
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.3, August 2012

38

A Genetic Algorithm based Approach for Change

Management in Enterprise IT Systems: Optimal Change

Scheduling

Habib-ur Rehman

National University of Computer & Emerging
Sciences (NUCES)

Islamabad
Pakistan

Irshad Khan
National University of Computer & Emerging

Sciences (NUCES)
Islamabad
Pakistan

ABSTRACT

In this paper, we provide a Genetic Algorithm (GA) based

approach for change management in Enterprise IT systems

which minimizes change delay and improves change capacity.

Change management evolves the implementation of change

queues on the set of applications which are running on one or

more servers. To implement these changes there are some

constraints involved: atomic nature of changes; when a

change is implemented then it cannot be interrupted; an

application has a specific downtime, which causes timing

constraint; applications that share same resources such as

servers have overlapping downtime which causes conflicts

among changes. In such complex system, scheduling of

changes becomes a difficult optimization task. GA has the

ability to optimize such constraint scheduling problems. Our

GA base scheduling improves throughput and minimizes

change delay of existing Capacity optimal Fluid Scheduling

algorithm.

General Terms

Genetic Algorithms, Optimal Change Scheduling.

Keywords

Genetic Algorithms, Optimal Change Scheduling, Enterprise

IT Systems, Fluid Scheduling.

1. INTRODUCTION
Scheduling is an optimization problem. In scheduling we want

to schedule and produce an effective queue to schedule. For

example, in operating systems we are interested in improving

throughput of the operating system. From a simple

environment to a complex environment scheduling is a

challenging task for scheduler. A complex system involves

constraints. e.g. Time table scheduling, change scheduling,

and process scheduling.

In the context of enterprise IT System, the scheduling task

involves the scheduling of changes to the software. Software

change means software updates that must be implemented to

those servers which are running applications to which the

changes are associated with. Conflicts may exist among

changes e.g. two changes of an application cannot be

implemented at the same time. There are some properties of

changes: a) A change is atomic in nature, therefore it must be

implemented on server without interrupting it, until it is not

completed, b) It has an estimated time for completion,

therefore it must be ensured that it should be completed before

the expiration of application permissible time. Those servers

and applications will be unavailable for clients which are

implementing changes.

The two basic constraints are scheduling constraint and timing

constraint. If the two changes associated with some

applications cannot be scheduled at the same time, then it is

called scheduling conflict. This is due to the overlapping of

resources such as servers on which these changes are going to

be implemented. Timing constraint involves the application

downtime window; downtime means that the application

cannot be available to client during that time. As we know

that in enterprise IT systems the applications are required to

be available to client on a 24/7 basis. It is important to note

that a change must be implemented at that time when

permissible downtime of that application is available [1].

Every change has an executor which executes changes on

specific application. An executor is a service specialist with

appropriate skill sets. The entire problem which we are going

to deal with in this paper consists of applications, servers,

change queues, and executors.

GA is an optimization technique based on the principal of

Darwin’s theorem, “survival of the fittest” [3], [7], [8]. GA

has the ability to optimally solve NP-Hard Problems. GA is

very good to solve such NP-Hard scheduling problems [4],

[7], [8]. It is an evolutionary algorithm that use the principal

of natural selection to evolve a set of solutions called

chromosomes towards an optimum solution.

The model used in our work is based on Genetic Algorithm to

solve the problem of change management. The problem is

also modeled and solved in [1]. The novelty of our work is to

design a GA to find out the optimal scheduler chromosome to

minimize the change delay and increase the change capacity

of the Enterprise IT system. Change capacity in general is the

ability of a system to achieve the maximal set of change

requests that can be scheduled [2].

The change scheduling policy is somehow analogous to time

table scheduling of a college. Time table scheduling is a

complex NP-Hard problem. Time table problem is very

efficiently solved using GA [9], [10] and it is basically the

prime motivation for our work.

2. PROPOSED MODEL
Our problem scenario has servers Si and applications Ai.

Figure 1 shows servers, s1, s2, s3, s4, where each server is

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.3, August 2012

39

Figure 1: Set of servers {s1}, {s1, s2}, {s2}, {s3}, {s4} are

used by applications a1, a2, a3, a4 and a5 respectively;

application conflicts are represented by dotted line.

running one or more applications from a1, a2, a3, a4, a5. The

conflict constraint is given by dotted line, which means that

a1 and a2 are said to be in conflict with each other because it

shares the same server S1, similarly a2 and a3 are said to be in

conflict with each other because it shares server S2.

