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ABSTRACT 

In this paper, we provide a Genetic Algorithm (GA) based 

approach for change management in Enterprise IT systems 

which minimizes change delay and improves change capacity. 

Change management evolves the implementation of change 

queues on the set of applications which are running on one or 

more servers. To implement these changes there are some 

constraints involved: atomic nature of changes; when a 

change is implemented then it cannot be interrupted; an 

application has a specific downtime, which causes timing 

constraint; applications that share same resources such as 

servers have overlapping downtime which causes conflicts 

among changes. In such complex system, scheduling of 

changes becomes a difficult optimization task. GA has the 

ability to optimize such constraint scheduling problems. Our 

GA base scheduling improves throughput and minimizes 

change delay of existing Capacity optimal Fluid Scheduling 

algorithm. 
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1. INTRODUCTION 
Scheduling is an optimization problem. In scheduling we want 

to schedule and produce an effective queue to schedule. For 

example, in operating systems we are interested in improving 

throughput of the operating system. From a simple 

environment to a complex environment scheduling is a 

challenging task for scheduler. A complex system involves 

constraints. e.g. Time table scheduling, change scheduling, 

and process scheduling.  

In the context of enterprise IT System, the scheduling task 

involves the scheduling of changes to the software. Software 

change means software updates that must be implemented to 

those servers which are running applications to which the 

changes are associated with. Conflicts may exist among 

changes e.g. two changes of an application cannot be 

implemented at the same time. There are some properties of 

changes: a) A change is atomic in nature, therefore it must be 

implemented on server without interrupting it, until it is not 

completed, b) It has an estimated time for completion, 

therefore it must be ensured that it should be completed before 

the expiration of application permissible time. Those servers 

and applications will be unavailable for clients which are 

implementing changes.  

The two basic constraints are scheduling constraint and timing 

constraint. If the two changes associated with some 

applications cannot be scheduled at the same time, then it is 

called scheduling conflict. This is due to the overlapping of 

resources such as servers on which these changes are going to 

be implemented. Timing constraint involves the application 

downtime window; downtime means that the application 

cannot be available to client during that time. As we know 

that in enterprise IT systems the applications are required to 

be available to client on a 24/7 basis. It is important to note 

that a change must be implemented at that time when 

permissible downtime of that application is available [1]. 

Every change has an executor which executes changes on 

specific application. An executor is a service specialist with 

appropriate skill sets.  The entire problem which we are going 

to deal with in this paper consists of applications, servers, 

change queues, and executors.  

GA is an optimization technique based on the principal of 

Darwin’s theorem, “survival of the fittest” [3], [7], [8]. GA 

has the ability to optimally solve NP-Hard Problems. GA is 

very good to solve such NP-Hard scheduling problems [4], 

[7], [8]. It is an evolutionary algorithm that use the principal 

of natural selection to evolve a set of solutions called 

chromosomes towards an optimum solution.  

The model used in our work is based on Genetic Algorithm to 

solve the problem of change management.  The problem is 

also modeled and solved in [1]. The novelty of our work is to 

design a GA to find out the optimal scheduler chromosome to 

minimize the change delay and increase the change capacity 

of the Enterprise IT system. Change capacity in general is the 

ability of a system to achieve the maximal set of change 

requests that can be scheduled [2]. 

The change scheduling policy is somehow analogous to time 

table scheduling of a college. Time table scheduling is a 

complex NP-Hard problem. Time table problem is very 

efficiently solved using GA [9], [10] and it is basically the 

prime motivation for our work. 

2. PROPOSED MODEL 
Our problem scenario has servers Si and applications Ai. 

Figure 1 shows servers, s1, s2, s3, s4, where each server is 
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Figure 1: Set of servers {s1}, {s1, s2}, {s2}, {s3}, {s4} are 

used by applications a1, a2, a3, a4 and a5 respectively; 

application conflicts are represented by dotted line. 

running one or more applications from a1, a2, a3, a4, a5. The 

conflict constraint is given by dotted line, which means that 

a1 and a2 are said to be in conflict with each other because it 

shares the same server S1, similarly a2 and a3 are said to be in 

conflict with each other because it shares server S2. 

Our model consists of a set of applications Ai and set of 

servers Vi. The set of servers used by an application Ai is 

represented by Vi where . We have set of changes C. 

Each change is associated with a unique application, which is 

represented by Ci. Two applications are said to be in conflict 

if they use the same servers. i.e. Vi∩Vj≠φ. Therefore their 

corresponding changes Ci and Cj will also be in conflict. An 

application is also in conflict with itself if it has two changes 

to be implemented. Therefore, its changes cannot be 

scheduled at the same time. To keep in mind these notion and 

timing constraints of applications, we use GA to solve this 

problem. Note that change is atomic in nature; therefore, a 

change should only be selected if it can be completed in the 

permissible time of that application. 

