
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

12

Analysis of a Modified RC4 Algorithm

T.D.B Weerasinghe
MSc.Eng, BSc.Eng (Hons),

MIEEE, AMIE (SL)
Software Engineer

IFS R&D International, 363,
Udugama, Kandy, Sri Lanka

ABSTRACT
In this paper, analysis of a simply modified RC4 algorithm is
presented. RC4 is the most widely used stream cipher and it is
not considered as a cipher that is strong in security. Many
alternatives have been proposed to improve RC4 key
generation and pseudo random number generation but the
thoughts behind this work is to try out a simple modification
of RC4’s PRGA, where we can mention like this:

Output = M XOR GeneratedKey XOR j

After having done the modification the modified algorithm is

tested for its secrecy and performance and analyzed over the

variable key length with respect to those of the original RC4.

The results show that the modified algorithm is better than the

original RC4 in the aspects of secrecy and performance.

General Terms
Symmetric Key Algorithms, Stream Cipher, RC4 KSG, RC4
PRGA

Keywords
Secrecy of RC4, Modified RC4

1. INTRODUCTION
RC4 is the most widely used stream cipher. In open literature

there are a lot of modifications done in-order to improve the

security and performance level of the particular algorithm. In

this research the focus was to slightly alter the Output

generation by adding one parameter into the XOR operation.

The initial idea behind this change was aroused by the article

published online by Likai Liu [7]. The intension behind this

concept was to check the secrecy level and performance by

doing the particular change and observe the results. Since

Shannon’s theories of secrecy of ciphers are not used regularly

in the area in Cryptography (in open literature); the idea was

to select them as the criterion for secrecy measurement.

Performance is analyzed by measuring the encryption time of

each cipher. B o t h s ecrecy and performance are analyzed

over the variable key lengths which varied from 64 bits to

1856 bits. (Key lengths of RC4 can vary from 40 bits to 2048

bits). All the algorithms were written in Java as well as the

time calculation (in microseconds) and secrecy measurements

are also done using two separate Java programs. To generate a

random alpha numeric character key, random character

generation in Java is used!

2. RC4 ALGORITHM
RC4 is the widely used stream cipher. In this section, the
original RC4 is described in a nutshell. The following
description is illustrated from a research work done by Yassir
Nawaz et. al. [1]

The RC4 algorithm has of two major parts: The key

scheduling algorithm (KSA) and the pseudo-random

generation algorithm (PRGA).

l - Length of the initial key in bytes
N - Size of the array S or the S-box in words.

Normally RC4 is used with a n = 8 and array size N = 28.

In the first phase of RC4 operation an identity permutation (0,

1..., N-1) is loaded in the array S. A secret key K (initial key)
is then used to initialize S to a random permutation by
shuffling the words in S. During the second phase, PRGA
produces random words from the permutation in S.

An iteration of the PRGA loop produces one output word that

constructs the running key stream (generated key stream). The

keystream is bit-wise XORed with the plaintext to obtain the

ciphertext. [1]

for i = 0 to (N-1)

S[i] = i;

j = 0;

for i = 0 to (N-1)

j = (j + S[i] + K[i mod l]) mod N;

swap (S[i], S[j])

i = 0, j =0;

Output Generation Loop:

i = (i+1) mod N;

j = (j+S[i]) mod N;

swap (S[i], S[j]);

Output = S[(S[i] + S[j]) mod N];

The general structures of KSA and PRGA are shown in the
above figrue. The original RC4 can be illustrated as follows
because n = 8 and N = 28 (256)

KSA:

for i = 0 to 255

S[i] = i;

j=0

for i = 0 to 255

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

13

j = (j+S[i]+K[i mod l]) mod 256;

swap S[i] and S[j];

 PRGA :

i = 0, j=0;

for x = 0 to L-1

i = (i+1) mod 256;

j = (j+S[i]) mod 256;

swap S[i] and S[j];

GeneratedKey = S[(S[i] + S[j]) mod 256] ;

Output = M[x] XOR GeneratedKey;

Where ‘M’ is the plain text message and
‘L’ is its length. [4]

