617 = 1151

2 21.31 (617+ 1) 6 (1151+ 1) 6 ̅ ̅ 1 0 0

 = 103 = 192

3 31 (103 –1) 3 (192 + 0) 3 1 0 2 1 0

 = 34 = 64

4 51 (34+1) 5 (64+1) 5 ̅ ̅ 2 2 0

 = 7 = 13

5 22 (7 + 1) 4 (13 - 1) 4 ̅ 1 2 2 1

 = 2 = 3

6 31 (2 + 1) 3 (3 + 0) 3 ̅ 0 4 2 1

 = 1 = 1

7 --- 1 – 1 = 0 1 – 1 = 0 1 1 4 3 1

Hence

(

) = (

). 20.30.50 + (̅

 ̅
).21.30.50 + (

). 22.31.50 + (̅

 ̅
).22.32.50 + (̅

).22.32.51 + (̅

).24.32.51 + (

). 24.33.51 (8)

4. COMPLEXITY ANALYSIS
Here we will compute the average density of JTBC obtained

by Algorithm 2 and the average values of the maximal

power of 2, 3 and 5 in the JTBC expansion. The average

density gives the number of non-zero columns in the

expansion and hence gives the average number of additions

and the average values of the maximal power of 2, 3 and 5

gives the number of doublers, triplers and pentuplers

required to compute x[P] + y[Q]. To find out the density of

expansion, two positive integers x and y, where x, y C and

three fixed values and are taken into consideration.

To find the probability of the gain (x, y) = to occur,

the total number of pairs having the desired gain in a certain

square are to be found out and then that number is to be

divided by the total number of pairs in C , where C =

{ (x, y) = 0 } and = {

(x, y)) = 0 and gain(x, y)

= }.

Now the total number of pairs in the square is given

by the following Lemma.

Lemma 1: The cardinal number of the square = [1,

]2 is

Proof: Let A be a set of two positive integers x and y, i.e. A

= { x, y }. Then the square set, A2 = { (x, x), (x, y), (y, x),

(y, y) }. Here the cardinal number of A is 2 and that of A2 is

4= 22. Now the cardinal number of [1,] is

 . So the cardinal number of = [1,

]2 is ()2 = .

Example 4: The cardinal number of the square = [1,

]2 = { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1),

(2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5),

(3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (1,1), (5,2), (5,3),

(5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) } is

36.

Lemma 2: The cardinality of C , where C = { (x,

y) = 0 } is equal to

Proof: In the square S1,1,0, the number of pairs are (1,1),

(1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5),

(2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3),

(4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1),

(6,2), (6,3), (6,4), (6,5), (6,6) among which (2,2), (2,4),

(2,6), (3,3), (3,6), (4,2), (4,4), (4,6), (6,2), (6,3), (6,4) and

(6,6), for these pairs, = 0.

Hence

 C = { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1),

(2,3), (2,5), (3,1), (3,2), (3,4), (3,5), (4,1), (4,3), (4,5), (5,1),

(5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,5)} and hence the

cardinal number of C = 24 = 22..1 +1.32..1 – 1. 52.0.

Thus for any values of , the cardinal number of

C = .

Let us now find out the probability of the gain(x, y)

which is the ratio of the total number of pairs having the

desired gain in a certain square, and the total number

of pairs in C . Now for a larger square,

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.5, August 2012

43

 , total number of pairs having the gain

 and the total number of pairs in C have the same

factor .

Lemma 3: In practice, for small pairs (x, y) and (x + i.

 , y + j.), where (i, j)

 cannot have the same gain

Proof: To prove this lemma let us consider a positive pair (

39, 139) belongs to C.

Gain of the pair (39, 139) is 22.30.51, when the coefficients

are (-1, -1) or (̅ ̅).

Let us consider another pair (39 + 1.23.31.52, 139 + 2.

23.31.52) = (639, 1339) belongs to C.

Gain of the pair (639, 1339) = 22.30.51, when the

coefficients are (-1, -1) or (̅ ̅).

But for large pairs, Lemma 3 is not true. In that case, we can

consider Lemma 4, being discussed in the following.

Lemma 4: For any three nonnegative integers, , gain

of a pair () belongs to C,

where are nonnegative integers such that
 and , and (i, j)

belongs to square set , will be equal to the gain of the pair

(x, y) belongs to C.

