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ABSTRACT 
Model predictive control based direct neural controllers 

represent another class of computer application in the field of 

non-linear controls. These controllers can also be made adaptive 

such that the adaptation mechanism attempts to adjust a 

parameterized nonlinear controller to approximate an ideal 

controller. Various approximators such as linear mappings, 

polynomials, fuzzy systems, or neural networks can be used as 

parameterized nonlinear controller. In this paper, we proposed a 

model predictive control based neural network controller to 

control the liquid level in a surge tank, with respect to the 

reference input. The neural controller works on the normalized 

gradient-based approximator parameter update law used for a 

class of nonlinear discrete-time systems in direct cases. In our 

proposed design, the reduction in error is reached upon between 

the ideal and the actual controller and the direct adaptive 

control scheme is tested for performance via a simple surge 

tank example. The proposed controller algorithm performs well 

and can be physically implemented. 

Keywords 
Model predictive control, Direct neural control, Non linear 

systems.  

1. INTRODUCTION 
The present industrial scenario emphasizes on automated 

control to increase the productivity and improving the quality of 

products. In the case of process industries, more advanced and 

complex control systems needs to be implemented to fulfill the 

present needs. The non-linear process dynamics is a major area 

of research in the recent years. The neural approach to 

computation has emerged as the solution to tackle problems for 

which more conventional computational approaches have 

proven ineffective [1]-[4]. Model predictive control (MPC) 

techniques have been recognized as an efficient approach to 

improve operating efficiency and profitability. It has become an 

accepted standard for complex control problems in the process 

industries. It can be used for the control of non-linear systems if 

they are working around a reference set-point.  

However, if the set point is moved away from the nominal work 

point, the controller is less effective, or even detrimental to the 

system operation. One solution to this kind of control problem 

is to develop a non-linear model predictive control strategy. The 

neural networks have been shown to have good approximation 

capability for non-linear systems [5]. 

The aim of controller design is to construct a controller that 

generates control signals which in turn generate the desired 

plant output subject to given constraints. Predictive control tries 

to predict, the plant output for a given control signal. This tells 

in advance, the effect of control, and by this knowledge the best 

possible control signal is chosen. Various model structures have 

been reported in the literature for identification of the non-linear 

systems. Neural network model has received much attention in 

the field of chemical process control as it possesses powerful 

function approximation properties that make them useful for 

representing nonlinear models or controllers [6, 7]. 

A large number of predictive control schemes have been 

developed based on various neural networks like Multi Layer 

Perceptron (MLP) or Radial Basis Functions (RBF). The major 

requirement for the successful application of non-linear MPC 

based on a neural network model is an accurate nonlinear model 

and an efficient optimization algorithm. A Multi Layer 

Perceptron commonly uses the back propagation learning 

algorithm, which is essentially a non-linear steepest descent 

algorithm [8]. An MLP approach for designing of NNMPC 

controller is presented in [9].The fuzzy systems can also be 

used as approximators to approximate the controller in the 

direct case. One good candidate of fuzzy systems is the Takagi–

Sugeno fuzzy system (TSFS), which has shown to be successful 

in many applications [10]. 

In this paper, a control method based on prediction is developed 

for a nonlinear system of surge tank. Neural network model 

based on Radial basis function has been used to predict future 

plant behavior over a specified time horizon. The minimization 

routine of the control relevant cost function is based on the 

normalized gradient algorithm. 

2. PREDICTIVE NEURAL CONTROL 
Model Predictive Control (MPC), shown in Figure 1, optimizes 

the plant response over a specified time horizon [11]. This 

architecture requires a neural network plant model, a neural 

network controller, a performance function to evaluate system 

responses, and an optimization procedure to select the best 

control input. The optimization procedure can be 

computationally expensive. It requires a multi-step ahead 

calculation, in which the neural network model is used to 

predict the plant response. The neural network controller learns 

to produce the input selected by the optimization process. When 

training is complete, the optimization step can be completely 

replaced by the neural network controller. Here, the neural 

network controller is basically a Radial Basis Function 

neural network.
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Fig 1: Generalized model predictive control structure 

2.1 Radial Basis Function Networks  
Radial Basis Function Networks (RBFN) consists of 3 layers, 

an input layer, a hidden layer and an output layer. The hidden 

units provide a set of functions that constitute an arbitrary basis 

for the input patterns. hidden units are known as radial centers. 

The transformation from input space to hidden unit space is 

nonlinear whereas transformation from hidden unit space to 

output space is linear. The radial basis functions in the hidden 

layer produce a significant non-zero response only when the 

input falls within a small localized region of the input space. 

Each hidden unit has its own receptive field in input space. An 

input vector which lies in the receptive field center, would 

activate the center and by proper choice of weights the target 

output is obtained. We are using the Gradient Descent Learning 

(On line) technique to update the weights and centers of the 

RBFN and the activation function is Gaussian in nature. 

3. ADAPTIVE CONTROL 
In this section, a description of the system considered for 

control is presented, along with its direct control law. Here, we 

consider the SISO discrete-time system described by [12]: 
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where it can be shown by recursive substitution as in [9] that 
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Here, we consider the same plant assumptions used in [9].  

