
International Journal of Computer Applications (0975 – 8887)  

Volume 51– No.4, August 2012 

1 

The Replication in Varying Fanout Indexing Technique 
for Skewed Access Patterns in the Wireless Mobile 

Environments 
 

Mani Pandey   
Research Scholar 

AKGEC, Ghaziabad  

Vikas Goel 
Assistant Professor 
AKGEC, Ghaziabad 

 

ABSTRACT 

Due to limited battery power, the most important issue in 

mobile computing is energy saving. The energy efficiency can 

be achieved through indexed data organization over wireless 

channels. In this paper, we explore the balanced and 

imbalanced index tree with varying fanout over skewed data. 

We purpose a varying fanout indexing technique with 

replication for skewed data over a single wireless 

communication channel. The proposed indexing technique is 

compared and analyzed with the fixed fanout indexing 

technique for skewed data over a single wireless channel. The 

result shows the decrease in directory miss and the depth of 

the tree is also reduced. 

Keywords: Varying Fanout, skewed data, balanced index 

tree, Imbalance Index tree, and directory miss. 

1. INTRODUCTION  

In recent years, the utilization of wireless technology devices 

has been growing at an exponential rate.  For wireless data 

applications, the data dissemination methods are categorised 

between the two: point-to-point access and broadcast. In 

point-to-point access, a logical channel is established between 

the client and the server, where, queries are submitted to the 

uplink of server and returns the results to the client as in a 

wired network. In broadcast, data is transmitted 

simultaneously to all users who are residing in the broadcast 

area. It is to choice of a client to select the data it wants [1]. 

Data broadcasting is referred to as broadcasting which mainly 

transmits data, for example characters, shapes, still pictures, 

images, sounds etc., and differs from television broadcasting 

which mainly transmits  videos or radio broadcasting which  

transmits sounds only [13]. But there is problem lies with data 

broadcast, when a mobile client retrieve a data item, it has to 

continuously monitor the broadcast  channel until the data 

item of its interest arrives. This will consumes a lot of battery 

power. The limited battery capacity of mobile client’s device 

makes power conservation a critical issue in the design of 

broadcast systems. It is important for mobile clients for energy 

saving will operate in two different modes: active mode and 

doze mode. The mobile clients can retrieve data from 

broadcast channels in the active mode only. However, the 

clients have much higher rates of battery consumption in the  

active mode than in the doze mode. The wireless devices can 

stay in the power saving mode or doze mode and tune into the 

broadcast channel only when the data items of interest to them 

arrive, hence lots of energy of these devices can be saved 

[1].The efficiency of the broadcast channels is estimated by 

two criteria used frequently :access latency and tuning time. 

The access latency refers to how fast the client can access the 

requested data and tuning time refers to the duration for which 

the client stays active to receive the requested data items[13] . 

The performance of broadcast systems is always characterized 

by these two metrics. The tuning time can be reduced by 

means of air indexing. So by adding index information to the 

broadcast file one can save mobile device power battery. 

Without indexing, the clients have to be continuously active 

and monitor the broadcast channel until the requested data 

item would arrive. This consumes significant amount of 

battery power and sacrifices energy efficiency. So the issue is 

to save battery power with minimized access latency during 

data broadcast in the single channel where data and index can 

broadcasted in the same channel. 

The  broadcast disks in [7] takes into consideration for non-

uniform data access distribution. In this approach, the several 

data items with similar access rates are grouped together to 

form logical disks. Each disk is assigned a relative broadcast 

frequency, more popular items are assigned higher 

frequencies. The broadcast schedule is then constructed by 

circularly picking up items from the disks based on their 

relative broadcast frequencies. Another indexing technique 

proposed in [9], a signature-based indexing method. 

Specifically, a broadcast cycle is divided into a number of 

frames. Each frame is preceded by a signature of its data item 

in the broadcast schedule. This allows the client to check 

whether a requested item is in the frame by investigating the 

signature only. However, this signature does not provide the 

arrival times of data items. Thus, when a match is found in a 

signature, the data items which are indexed by the signature 

have to be searched sequentially. Moreover, since a signature 

does not contain global information about the broadcast, data 

accesses require sequential scans of signatures. In [1] authors 

applied the tree-based index designed for traditional disk 

storage to wireless data broadcast. The index nodes in the tree 

are interleaved with data items in the broadcast schedule. 