Proof: Let us assume that gain (

) = gain (x, y). If the coefficients

corresponding the gain(x, y) is D and E then

 () ,

 () ,

 ()

,

 ()

 and

 ()

,

 ()

Now using the rule = min , where

 are the p-adic valuation of m and n

respectively and and gives the

largest power of the base p, we get

 and

,

 , p = 2, 3 and 5. Now if

 , then it can be prove that

 , again if
 ,

then and if
 ,

then . In a similar way we can prove that

 and

,

 , p = 2, 3 and 5 and if

 , , if

 , then and if

 , then . Hence we can say

that and are larger than

minimum(). Similarly and are

larger than minimum() and and

are larger than minimum(). Now it has been assumed

that and ,

hence and hence gain(x, y)

 which is contrary to the hypothesis and hence

gain () = gain(x, y). (9)

Lemma 5: The probability, is bounded above by

 for any non-negative integers .

Proof : There are 30 integers in the set [1,
which are divisible by . For example, in [1,

 , the integers are 30, 60, 90, 120, 150, -------

---------, 900 and these are divisible by 30 = . Again,

taking into consideration the coefficients that belong to { 1,

-1}, each elements can be represented into three integers,

suppose for the element x0, there are three elements like x0 –

1, x0 and x0 + 1 that are divisible by Hence, in total

there will be 90 integers in the set [1, which

are divisible by . Hence in the square , the pairs

having gain = , will be of the form (
 ,), where x0 and y0 are

one of the 90 elements. Here i and j belong to [0,

 2. Hence the maximum

number of pairs in the square is

 with a gain . Hence

the probability

 .

Now if the gain(x, y) = , the sizes of x and y will be

reduced by bits and hence the

average number of bits(denoted as ψ) eliminated at each

step of Algorithm II is given by

Ψ = ∑ ∑ ∑

 = ∑ ∑ ∑

 (10)

If we take, , we get ψ 3.1253. This

values of , and are assumed because they cover almost

100% of the cases. Density measure the ratio of the number

of terms in the representation of any integer in any system

and the binary length of the number and this is proportional

to the reciprocal of ψ and its maximum value is 0.4 where

the maximum value of density in JBTRS is 0.45. Since the

density is less than that for JBTRS, the number of terms in

the representation of any integer in JTBNS is also less and

hence the number of adder required is also less which shows

the novelty of the Proposed Algorithm. Again since the

sequence in the JTBNS chain is arranged in descending

order of the power of the bases of 2, 3 and 5, the first

product term give the maximum power of the bases of 2, 3

and 5. If these are represented as a1 , b1 and c1, then they can

be written as a1 = max{ ai, aj}, b1 = max{bi, bj} and c1 =

max{ci, cj}, where ai, aj, bi, bj and ci, cj are the power of the

base 2, 3 and 5 respectively in the joint expansion of the two

integers m and n. The value of a1, b1 and c1 are max{ 0.3971

 , 0.3971 }, max{ 0.1985 , 0.1985

 } and max{ 0.1241 , 0.1241 }

respectively which are calculated based on the equation

(11). Equ. (11) gives the average gain at each step and its

value is equal to 5.0367. But the average gain at each step

using JDBNS as mentioned in [8] is 4.3774 and the value of

a1 and b1 accordingly are max{0.4569 ,

0.4569 } and max{ 0.3427 , 0.3427 }

respectively, where a1= max {ai, aj} and b1 = max{ bi, bj},

ai, aj and bi , bi being the exponents of the bases of 2 and 3

respectively in the in the joint expansion of the two integers

m and n. Table 1 gives a comparative study of JTBNS with

respect to JDBC, JSF and JBTRS.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.5, August 2012

44

Average Gain at each step = ∑ ∑ ∑

 (11)

Table 1

Comparative study of JTBNS with respect to JSF (Joint Sparse Form), JDBC(Joint Double Base Chain) and

JBTRS(Joint Binary Ternary Representation System) method for two integers 542788 and 462444.

Method Density Number of

doublers

Number of

triplers

Number of

pentuplers

Number of

adders

JSF 0.5 19 - - 9

JDBC 0.5 14 3 - 9

JBTA 0.45 11 5 - 8

HBTNS 0.4 10 5 - 4

JTBNS 0.4 7 5 1 6

From the above Table, it is clear that JTBNS is only

comparable with HBTNS, but HBTNS requires a pre-

computation Look-up-table. Also the number of doublers

required for HBTNS is more than that required for JTBNS at

the cost of adders. But the complexity to design a doubler is

more than to design an adder. Hence JTBNS is advantageous

from all respect.