Our model consists of a set of applications Ai and set of

servers Vi. The set of servers used by an application Ai is

represented by Vi where . We have set of changes C.

Each change is associated with a unique application, which is

represented by Ci. Two applications are said to be in conflict

if they use the same servers. i.e. Vi∩Vj≠φ. Therefore their

corresponding changes Ci and Cj will also be in conflict. An

application is also in conflict with itself if it has two changes

to be implemented. Therefore, its changes cannot be

scheduled at the same time. To keep in mind these notion and

timing constraints of applications, we use GA to solve this

problem. Note that change is atomic in nature; therefore, a

change should only be selected if it can be completed in the

permissible time of that application.

Approximate Capacity-optimal fluid scheduling algorithm is

used to solve the problem of change management [1]. The

authors used his model and algorithm in his earlier work to

consider the scheduling question for multichannel wireless

networks [5]. In the case of change scheduling, they consider

both fluid and approximate fluid regime. In the fluid regime

the change is considered as non atomic in nature. Once a

change is scheduled it can be preempted and scheduled again.

But it is not a valid scenario, because our change is atomic in

nature.

Our model is based on GA. GA performs sophisticated

scheduling in such a constrained environment like time table

scheduling solved by [6]. Authors model the time table

problem in the domain of GA. Literature survey shows that

the time table problem also consists of timing and conflict

constraints. This motivates our idea to use GA for change

scheduling optimization.

The GA can be performed as a local strategy or as a global

strategy. In local strategy the changes of a single application

represents a chromosome. While in global strategy the

changes of all applications that can complete within the

permissible time of application represents a chromosome.

3. PROPOSED TECHNIQUE
The proposed system has set of V servers which running the

set of applications A and have X executors. Each application

has downtime H hour in a day. When a change is arrived, it is

stored in the corresponding queue of that application to which

change is associated with, as shown in Table 1.

Table 1: Application Change Queues

Change c1 c2 c3 c4 d1 d2 d3

Application a1 a1 a1 a1 a2 a2 a2

Executor x1 x1 x2 x2 x1 x2 x1

Here c1, c2, c3 and c4 represent the number of available

changes for application a1, and d1, d2 and d3 represent the

number of available changes for application a2 and so on.

Each change is associated with an application and executor.

The above Queue represents an individual because we have

used global GA strategy. The drawback of local strategy is

that it only considers current application; hence we have

overlapping time of conflicting applications due to which

fragmentation loss can occur. Fragmentation loss means that

if the time window is 10 and there are four changes having

execution time 3, 4, 4 and 1 then only (4+4+1=9) hours can be

utilized optimally and 1 hour will be wasted. Changes are

queued in the queues U. It will ensure that the changes in the

queue U’ ϵ U are not in conflict with each other and each

change should be completed within the application

permissible time. Our GA based approach works as following:

The chromosome representation for GA is the collection of all

those changes which are currently available to schedule such

as c1, c2, c3, c6, c9, d1, d2, d3, e1, e2. Here c1, c2, c4, c6, c9

represent available changes of application a1; d1, d2, d3

represent available changes of application a2; e1, e2 represent

available changes of application a3, and so on.

The fitness of the chromosome is calculated to find a

chromosome which schedules the changes under the

constraints and increases the throughput of the systems:

 (1)

where c is the number of changes in the queue U’.

To create new population selection strategy is performed,

which selects two parents to generate a new offspring to

explore solution space. Selection is performed at random.

Crossover: to generate new offspring midpoint crossover

operator is performed to parents as shown below in Figure 2.

After crossover two off springs are created offspring1 and

offspring2. Offspring1 contains c1, c2, c4 from parent1, then

c1, c9, d2, d1 from parent2 and then the remaining d3, e1, e2

again from parent1. The same phenomenon is followed for

offspring2 as well.