Starting from the root index node, the client follows the links 

in the tree and tunes to selected index nodes to locate the 

requested item.  The tree-based indexes are extended in [10, 

11] by constructing multiple index trees that share links. The 

resultant index structure allows searching to start at anywhere 

in the broadcast. Unfortunately, most tree-based indexes are 

applicable to flat broadcast only because they require data 

items be ordered by their key values in the broadcast schedule. 

Besides from tree-based indexes, hash functions can also be 

used for indexing purpose to map data items to the slots in the 

broadcast schedule [8]. A salient feature of hash-based index 

is that it eliminates the need to broadcast index structures, 

since only a hash function is broadcast together with data. 

While the broadcast overhead of a tree based index structure 

normally increases with the number of data items, the 

broadcast overhead of a hash function is largely independent 

of the latter. Another energy efficient indexing scheme called 

MHash that optimizes tuning time and access latency in an 

integrated fashion [14].   



International Journal of Computer Applications (0975 – 8887)  

Volume 51– No.4, August 2012 

2 

It is noted that, in most databases, the access frequencies of 

different data items are usually different from one another [2]. 

Among the selective tuning strategies, in [3] constant fanout 

(CF) and variant fanout (VF) index tree takes the access 

probabilities of data items into consideration. More popular 

data item may be frequently accessed by the mobile clients 

than the less popular ones. This is known as skewed data 

access. However, VF assumes the sorted data items according 

to the access probabilities and index tree is constructed 

according to this sorted order. But in real life applications, the 

index tree should be constructed according to the key values 

of the data items, not according to access probabilities. The 

Alphabetic Huffman tree [4],[5] preserve leaf ordering on any 

input sequence  used to construct them( similar to B+ Trees) 

,i.e., left-to-right  scan of the leaves of each tree will show the 

leaves ordering by their keys, and  function as search trees. In 

order to minimize the tuning time, we consider two cases : one 

for fixed index fanout, and one for variant index fanout 

considering k-ary Alphabetic Huffman tree construction. For 

the case of fixed index fanout ,in light of Alphabetic Huffman 

tree construction, we consider binary fanout. And for the case 

of variant index fanout we construct the k-ary Alphabetic 

Huffman tree which will produce varying fanout (between 2 

and k). In VF , the replication of  index nodes would not be 

considered. That means  mobile clients always have to wait 

for the next cycle to traverse the index tree to get the 

requested data, resulting in the increase of the access time. In 

this paper we will consider the replication of index nodes at 

fixed level of tree in both fixed index fanout tree and variant 

fanout tree. 

2. BACKGROUND  

In the wireless communication environment, a broadcast cycle 

consists of a collection of data items which are broadcasted 

cyclically on the wireless channel. The mobile client in the 

broadcast area listens to the channel to retrieve the data item 

of their interest. This is known as selective tuning [1]. If the 

data is broadcasted without any index, the mobile client will 

have to listen to the wireless channel, on the average, half of 

the total broadcasting time for the complete file. Hence by 

using proper indexing this selective tuning allows mobile 

clients to stay active only when the data of interest is present , 

thereby saving lot of battery consumption. In this section we 

will talk about the balanced and imbalanced index tree 

techniques. 

2.1 Balanced Index Trees 

Most of the prior work is on symmetric balanced index tree 

with all leaves are in the same level and essentially the same 

fanouts for all index nodes. B+ tree indexing is a widely used 

indexing technique in traditional disk-based environments. It 

is also one of the first indexing techniques applied to wireless 

environments. The use of B+ tree indexing in wireless 

environments is very similar to that of traditional disk based 

environments [15]. Indices are organized in B+ tree structure 

to accelerate the search processes. In [1] two indexing 

schemes based on B+ tree data structure, (1, m) indexing and 

distributed indexing, are presented and assumed as balanced 

index tree.  In distributed indexing, every broadcast data item 

is indexed on its primary key attribute. Indices are organized 

in a B+ tree structure. 

2.2 Imbalanced Index Trees  

In reality index trees may be imbalanced as the distance of 

leaf nodes from the root is not same or leaf nodes are not at 

the same level of the tree. Most examples of these trees are 

Huffman tree. It has been shown by experimental results that 

the use of imbalanced index trees will give considerable 

improvement in performance over the use of balanced trees, 

and such an advantage becomes even more prominent as the 

skewness of the data access increases [3]. 