3. MODIFIED RC4
Here is the pseudo code of the modified RC4:

KSA:

for i = 0 to 255
S[i] = i;

j=0

for i = 0 to 255

j = (j+S[i]+K[i mod l]) mod 256;

swap S[i] and S[j];

PRGA:

i = 0, j=0;

for x = 0 to L-1

i = (i+1) mod 256;

j = (j+S[i]) mod 256;

swap S[i] and S[j];

GeneratedKey = S[(S[i] + S[j]) mod 256] ;

Output = M[x] XOR GeneratedKey XOR j;

Where ‘M’ is the plaintext message and ‘L’ is its length. [4]

4. SECRECY OF CIPHERS

4.1 Definitions related to secrecy

Entropy:

Entropy of a message X, called H(X), is the minimum number
of bits needed to encode all possible occurrences (meanings)
of the message, assuming all messages are equally likely. [5]

 Entropy of a given message X is defined by the weighted

average:

n

H (X) P(xi) log P(xi)
1

Uncertainty:

Uncertainty of a message is the number of plaintext bits that
must be recovered when the message is scrambled in cipher
text in order to learn the plaintext. The uncertainty of a

message is measured by its entropy. [5] Higher the number of
bits, higher the uncertainty.

Equivocation:

Equivocation is the uncertainty of a message that can be
reduced by given additional information. [5]

 Equivocation is the conditional entropy of X given Y:

H Y (X) {X ,Y }P(X , Y) log 2 [PY (X)]

H Y (X) {Y }P(Y){X }PY (X) log 2 [PY (X)]

Secrecy of ciphers:

Secrecy of a cipher is calculated in terms of the key

equivocation Hc (K) of a key K for a given cipher text C;

that is the amount of uncertainty in K given C: [5]

H c (K) {C}P(C){K}Pc (K) log 2 [Pc (K)]

Note: This is the equation used in the secrecy calculation in

this research and it was used in some of my previous work

[2], [3] and all the above definitions were derived from

theories of Shannon related to entropy and secrecy. Claude

Elwood Shannon [April 30, 1916 – February 24, 2001] is

called the Father of Information Theory.

All the above equations/definitions are illustrated from the
lecture notes of Dr.Issa Traore of the University of Victoria,
British Columbia, Canada.

URL: www.ece.uvic.ca/~itraore/elec567-04/notes/elec6704-
6-2.pdf

4.2 Calculation of the secrecy of ciphers

How the calculation is done in the program:

 Consider the highlighted part first: That is the entropy of

K given the relevant cipher. (This cipher has come due to

this key)

o Calculate how often each key byte has

appeared in the key.

o And then calculate the probability of each byte

appears (given the cipher) in the key and get

the summation of Pc(K) * log2Pc(K).

 Then consider the other part: Calculating P(C) and the

summation.

o Calculate how often each cipher byte has

appeared in the cipher text.

o And then calculate the probability of each

byte appears in the key and get the summation

(for all possibilities of the cipher bytes). This

cipher is related to the above key; i.e. this

cipher is obtained by encrypting plain text

with the above key. Then get the

multiplication of the highlighted part and

http://www.ece.uvic.ca/~itraore/elec567-04/notes/elec6704-
http://www.ece.uvic.ca/~itraore/elec567-04/notes/elec6704-

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

14

P(C) is calculated and finally the summation

of all possibilities is calculated.

5. RESEARCH METHOD

5.1 Method for analyzing secrecy

This is done in two categories.

1. With a variable key length. (then the input text is

fixed; considered as a password)

2. With a variable data size. (then the key size is kept

fixed – 128 bits)

Category 1:

Secrecy values of ciphertexts related to different

key lengths ranging from 64 bits to 1856 bits are

obtained and the average value is calculated. For

each key length, to normalize the results,

experiment is carried-out for 100 random keys. For

example, if you consider a 64 bit key, then required

values are taken for 100 different 64 bit keys. Here,

the input is a constant/fixed value as the variable is

the key length. After calculations the comparison of

the average secrecy values of both RC4 and

modified RC4 ciphertexts is possible, over the

length of the random key.

Used input: #THARINDU_WEERASINGHE#

Thus, the secrecy analysis is done in the first

category!