Approximate Capacity-optimal fluid scheduling algorithm is 

used to solve the problem of change management [1]. The 

authors used his model and algorithm in his earlier work to 

consider the scheduling question for multichannel wireless 

networks [5]. In the case of change scheduling, they consider 

both fluid and approximate fluid regime. In the fluid regime 

the change is considered as non atomic in nature. Once a 

change is scheduled it can be preempted and scheduled again. 

But it is not a valid scenario, because our change is atomic in 

nature. 

Our model is based on GA. GA performs sophisticated 

scheduling in such a constrained environment like time table 

scheduling solved by [6]. Authors model the time table 

problem in the domain of GA. Literature survey shows that 

the time table problem also consists of timing and conflict 

constraints. This motivates our idea to use GA for change 

scheduling optimization.  

The GA can be performed as a local strategy or as a global 

strategy. In local strategy the changes of a single application 

represents a chromosome. While in global strategy the 

changes of all applications that can complete within the 

permissible time of application represents a chromosome. 

3. PROPOSED TECHNIQUE 
The proposed system has set of V servers which running the 

set of applications A and have X executors. Each application 

has downtime H hour in a day. When a change is arrived, it is 

stored in the corresponding queue of that application to which 

change is associated with, as shown in Table 1. 

Table 1: Application Change Queues 

Change c1 c2 c3 c4 d1 d2 d3 

Application a1 a1 a1 a1 a2 a2 a2 

Executor x1 x1 x2 x2 x1 x2 x1 
 

Here c1, c2, c3 and c4 represent the number of available 

changes for application a1, and d1, d2 and d3 represent the 

number of available changes for application a2 and so on. 

Each change is associated with an application and executor. 

The above Queue represents an individual because we have 

used global GA strategy. The drawback of local strategy is 

that it only considers current application; hence we have 

overlapping time of conflicting applications due to which 

fragmentation loss can occur. Fragmentation loss means that 

if the time window is 10 and there are four changes having 

execution time 3, 4, 4 and 1 then only (4+4+1=9) hours can be 

utilized optimally and 1 hour will be wasted. Changes are 

queued in the queues U. It will ensure that the changes in the 

queue U’ ϵ U are not in conflict with each other and each 

change should be completed within the application 

permissible time. Our GA based approach works as following: 

The chromosome representation for GA is the collection of all 

those changes which are currently available to schedule such 

as c1, c2, c3, c6, c9, d1, d2, d3, e1, e2. Here c1, c2, c4, c6, c9 

represent available changes of application a1; d1, d2, d3 

represent available changes of application a2; e1, e2 represent 

available changes of application a3, and so on. 

The fitness of the chromosome is calculated to find a 

chromosome which schedules the changes under the 

constraints and increases the throughput of the systems: 

  (1) 

where c is the number of changes in the queue U’. 

To create new population selection strategy is performed, 

which selects two parents to generate a new offspring to 

explore solution space. Selection is performed at random. 

Crossover: to generate new offspring midpoint crossover 

operator is performed to parents as shown below in Figure 2. 

After crossover two off springs are created offspring1 and 

offspring2. Offspring1 contains c1, c2, c4 from parent1, then 

c1, c9, d2, d1 from parent2 and then the remaining d3, e1, e2 

again from parent1. The same phenomenon is followed for 

offspring2 as well. 

Mutation: to ensure the diversity mutation operator is used 

which randomly selects two genes (changes) of the created 

offspring and swap it, as presented in Figure 3. After mutation 

Parent 1 c1 e2e1d3d2d1c9c6c4c2

Parent 2 c6 e1e2d3d1d2c9c1c2c4
 

a) Crossover between parent1 and parent2 

Offspring 1 c1 e2e1d3d1d2c9c1c4c2

Offspring 2 c6 e1e2d3d2d1c9c6c2c4
 

b) Two offspring after crossover  

Figure 2: Crossover operator 
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Offspring 1 c1 e1e1d3d2d1c9c1c4c2

Offspring 2 c1 e2e2d3d1d2c9c6c4c2
 

a) Before Mutation 

Offspring 1 c1 e2e1d3d3d1c9c1c4c6

Offspring 2 c1 e1e2d2d1d2c9c2c4c2
 

b) After Mutation 

Figure 3: Mutation Operator 

the new mutated chromosomes are developed as in Fig. 3 (b). 

For the construction of a complete chromosome we need a 

repair method to ensure that all the available changes present 

in the new offspring and there is no repeated gene in the 

chromosome. After genetic operators chromosomes are given 

to scheduler that will schedule it. The chromosomes may have 

conflicting changes. Scheduler schedules changes and gives a 

queue of those changes that are scheduled. The number of 

changes scheduled by the scheduler for that chromosome will 

be the fitness of that chromosome.  

The objective function contains the maximization of total 

changes scheduled by scheduler and minimizing the average 

change delay.  

  (2) 

  (3) 

where U is the queue scheduled by scheduler for chromosome 

i of population p having changes k. And W is the average 

waiting time of chromosome i of population p. 

It is not necessary that a chromosome will have all the 

changes that are available at that time. A chromosome will 

have those changes which meet the permissible time of the 

application, and it optimizes the capacity of the system.  