 2.2.1 B
+
 - Tree Based Indexing 

The B+ Tree based distributed indexing  is a technique in 

which index is partially replicated introduced in [1] provides a 

method to multiplex it together with the corresponding data 

file on the broadcast channel. In this section we will consider 

two different states of B+Tree.  

 (A)Fixed Fanout 

The distributed indexing method is not a new method of index 

construction but a method of allocation of a file and its index 

on the broadcast channel. An index tree for four data items is 

shown in Fig1(a). The algorithm divides the index tree into 

two parts: the replicated part and the non-replicated part. The 

algorithm replicates only the replicated part (R), and the 

number of times each node appears in that part equals the 

number of its child nodes [1]. Moreover, each index node in 

the replicated part has the control index used to direct clients 

to a proper branch (a higher-level index node) in the index 

tree. 

On the other hand, each node in the non-replicated part will 

appear only once in front of the set of data nodes it indexes. 

The distributed indexing traverses the index tree and allocates 

the index nodes and the data nodes to buckets in a broadcast 

cycle. The index node R is broadcasted first. Next, the sub tree 

rooted by index node A1 is traversed in preorder, resulting in 

< A1, 1, 2>. After that, since the root node R is in the 

replicated part, this node is broadcast again. Furthermore, 

traversal sequence < A2, 3, 4> of the sub tree rooted by index 

node A2 is appended to the broadcast cycle. Each data bucket 

contains the offset to the nearest-replicated index bucket [12].

 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 51– No.4, August 2012 

3 

A 

B2 B1 

1 2 3 4 

A 

B1 1 

2 3 4 

.53 

.23 .14 .1

 

1 

Replicated Part 

Non Replicated 

Part 

Fig. 1(a) A distributed index tree (b) A VF index tree 

(B) Varying  Fanout 

In [3], Chen proposed the variant fanout for the wireless 

broadcast. Fig 1(b) illustrates the Varying fanout index tree of 

four data items. The VF assumes that the broadcast data items 

are sorted according to the descending order of their access 

probabilities. The algorithm first attaches all the data items to 

the root node A, then after some evaluation, VF groups nodes 

with small access probabilities and moves them down to next 

level [3]. Finally the index node B1 is attached to the root A 

according to descending order of access probability of data 

item and the same grouping process is proceeded to the root 

node A. Fig 1(b) shows the final VF index tree which is 

imbalanced. 

2.2.2 Huffman Based Indexing  

The Huffman tree construction considers the minimum 

frequency sum so that the index pointers of more popular data 

items are higher up in the tree than others. However , the 

Huffman tree constructed [4] not a search tree since users will 

need to know the encoding of a file before they can traverse 

the tree for the given file. To illustrate we show in Fig 2. a 

regular 3–ary Huffman tree constructed from Table 1[4].  We 

can see from Fig. 2 that the index pointers are at different 

levels of the tree based on the popularity information, there is 

no way of traversing the tree to find a desired pointer by 

knowing only its key. Hence the only way to access a specific 

leaf is to know its Huffman code. 

However this is a problem for mobile client since they only 

have the key of the file they are searching for. The mobile 

client cannot know the Huffman code of the desired file in 

advance since the code depends on the popularity patterns of 

other files being broadcasted at that time and may change over 

time. There exists a special class of Huffman tree known as 

Alphabetic Huffman tree [4] [5] which function as search tree 

and preserve the leaf ordering.

 

Table 1:Files and their popularity patterns 

      

     

 

                              

Fig. 2 The Huffman Tree 

Key    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Frequency 23 4 12 10 17 31 15 21 29 19 7 12 16 14 20 

J O H 

B K D 

A I F 

E M G N L C 

0 2 

1 

0 
1 

2 
0 

1 
2 0 

1 
2 

0 1 2 0 1 2 
0 1 

2 



International Journal of Computer Applications (0975 – 8887)  

Volume 51– No.4, August 2012 

4 

(A) Fixed Fanout   

 Firstly, we construct the fixed fanout Alphabetic Huffman 

index tree considering binary fanout [4, 5] . For k=2 the 

fanout will be constant. Table2 is an example data set with 20 

data items considered in [6], which will be continuously used 

for fixed and varying fanouts in the paper. The Alphabetic 

Huffman Tree is constructed in two steps given by Hu & 

Tucker in [5] shown in Fig 3 and Fig 4(a): 