Category 2:

 In this category the key length is fixed. (128 bits) Data

size has been varied from 10 KB to 100KB. Here, at each

instance the input is given as a text file containing alpha

numeric values.

5.1.1 Java method to calculate secrecy: [6]

public static double calculateSecrecy(byte[]

key, byte[] cipher, int start)

{

final double p_k = 1.0 * countedKey[i]

/ key.length;

final double p_c = 1.0 *

countedCipher[i] / cipher.length;

if (p_k > 0)

{

entropy += p_k * log2(p_k);

secrecy += -p_c * entropy;

}

}

return secrecy;

}

5.2 Method for analyzing performance

This is also done in two categories.

1. With a variable key length. (then the input text is

fixed; considered as a password)

2. With a variable data size. (then the key size is kept

fixed – 128 bits)

Category 1:

The encryption times (in microseconds) for different

key lengths (64 bits to 1856 bits) are measured and

the normalization is done similarly as in the secrecy

analysis. By comparing the average encryption

times of both RC4 and modified RC4 over the

length of the random key, the performance analysis

is done!

Category 2:

 In this category the key length is fixed. (128 bits)

Data size has been varied from 10 KB to 100KB.

Here, at each instance the input is given as a text file

containing alpha numeric values similarly as in the

secrecy analysis. Encryption time is measured under

the above normalization mechanism.

double entropy = 0;

double secrecy = 0;

final int[] countedKey =

countByteDistribution(key, start, key.length-

1);

final int[] countedCipher =

countByteDistribution(cipher, start,

cipher.length-1);

for (int i=0;i<256;i++)

{

5.3 Method of generating the initial key

With the help of java.security.SecureRandom and

java.math.BigInteger, streams of random

alphanumeric characters are generated.

Example code:

new BigInteger(40, random).toString(32);

Need to change the first parameter of the BigInteger

according to the required key length in bytes. E.g. If you need
a random key having a length of 40bytes then you need to
input 200 there. See below for the example:

new BigInteger(200, random).toString(32);

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

15

Key
Length/Bits

Average Encryption
Time of RC4/ µs

Average Encryption

Time of modified
RC4/ µs

64 101.4 97.3

320 84.1 74.2

576 85.7 76.5

832 88.2 78.7

1088 90.8 76.1

1344 91.1 77.6

1600 83.1 76.3

1856
85.1 80.3

5.4 Method of analyzing the overall results

The idea behind the research was to modify the existing RC4

algorithm in order to check how it responds towards the

secrecy of the cipher generated as well as the overall

performance of the algorithm. Since the secrecy calculation is

hardly used to evaluate security level of a cipher in open

literature, the focus was to check the secrecy of the generated

cipher text in order to evaluate the modified algorithm over

the original one! The variation of the secrecy over the

different key sizes is studied to give the result of the research

with respect to the secrecy. Initial thought (prior to the

outcome) was the secrecy level of the modified cipher should

be higher than that of the original cipher because the

modification leads to an additional operation. The average

secrecy is calculated by running the

Performance is measured by calculating the average

encryption time. All the tests were carried out in a machine

which has the following configuration:

 Intel® Core™ i3 CPU, M370 @ 2.40 GHz

 1.86 GB usable RAM

 MS Windows 7 Home Basic (32 bit)