The algorithm runs capacity optimal fluid scheduling CFS at 

the side not considering the fluid regime. In CFS the system 

consists of change queuing policy and change scheduling 

policy. When a new change arrives, then change queuing 

policy queues the change in the appropriate queue. While 

change scheduling policy activates and reschedules when 

permissible time of an application is activated or deactivated. 

In change scheduling policy, all those queues do not consider 

for scheduling whose completion time do not meet 

permissible time of that application. The CFS faces the 

problem of fragmentation loss.  

Our proposed system involves change queuing policy and 

change scheduling policy, the change scheduling policy is 

based on GA. GA gives the optimal combination of changes 

which increases the throughput and minimizes the average 

change delay of the system. The pseudo code of our proposed 

algorithm GA-CFS is given in Figure 4: 

4. EXPERIMENT AND  RESULTS 
The experiments are carried out on the system having 2.27 

GHz core 3 processor, 2GB Memory 32 bit window 7 home 

premium. Java 2 SE, JDK 1.6 is used to program the 

algorithm for simulating results. 

Algorithm: GA-CFS 

Step 1: Change Queuing Policy  

Queue changes in the appropriate queue of application 

Step 2: Run CFS parallel 

Step 3: Change Scheduling Policy Using GA 

Step a: Initialize the population randomly 

Step b: repeat until the desire results achieved or 

maximum iteration 

Step c: calculate the fitness of individuals  

Step d: selection; select the two chromosomes to 

create new offspring 

Step e: Crossover, Mutation 

Step e: Repair 

Step f: Finish 

Figure 4: Algorithm: GA-CFS 

Our simulation model consist 5 applications 4 servers as 

shown in Figure 1. The changes arrive in continuously having 

random execution time between 1 and 4. The changes 

association to application is random.  For example when 4 

changes arrives it can be associated with application a1, a2 or 

a2, a5 etc. The arriving time of changes is between 1 and 24. 

The time window for application a1, a2, a3, a4, a5, are {1-8}, 

{6-13}, {12-19}, {11-20}, and {17-24} respectively. All the 

results are obtained by averaging over 24000 hours. 

The parameters for GA are set as below: 

 Population: 30  

 Generation: 5 

 Crossover Rate: 80%  

 Mutation Rate: 20% 

The above parameters are set through empirical knowledge. 

The generation is kept to 5 because the available solutions are 

not too much. The population and generation parameter can 

be changed according to solution space. 

The results of GA-CFS, CFS, i-CFS, and Rand algorithm are 

compared in this section. i-CFS (incremental CFS) schedule 

changes one by one but break the changes when current 

permissible time window of the application ended [1]. Rand 

 

 

Figure 5: average change delay of CFS, GA-CFS, i-CFS, 

and Rand 
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work in the manner when a scheduling opportunity is 

available the selection of changes is done at random from the 

set of available changes. 

The two major performance metrics observed are Change 

Delay, Throughput. Average change delay means, the average 

amount of time a change needs to wait before scheduling, 

whereas the throughput means the number of changes 

scheduled by a policy during a particular time window. The 

two metrics are plotted against change rate, which is the 

number of changes arrive in a day. 

Figure 5 shows the average change delay. Initially both CFS 

and GA-CFS perform equal but when the change rate 

increased the result of GA-CFS is better than of CFS. i-CFS 

and Rand have performed less than both CFS and GA-CFS. 

Figure 6 shows the average throughput of CFS and GA-CFS 

algorithms. Both algorithms performed same but GA-CFS 

shows some good results when the change arriving rate 

increased. Initially all the changes available are implemented 

by both algorithms within time windows of applications, but 

when the change arrival rate increased all the changes cannot 

be implemented within the time window. Therefore 

competition among changes involves, in this scenario GA 

performs excellent because it checks different combination. 

The performance comparison of CFS and GA-CFS shows that 

GA-CFS performs well in both performance measures 

i.e.,throughput and average change delay. The system will 

perform well if the throughput of a system is high and average 

change delay of a system is low. In order to observe the effect 

of high change rate on Throughput, we increased the change 

arrival rate. Figure 7 shows difference of CFS and GA-CFS as 

the arrival rate increased. Whenever there is a competition 

among events GA gives better solution, because it gives good 

solution. GA also overcomes the fragmentation loss to some 

extent.  

In the simulation results as shown in figure 5, 6 and 7, the 

performance of i-CFS is close but lower than CFS due to 

fragmentation loss, where as Rand algorithm performs lower 

than all the other algorithms because of the random nature of 

selecting changes. 

5. CONCLUSION 
In our work we have provided a novel approach to optimize 

change delay and throughput using genetic algorithm. The 

performance of GA is distinct when the load is high i.e. the 

arrival rate of change is high. Because GA assists when there 

are more candidates for a particular time to perform. GA 

provides an optimal candidate through its natural selection. 

This work can be enhanced by tuning the operators for GA. 

Our model can also provide good solution for other network 

scheduling problems like in multi channel access point. As a 

future work, we like to provide other meta–heuristics to solve 

such problems.  
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