A direct adaptive controller that seeks to drive the system to 

track a known reference input )(kr uses an approximator that 

attempts to approximate the ideal controller dynamics ( u , that 

we assume to exist). Here, we assume that the ideal control can 

be approximated by  
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the partial of the approximator output with respect to the 

parameter vector. The approximator parameter error is defined 
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In the direct approach, let us consider the subclass of systems 

(2) which can be written as 
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Using the certainty equivalence approach, the control law is 
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)5(
))((ˆ

)())((ˆ
)(

1

1

kxg

krkxf
ku

d

d








 

where ))((ˆ
1

kxf
d

and ))((ˆ
1

kxg
d

are estimates of ))((
1

kxf
d

 and 

))((
1

kxg
d

, respectively. A projection algorithm may be used to 

ensure that 0))((ˆ
01



kxg

d
so that the control signal is well 

defined. The parameter errors for the direct adaptive neural 

controller is defined as 
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The error equation for direct NNMPC case can be written as 
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Fig 2: Diagram of surge tank system 

 

the direct case 1k . Also, )(k is function of the 

approximation error. For simplicity, we will write (6) as 

)7()()1()()1()1( kdkkTdkke    
Here, the normalized gradient-based parameter update law that 

seeks to minimize the squared tracking error is used. 

4. TANK DYNAMICS 
Used to regulate fluid levels in systems, surge tanks act as 

standpipe or storage reservoirs that store and supply excess 

fluid. In a system that has experienced a surge of fluid, surge 

tanks can modify fluctuations in flow rate, composition, 

temperature, or pressure. Typically, these tanks (or “surge 

drums”) are located downstream from closed aqueducts of 

feeders for water wheels. Depending upon its placement, a 

surge tank can reduce the pressure and volume of liquid, 

thereby reducing velocity. Therefore, a surge tank acts as a 

level and pressure control within the entire system. 

To accurately model a surge tank, mass and energy balances 

need to be considered across the tank. From these balances, we 

will be able to develop relationships for various characteristics 

of the surge tank shown in Fig.2.  

Consider the surge tank model that can be represented by the 

following differential equation [13]: 
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Where )(tu  is the input flow (control input), which can be 

positive or negative. Also, )(th is the liquid level (output of 

the system); ))(( thA
r

is the cross-sectional area of the tank; 

2sec/8.9 mg  is the gravitational acceleration; and 1c is 

the known cross-sectional area of the output pipe. Let 
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approximation to discretize the system, we have
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Where 1.0T . Note that the system (9) belongs to the same 

class of systems (2), where 1d  
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The system is tested for 0)( kh so that the response is 

realistic.  

5. SIMULATION RESULTS 
Testing of control quality of selected nonlinear system with 

RBFN based neural controller is realized in environment of 

MATLAB. For the purpose of testing, we used simulation 

models of nonlinear dynamic systems described by the 

differential equation. The nonlinear system has nonlinear 

transfer characteristic and dynamics of the system changes 

according to operating point. Initially, the surge tank shape 

parameters are characterized. The value of clogging factor 

representing dirty filter in pump is taken nominally as 1. Other 

parameters are, gravity=9.8, sampling rate=0.1, and lower and 

upper bounds on set point are taken as 0.25 and 0.5 

respectively. The length of simulation is taken as 1000 samples. 

And a square wave is used as the reference input. Then the plant 

initial conditions are established, further the parameters of 

approximator are defined.  The number of receptive field units 

taken in the RBF is 100. An optimization of no. of receptive 

units is reached upon by comparing the tracking error 

convergence rate and magnitude. It is been found that faster rate 

convergence with better steady state response is obtained in the 

designed neural controller, with 100 nos. of receptive field 

units.  

Comparison of liquid level in the tank with the reference input 

w.r.t. time is plotted in Fig 3. In Fig 4 a comparison of tank 

input and ideal feedback linearizing input is shown for length of 

simulation taken as 100. Quality evaluation is done by plotting 

the norm of parameter error in Fig. 5 and by mapping of 

tracking error and dead-zone width in Fig.6. In Fig. 7 and 8 it 

has been revealed that the neural controller is causal and stable 

in nature and thus it is physically realizable. 
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Fig 3: Comparison of liquid level in the tank and reference input w.r.t. time 

 

 

 

Fig 4: Comparison of tank input and ideal feedback linearizing input 

 

 

 

Fig 5: Norm of parameter error for proposed controller 
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Fig 6: Mapping of tracking error and dead-zone width 

 

 

 

Fig 7: Direct neural controller mapping between inputs and output 

 

Fig 8: Ideal controller mapping between inputs and output 
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6. CONCLUSION 
The main objective of this article is to control the non linear 

dynamics of surge tank via neural controller. In this paper the 

inclusion of dynamic neural models in predictive control for a 

benchmark nonlinear process, surge tank is presented. A Neural 

network approximator model was identified using Radial Basis 

Function(RBF), and validated on the data generated from 

simulation of surge tank dynamic equations. This model 

represents the dynamics of the nonlinear surge tank and is used 

as nonlinear predictor in the discussed predictive control 

technique, NNMPC. The control technique is tested on 

reference signals which exhibits, the possible nonlinear process 

dynamics occurring inside a real surge tank. On analysis of the 

response graphs it can be seen that the NNMPC strategy 

successfully tracks the random reference signal. The result 

obtained for the random reference signal illustrates and proves 

the tracking ability of controller. Also almost offset free and 

very close set point tracking is obtained using NNMPC 

strategy. This RBF based algorithm performs better than MLP 

as it has single hidden layer and is capable of fast learning.  
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