6. RESULTS AND ANALYSIS

Table 1. Average Secrecy Value Vs Key Length

Fig 1: Average Secrecy Value Vs Key Length

Table 2. Average Encryption Time Vs Key Length

Key

Length/Bits
Average Secrecy of

RC4
Average Secrecy of

modified RC4

64 0.032519153 0.021913237

320 0.110192092 0.153905248

576 0.180718271 0.190528341

832 0.15384488 0.198225548

1088 0.148745008 0.204488399

1344 0.178802549 0.176788808

1600 0.1718984 0.219518034

1856
0.191389199 0.22001954

Fig. 2: Average Encryption Time Vs Key Length

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

16

Data Size/KB

Average
Encryption Time

of RC4/ µs

Average
Encryption Time
of modified RC4/

µs

10 2272 2146

20 4791 4059

30 6600 6393

40 7417 7173

50 8191 8227

60 9959 9351

70 9717 9616

80 10507 10389

90 11490 11777

100 12153 11997

Table 3. Average Secrecy Value Vs Data Size

Data Size/KB Average Secrecy

of RC4
Average Secrecy
of modified RC4

10 0.2032 0.2021

20 0.20658 0.20756

30 0.2016 0.20127

40 0.20759 0.2125

50 0.20879 0.2145

60 0.20333 0.20656

70 0.21173 0.21416

80 0.20387 0.2033

90 0.20134 0.20418

100 0.2029 0.20557

Fig. 3: Average Secrecy Value Vs Data Size

Table 4. Average Encryption Time Vs Data Size

Fig. 4: Average Encryption Time Vs Data Size

7. CONCLUSIONS AND FUTURE WORK

Conclusion with respect to password type inputs:

As shown by the Fig 1, modified RC4 has better average

secrecy than that of the original RC4. Both curves does not

have smooth variation because of the limited number of

samples, 100 to be précised (sample keys) taken for the

experiment. But if we can test this for larger number of

sample then the curve will have a smooth variation. If this is

further explained if we take one instance of the experiment:

consider the initial key length is 40 bits then we do have 2^40

number of possible keys. If we are to take the average secrecy

of the instance where we have the key length of 40 bits then

we need to get the secrecy values for all 2^40 keys which is

unrealistic. So, in this research 100 sample keys are

considered. (For measuring both secrecy and performance)

As far as the performance is concerned, the modified RC4 has

the upper hand of the original RC4. By looking at the graph

shown in the Fig 2, it is proved that the modification has lead

to decrease the encryption time; hence the higher performance

is achieved.

Conclusion with respect to the input messages that have

larger data sizes:
As depicted in Fig. 3 the secrecy of the modified RC4 against

the data size is more often than not, higher than that of

original RC4. But again the measurements and calculations

are done for 100 different keys (note: in this experiment the

key size is taken as the most common size used 128 bits) and

the curve could have been smoother if the numbers of samples

are higher. (E.g. 10000 samples)

When it comes to the performance, it is obvious that the

‘modification’ has improved the performance (refer: Fig.4)

General conclusion:
Thus, a conclusion can be made upon the evident results, as
the simple modification has done an enormous improvement
of the RC4 (regardless of the limited number of samples taken
– even for the limited number of keys modified RC4 gave
good results, thus it is clearly obvious that if more samples
were taken the results could have been much better. So, the
simple modification in made RC4 to give better secrecy and

performance simultaneously.

Suggested future work:
Same known plaintext attack for the modified RC4 and
original RC4 and evaluate the tolerance levels.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

17

REFERENCES
[1] Yassir Nawaz and Kishan Chand Gupta and Guang Gong.
2005. A 32-bit RC4-like Keystream Generator. In Cryptology

ePrint Archive: Report 2005/175.

[2] T.D.B Weerasinghe. 2012. Analysis of a Hybrid Cipher

Algorithm for Data Encryption. In IFRSA’s International

Journal of Computing, VOL.2 No.2, 397-401

[3]T.D.B Weerasinghe. 2012. Secrecy and Performance

Analysis of Symmetric Key Encryption Algorithms. In IAES

International Journal of Information and Network Security,

VOL.1 No.2, 77-87

[4] Allam Mousa and Ahmad Hamad. 2006. Evaluation of the

RC4 Algorithm for Data Encryption. In International Journal of

Computer Science and Applications, VOL.3, No.2, 44-56

[5] Lecture notes of Dr.Issa Traore of the University of

Victoria, British Columbia, Canada, related to secrecy of

ciphers. URL: www.ece.uvic.ca/~itraore/elec567-

04/notes/elec6704-6-2.pdf

[6] http://web17.webbpro.de/index.php?page=entropy

[7] http://lifecs.likai.org/2011/12/evaluating-rc4-as-

pseudo-random-number.html

http://www.ece.uvic.ca/~itraore/elec567-
http://www.ece.uvic.ca/~itraore/elec567-
http://web17.webbpro.de/index.php
http://web17.webbpro.de/index.php