Step1: Start with the initial sequence of data items d1, d2, 

d3,..........,dn,  having leaf nodes in their given order. Combine 

the data  nodes di , dj such that sum of their frequencies is the 

minimum  and there are no leaves between them and also di 

and dj  are the leftmost nodes among all candidates. A new 

sequence of data items d1, d2,...,di-1, d(i, j) ,di+2 ,...., dn where d(i, 

j)  is an index node and other are still leaf nodes ; now combine 

some adjacent with minimum frequency in this new sequence 

and replace the combined pair with sum  and so on. This will 

produce a tree T without alphabetic ordering of the data nodes 

as in Fig.3 where we record the frequencies of each index 

node inside the circle as index key values. 

Step 2: Now record the level of each data node of T denoted 

as Li . Consider the root node level is 1. From bottom to the 

root, rearrange the pointers such that for each level the 

leftmost two nodes have the same parent, and then the next 

two and so on [6]. Therefore Alphabetic Huffman Tree T’ is 

generated without changing the level of each node in T as 

shown in Fig. 4. 

We also extended this algorithm in the next section to 

construct k-ary (Varying Fanout) Huffman-Tree, by merging 

at most k nodes in step1, and combining up to k nodes with 

the same parent in step2. After generating the alphabetic 

Huffman tree T’ in Fig 4, we cut T’ at level l, and perform a 

depth first traversal. The index nodes above l are still called 

control index, and index nodes below l is search index. 

 

 

 

 

 Table 2. Files and their popularity patterns 

 

Fig 3  The first step of constructing T 

 

Key  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Frequency  23 4 12 10 17 31 15 21 29 19 7 12 16 14 20 48 11 22 18 8 

357 

200 157 

78 122 98 57 

40 57 65 38 50 16 33 26 

1 26 5 6 36 9 10 19 30 15 17 18 19 20 

16 4 

2 3 

7 8 11 12 13 14 



International Journal of Computer Applications (0975 – 8887)  

Volume 51– No.4, August 2012 

5 

 

Fig 4 The Final Huffman Tree T’ 

 (B) Varying Fanout 

In the modification of above Hu & Tucker algorithm , we 

allow at most k nodes to be combined into a single super-node 

during the passes in step1 , instead of two nodes in [5]. We 

also allow combining k leaf nodes if they are consecutive in 

the construction sequence, while the other cconditions remain 

the same. Also, the second step remains the same except that 

we allow up to k nodes to be join together to have the same 

parent (i.e. from 2 to k nodes. Since the conditions on 

combining nodes in the first step are modified minimally, we 

can still perform the reordering phase similar to that in [5]. In 

our example, the varying fanout number, k=3. So we can join 

2 or 3 nodes to have the same parent in the index tree .The k-

ary construction for the Table 2 is given in Fig 5. 

3. REPLICATION IN VARYING 

FANOUT (RVF) INDEX TREE 

The proposed replication in varying fanout index tree indexing 

technique is explained here. The replication at a certain fixed 

level in index trees would have been considered for varying 

fanout. The number of times a index node is replicated 

depends on the number of fanouts it has. we consider the same 

algorithm for the construction of k-ary Huffman Tree with 

three data items di , dj ,dk , such that they are consecutive and 

their frequency sum is minimum [5, 6]. The constructed 

alphabetic Huffman tree is a imbalanced index tree. The k-ary 

Alphabetic Huffman tree is shown in Fig 5, which is having  

replicated varying fanout.  

We cut the tree T’’ at level l so that the index nodes above l is 

still called control index, and index nodes below l is called 

search index. Now we will perform the depth first traversal of 

the replicated tree given in Fig 6(a) and hence the final 

broadcast sequence B generated in Fig 6(b). The index node A 

is traversed first. Next, the sub tree rooted by B1 is traversed , 

then B2 is traversed in preorder. Since root node A and its 

child nodes B1 and B2 are in the replicated part, these nodes 

are broadcasted again. As root node A is having its two child 

nodes B1 and B2 will be replicated two times. But the index 

node B1 is having child nodes  1, C1 and 9,  then it will 

replicated three times and B2 will also replicate three because 

it has its child nodes as C2, C3, C4.The important feature of 

this k-ary index trees is that we may end up with a tree with 

smaller depth resulting in smaller broadcast sequence. It is 

important to note that in the k-ary construction, it may not be 

always possible (or optimal) to combine k nodes together. 