Mutation: to ensure the diversity mutation operator is used

which randomly selects two genes (changes) of the created

offspring and swap it, as presented in Figure 3. After mutation

Parent 1 c1 e2e1d3d2d1c9c6c4c2

Parent 2 c6 e1e2d3d1d2c9c1c2c4

a) Crossover between parent1 and parent2

Offspring 1 c1 e2e1d3d1d2c9c1c4c2

Offspring 2 c6 e1e2d3d2d1c9c6c2c4

b) Two offspring after crossover

Figure 2: Crossover operator

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.3, August 2012

40

Offspring 1 c1 e1e1d3d2d1c9c1c4c2

Offspring 2 c1 e2e2d3d1d2c9c6c4c2

a) Before Mutation

Offspring 1 c1 e2e1d3d3d1c9c1c4c6

Offspring 2 c1 e1e2d2d1d2c9c2c4c2

b) After Mutation

Figure 3: Mutation Operator

the new mutated chromosomes are developed as in Fig. 3 (b).

For the construction of a complete chromosome we need a

repair method to ensure that all the available changes present

in the new offspring and there is no repeated gene in the

chromosome. After genetic operators chromosomes are given

to scheduler that will schedule it. The chromosomes may have

conflicting changes. Scheduler schedules changes and gives a

queue of those changes that are scheduled. The number of

changes scheduled by the scheduler for that chromosome will

be the fitness of that chromosome.

The objective function contains the maximization of total

changes scheduled by scheduler and minimizing the average

change delay.

 (2)

 (3)

where U is the queue scheduled by scheduler for chromosome

i of population p having changes k. And W is the average

waiting time of chromosome i of population p.

It is not necessary that a chromosome will have all the

changes that are available at that time. A chromosome will

have those changes which meet the permissible time of the

application, and it optimizes the capacity of the system.

The algorithm runs capacity optimal fluid scheduling CFS at

the side not considering the fluid regime. In CFS the system

consists of change queuing policy and change scheduling

policy. When a new change arrives, then change queuing

policy queues the change in the appropriate queue. While

change scheduling policy activates and reschedules when

permissible time of an application is activated or deactivated.

In change scheduling policy, all those queues do not consider

for scheduling whose completion time do not meet

permissible time of that application. The CFS faces the

problem of fragmentation loss.

Our proposed system involves change queuing policy and

change scheduling policy, the change scheduling policy is

based on GA. GA gives the optimal combination of changes

which increases the throughput and minimizes the average

change delay of the system. The pseudo code of our proposed

algorithm GA-CFS is given in Figure 4:

4. EXPERIMENT AND RESULTS
The experiments are carried out on the system having 2.27

GHz core 3 processor, 2GB Memory 32 bit window 7 home

premium. Java 2 SE, JDK 1.6 is used to program the

algorithm for simulating results.

Algorithm: GA-CFS

Step 1: Change Queuing Policy

Queue changes in the appropriate queue of application

Step 2: Run CFS parallel

Step 3: Change Scheduling Policy Using GA

Step a: Initialize the population randomly

Step b: repeat until the desire results achieved or

maximum iteration

Step c: calculate the fitness of individuals

Step d: selection; select the two chromosomes to

create new offspring

Step e: Crossover, Mutation

Step e: Repair

Step f: Finish

Figure 4: Algorithm: GA-CFS

Our simulation model consist 5 applications 4 servers as

shown in Figure 1. The changes arrive in continuously having

random execution time between 1 and 4. The changes

association to application is random. For example when 4

changes arrives it can be associated with application a1, a2 or

a2, a5 etc. The arriving time of changes is between 1 and 24.

The time window for application a1, a2, a3, a4, a5, are {1-8},

{6-13}, {12-19}, {11-20}, and {17-24} respectively. All the

results are obtained by averaging over 24000 hours.

The parameters for GA are set as below:

 Population: 30

 Generation: 5

 Crossover Rate: 80%

 Mutation Rate: 20%

The above parameters are set through empirical knowledge.

The generation is kept to 5 because the available solutions are

not too much. The population and generation parameter can

be changed according to solution space.

The results of GA-CFS, CFS, i-CFS, and Rand algorithm are

compared in this section. i-CFS (incremental CFS) schedule

changes one by one but break the changes when current

permissible time window of the application ended [1]. Rand

Figure 5: average change delay of CFS, GA-CFS, i-CFS,

and Rand

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.3, August 2012

41

work in the manner when a scheduling opportunity is

available the selection of changes is done at random from the

set of available changes.