5. CONCLUSIONS
From the above discussions it is clear that using JTBNS

Algorithm, it is possible to find out the product of the samples

with the coefficients in designing a digital filter. Also in ECC,

JTBNS finds it application to perform scalar multiplication

and multi-scalar exponentiation. The conversion of a pair of

integer can be achieved easily using the proposed algorithm

with greater efficiency. The VHDL architecture following this

Algorithm performs the said coefficient multiplication in DF

and scalar multiplication in case of ECC. The design of the

architecture that converts an integer into JTBNS form is also

simple using less number of hardware as shown in Table 1.

6. REFERENCES
[1] Christophe Doche, David R. Kohel, and Francesco Sica,

“Double-Base Number System for Multi- scalar

Multiplications”, Draft, September, 9, 2008.

[2] Doche, C., Habsieger, L., “A Tree-Based Approach for

Computing Double-Base Chains”, in: Y. Mu, W. Susilo

and J. Seberry(Eds.), ACISP 2008, LNCS 5107, PP.

433-446, 2008, Springer-Verlag Berlin Heidelberg

2008.

[3] Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Nguyen,

K., Lange, T., Vercauteren, F.: Handbook of Elliptic

and Hyperelliptic Curve Cryptography, in: Discrete

Mathematics and its Application, Chapman and

Hall/CRC, Boca Raton(2005).

[4] J. A. Solinas, “Low-weight binary representations for

pairs of integers”, Center for Applied Cryptographic

Research, University of Waterloo, Waterloo,

ON, Canada, Research Report CORR 2001-41,

2001.

[5] Avanzi, R.M., Dimitrov, V.S., Doche, C., Sica, F.:

Extending Scalar Multiplication using Double Bases, in:

Lai, X., Chen, K.(Eds.), ASIACRYPT 2006,

LNCS, vol. 4284, pp. 130 – 144, Springer,

Heidelberg(2006).

[6] V. Dimitrov and T. V. Cooklev, “Two algorithm for

modular exponentiation based on nonstandard

arithmetic”, IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Science,

vol. E78-A, no. 1, pp. 82 -87, Jan. 1995, special issue

on cryptography and information security.

[7] A.D. Booth, “A Signed binary multiplication technique”,

Quarterly Journal of Mechanics and Applied

Mathematics, vol. 4, no. 2, pp. 236 – 240, 1951,

reprinted in E. E. Swartzlander, Computer Arithmetic,

vol. 1, IEEE Computer Society Press Tutorial,

Los Alamitos, CA, 1990.

[8] J. Adikari, V. Dimitrov, and L. Imbert. Hybrid Binary-

Ternary Joint Sparse Form and its Application in Elliptic

Curve Cryptography. Preprint, Available at:

http://eprint.iacr.org/2008.

[9] M. Ciet, M. Joye, K. Lauter, and P. L. Montgomery.

Trading Inversions for Multiplications in Elliptic Curve

Cryptography. Des. Codes Cryptogr., 39(2):189–

206, 2006.

[10] C. Doche and L. Imbert, “Extended double-base number

system with applications to elliptic curve cryptography”,

in Progress in Cryptography, INDOCRYPT’06,ser.

Lecture Notes in Computer Science, vol. 4329, Springer,

006, pp. 335 – 348.

[11] M. Ciet, T. Lange, F. Sica, and J. J. Quisquater.

Improved algorithms for efficient arithmetic on elliptic

curves using fast endomorphism. In Advances in

Cryptology – Eurocrypt 2003, volume 2656 of

Lecture Notes in Comput. Sci., pages 388– 400.

Springer-Verlag, 2003.

[12] S. Maitra, A. Sinha, “Triple-Base Hybrid Joint Sparse

Form and its Applications”, International Journal of

Computer Applications (0975 – 8887), vol. 43, No.

3, April, 2012.

[13] Pavel Sinha, Amitabha Sinha, Krishanu Mukherjee and

Kenneth Alan Newton, “Triple Base Number Digital

and Numerical Processing System”, Patent filed under

E. S. P. Microdesign Inc., Pennsylvania, U.S.A.,

U. S. Pat. App. No. 11/488, 138.

[14] S. Maitra, A. Sinha, “A Single Digit Tripple Base

Number System – A New Concept for Implementing

http://eprint.iacr.org/2008

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.5, August 2012

45

High Performance Multiplier Unit for DSP

Applications”, Proceedings of the sixth International

Conference on Information, Communication and

Signal Processing (ICICS2007), December, 10-

13,2007.

[15] V. S. Dimitrov, G. A. Jullien and W. C. Miller, “Theory

and Application of Double-Base Number System”,

IEEE Transaction on Computers, vol. 48, No. 10, pp-

1098-1106, October, 1999.