Therefore this k-ary Alphabetic Huffman tree will have a 

fanout that varies between 2 and k.This indexing technique 

would solve the problem of directory miss which would be 

occurring in previous VF because replication is not 

considered. Moreover this technique would provide good  

result in terms average access time and tuning time also 

 

A 

B1 B2 

C1 C2 C3 C4 

D1 D2 D3 D4 D5 16 D6 D7 

1 E1 5 6 E2 9 10 E3 E4 15 17 18 19 20 

F1 4 

2 3 

7 8 11 12 13 14 

l =2 



International Journal of Computer Applications (0975 – 8887)  

Volume 51– No.4, August 2012 

6 

 
 

Fig 5 The k-ary Alphabetic Huffman Tree T’’

. 

 
 
  Fig 6 (a) The k-ary Alphabetic Huffman Index Tree T’’’with replication at l=2. 

 

 

A[2] B2[1] C2 10 D3 11 12 13 14 B2[2] C3 15 16 17 

 

B2[3] C4 18 19 20 

 

Fig 6(b) Broadcast sequence of k-ary Huffman tree T’’’ 

A[1] B1[1] 1 B1[2] C1 D1 2 3 4 D2 5 6 7 8 B1[3] 9 

357 

162 195 

110 79 

48 

26 63 

68 

35 16 

5 6 

9 

10 
15 17 18 19 20 

4 2 3 7 

8 

11 12 13 

14 

1 

A 

B1 B2 

C1 C3 

C4 

D1 D2 

C2 

D3 16 

5 6 

9 

10 
15 17 18 19 20 

4 2 3 7 

8 

11 12 13 

14 

1 

l= 2 



International Journal of Computer Applications (0975 – 8887)  

Volume 51– No.4, August 2012 

7 

4. ANALYSIS 

The analysis between fixed fanout Huffman tree and varying 

fanout Huffman tree with replication is carried out. The fixed 

fanout Huffman tree is cut at fixed level l, we get control 

indices above l and rest are the search indices and the data 

items below l. The broadcast sequence of fixed fanout 

Huffman Tree Fig.4 is generated in Fig .7. The control and the 

search indices are highlighted by shaded grey. Since in this 

broadcast sequence every control index node is replicated for 

fixed number of times (for example two times). The index 

node A is traversed first, then B1 and B2 is traversed. Since 

the root node A and its child nodes B1 and B2 are replicated, 

so they will appear twice in the broadcast sequence, or we can 

say for fixed number of times. After seeing the Broadcast 

sequence of varying fanout index tree in Fig. (b) we found that 

root node A is replicated two times as in broadcast sequence 

of fixed fanout. But the index node B1 of Fig. 7 is replicated 

two and that of Fig. 6(a) is three times. Likewise happen with 

index node B2 would replicate two times in fixed fanout index 

tree but three times in varying fanout index tree. Hence it is 

possible in varying fanout index tree the index nodes 

replication would vary at different levels of the tree. It has 

been found that the depth of fixed fanout index tree is deeper 

than the proposed varying fanout index tree. Now, by taking 

into account both the broadcast sequence, we found that the 

length of fixed fanout tree is larger than the varying fanout 

index tree.  

 

 

 

 

 

 Fig. 7 Broadcast sequence of Huffman Tree T’’ 

Table 3. Comparison between three index tree techniques 

Issues Replicated Fixed 

Fanout 

Replicated Varying Fanout 

(RVF) 

Non replicated Varying 

Fanout 

Replicated index nodes Fixed Vary Zero 

Depth of index tree Deeper Less deeper Same as RVF 

Length of broadcast sequence Larger Smaller Smallest 

Directory miss Decreased Decreased  Increased 

 

The theoretical analysis of replicated fixed fanout and varying 

fanout with non replicated varying fanout is provided in a 

Table 3.It has been found from comparison of replicated 

varying fanout (RVF) with replicated fixed fanout and non 

replicated varying fanout, that the proposed technique is a 

good solution for indexing with replication. 

5. CONCLUSION 

In this paper, we proposed a varying fanout indexing 

technique with replication for skewed data over a single 

wireless communication channel. Our proposed technique 

takes the frequency of each data item into consideration i.e. 

skewed pattern and accordingly generates the alphabetic 

Huffman tree. Then the replication is performed in the tree at 

any fixed level. The varying fanout tree is of smaller depth, 

which results a smaller broadcast sequence. The proposed 

indexing technique is compared and analyzed with the fixed 

fanout indexing technique for skewed data over a single 

wireless channel. The result shows the decrease in directory 

miss and the depth of the tree is also reduced. 