The two major performance metrics observed are Change

Delay, Throughput. Average change delay means, the average

amount of time a change needs to wait before scheduling,

whereas the throughput means the number of changes

scheduled by a policy during a particular time window. The

two metrics are plotted against change rate, which is the

number of changes arrive in a day.

Figure 5 shows the average change delay. Initially both CFS

and GA-CFS perform equal but when the change rate

increased the result of GA-CFS is better than of CFS. i-CFS

and Rand have performed less than both CFS and GA-CFS.

Figure 6 shows the average throughput of CFS and GA-CFS

algorithms. Both algorithms performed same but GA-CFS

shows some good results when the change arriving rate

increased. Initially all the changes available are implemented

by both algorithms within time windows of applications, but

when the change arrival rate increased all the changes cannot

be implemented within the time window. Therefore

competition among changes involves, in this scenario GA

performs excellent because it checks different combination.

The performance comparison of CFS and GA-CFS shows that

GA-CFS performs well in both performance measures

i.e.,throughput and average change delay. The system will

perform well if the throughput of a system is high and average

change delay of a system is low. In order to observe the effect

of high change rate on Throughput, we increased the change

arrival rate. Figure 7 shows difference of CFS and GA-CFS as

the arrival rate increased. Whenever there is a competition

among events GA gives better solution, because it gives good

solution. GA also overcomes the fragmentation loss to some

extent.

In the simulation results as shown in figure 5, 6 and 7, the

performance of i-CFS is close but lower than CFS due to

fragmentation loss, where as Rand algorithm performs lower

than all the other algorithms because of the random nature of

selecting changes.

5. CONCLUSION
In our work we have provided a novel approach to optimize

change delay and throughput using genetic algorithm. The

performance of GA is distinct when the load is high i.e. the

arrival rate of change is high. Because GA assists when there

are more candidates for a particular time to perform. GA

provides an optimal candidate through its natural selection.

This work can be enhanced by tuning the operators for GA.

Our model can also provide good solution for other network

scheduling problems like in multi channel access point. As a

future work, we like to provide other meta–heuristics to solve

such problems.

6. REFERENCES
[1] P. Kumar et al., “Change Management in Enterprise IT

Systems: Process Modeling and Capacity-optimal

Scheduling”, Proc. IEEE INFOCOM 2010.

[2] L. Tassiulas and A. Ephremides, “Stability properties of

queueing systems and scheduling policies for maximum

throughput in multihop radio networks”, IEEE Trans on

Automatic Control, 37(12), 1992.

Figure 6: Average throughput of CFS, GA-CFS, i-CFS,

Rand

Figure 7: Average throughput of CFS, GA-CFS, i-CFS

and Rand in rapid increased change rate

[3] Davis L (Ed) (1991): “Handbook of Genetic

Algorithms”. New York: Van Nostrand Reinhold.

[4] X.Luo, K.Kar et al., “On Improving Change

Management Process for Enterprise IT Services”, Proc.

IEEE International Conference on Service Computing,

Washington, DC, USA, 2008.

[5] K. Kar, X. Luo and S. Sarkar, “Throughput-optimal

Scheduling in Multichannel Access Point Networks

under Infrequent Channel Measurements”, Proc. IEEE

Infocom 2007, Anchorage, AK, May 2007.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.3, August 2012

42

[6] S.S. Rawat, L. Rajamani, “A Timetable Prediction for

Technical Education System Using Genetic Algorithm”,

Journal of Theoretical and Applied Information

Technology, JATIT 2005-2010.

[7] L.M.Schmitt, “Fundamental Study Theory of Genetic

Algorithms”, International Journal of Modeling and

Simulation Theoretical Computer Science. 2001.

[8] J.H. Holland, Adaptation in Natural and Artificial

Systems, 2nd, MIT Press, Cambridge, MA, 1992.

[9] B. Sigl, M. Golub, and V. Mornar, “Solving Timetable

Scheduling Problem Using Genetic Algorithms”, 25th

International Conference Information Technology

Interfaces, Cavtat, Croatia, (2003).

[10] S. Ghaemi and M. T. Vakili, “Using a Genetic Algorithm

Optimizer Tool to solve University Timetable

Scheduling Problem”, Faculty of Electrical and

Computer Engineering, University of Tabriz, Tabriz,

Iran, TR-2006-2, (2006).