The performance analysis of the proposed technique based on 

two parameters i.e. access time and tuning time is the future 

work. 

6. REFERENCES 

[1]T. Imielinski, S. Viswanathan, and B. R. Badrinath. 

“Energy efficient indexing on air”. In Proceedings of the 

International Conference on SIGMOD, pages 25–36, 

1994. 

[2] A. Dan, D.M. Dias, and P.S. Yu, “The effect of Skewed 

Data Access on Buffer Hits and Data Contention in a 

Data Sharing Environment”, Proc. 16th  Large Dtabases 

Conf., pp.419-431, Aug.1990. 

[3] Chen , M.S., Wu, K.L, “ Optimizing index allocation for 

sequential data broadcast in wireless mobile computing”, 

IEEE Transactions on Knowledge and Data Engineering, 

15(1), pp. 161-173, 2003. 

[4] Shivakumar, N., Venkatasbramanian, S.,” Energy efficient 

indexing for Information Dissemination in wireless 

A[1] B1[1] C1 D1 1 E1 F1 2 3 4 D2 5 6 B1[2] C2 D3 E2 7 8 9 

D4 10 E3 11 12 A[2] B2[1] C3 D5 E4 13 14 15 16 

B2[2] C4 D6 17 18 C4 D7 19 20 



International Journal of Computer Applications (0975 – 8887)  

Volume 51– No.4, August 2012 

8 

Systems”, ACM Journal of Wireless and Nomadic 

Application ,1996. 

[5] Hu, T.C., Tucker, A.C.,“Optimal computer search trees 

and variable-length alphabetic codes“ ,SIAMJ. Applied 

Mathematics, 21(1), pp. 514-532, 1971. 

[6]Jiaofei Zhong ,Weili Wu and  Yan Shi, “ Energy Efficient 

Tree Based Indexing Schemes for Information Retrieval 

in Wireless Data Broadcast”, DASFAA 2011, Part II, 

LNCS 6588, pp.335-351, 2011. 

[7] S. Acharya, R. Alonso, M.J. Franklin, and S. Zdonik, 

“Broadcast Disks: Data Management for Asymmetric 

Communication Environments,” Proc. ACM SIGMOD 

’95, pp. 199-210, May 1995. 

[8]T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Power 

Efficient Filtering of Data on Air,” Proc. Fourth Int’l 

Conf. Extending Database Technology, pp. 245-258, 

Mar. 1994. 

[9] W.-C. Lee and D.L. Lee, “Using Signature Techniques for 

Information Filtering in Wireless and Mobile 

Environments,” Distributed and Parallel Databases, vol. 

4, no. 3, pp. 205-227, July 1996.  

[10]J. Xu, W.-C. Lee, and X. Tang, “Exponential Index: A 

Parameterized Distributed Indexing Scheme for Data on 

Air,” Proc. ACM/ USENIX MobiSys, pp. 153-164, June 

2004. 

[11]J. Xu, W.-C. Lee, X. Tang, Q. Gao, and S. Li, “An Error-

Resilient and Tunable Distributed Indexing Scheme for 

Wireless Data Broadcast,” IEEE Trans. Knowledge and 

Data Eng., vol. 18, no. 3, pp. 92-404, Mar. 2006. 

[12]J.Shen, Y.Chang,” A skewed distributed indexing for 

skewed access patterns on the wireless broadcast”, The 

Journal of Systems and Software 80(2007), Elsevier Inc., 

pp. 711-723, October,2006. 

[13] J.Xu, DL Lee,Q Hu and WC Le, “ Data Broadcast”, 

Chapter11, Handbook of wireless networks and mobile 

computing, 2002, pp.243-265. 

[14] Y. Yao, X. Tang, EP Lim and A. Sun,” An energy 

efficient and access latency optimized indexing Scheme 

for Wireless Data broadcast”, IEEE Trans. Knowledge 

and Data Eng.,vol. 18 no.8, pp. 1111-1124. August 2006. 

[15] X.Xang and A. Bougettaya,” Broadcast-Based Data 

Access in Wireless Environments”, EDBT 2002, LNCS 

2287, pp. 553-571, 2002. 

  

 


