
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.21, August 2012

1

Modelling and Evaluation of Multiprocessor Architecture

 Preeti Rajput

Department of Computer Engg.
Aligarh Muslim University

U.P., India

Varsha Kumari
Department of Computer Engg.

Aligarh Muslim University
U.P., India

ABSTRACT

Load balancing involves assigning tasks to each processor

proportional to its performance and to minimize

communication overhead. The assignment can be static-done

at compile time, or it may be dynamic- done at run-time.

Many load balancing polices achieve high system

performance by increasing the utilization of CPU, memory, or

a combination of CPU and memory [3]. In this paper

Modified Triangle Scheduling Scheme (MTSS) is proposed

which modifies the Minimum Distance Scheduling (MDS).

This scheme has been implemented on Linearly Extensible

Triangle (LEΔ) and Linearly Extensible Tree (LET) which

reduces the Load Imbalance Factor (LIF) and also the

execution time of parallel tasks assigned to the processors.

General Terms
MDS, MTSS, Load balancing, time, Linearly Extensible Tree,

Linearly Extensible Triangle, Load Imbalance Factor.

1. INTRODUCTION
Multiprocessor system is a single computer incorporating a

number of independent processors that work together to solve

a given problem. There are two types of multiprocessor

models: shared-memory and message passing system. The

shared memory model has single address space and provides a

global memory shared by all processors. However, message-

passing model has multiple address space and each processor

has access to its own local memory. There are number of

techniques and methodologies for scheduling processes of a

distributed system. These are task assignment, load-balancing,

load-sharing approaches. In task assignment approach, each

process is viewed as a collection of related tasks and these

tasks are scheduled to suitable nodes so as to improve

performance. In load sharing approach simply attempts to

assure that no node is idle while processes wait for being

processed. In load balancing approach, processes are

distributed among the nodes of the system so as to equalize

the workload among the nodes at any point of time [11].

2. PAPER ORGANIZATION
In this paper we have proposed a load balancing algorithm

Modified Triangle Scheduling Scheme (MTSS) for

multiprocessor architecture that tries to reduce LIF and

execution time of tasks. Section III presents related work in

this field. Section IV describes the load distribution. Section

V explains the proposed algorithm for LEΔ and LET. Section

VI gives the simulation setup and experimental results.

Section VII concludes the paper. Section VIII contains the

references.

3. RELATED WORK
Various metrics for comparing the load balancing algorithms

have been identified in [11]. It also discusses the components

of dynamic load balancing algorithms and various dynamic

load balancing algorithms. The algorithm adopted for load

balancing is closely related to the type of network, number of

nodes, number and weight of links which connect the nodes

and job size. In order to balance the load uniformly over a

grid one has to choose a mix of centralized, decentralized,

sender-initiated and receiver- initiated approach.

Communication overhead and load balancing time depend

upon the approach selected in the algorithm. [3] Considers a

cluster computing platform of heterogeneous system in which

a set of N nodes are connected via a high speed network. Each

node in this model composed of a combination of various

resources including processor, memory, disk, network

connectivity. Here, a load manager or master node is

responsible for load balancing and monitoring available

resources of node. [2] Carries out an overview of a six node

multiprocessor server, Linearly Extensible Cube, to achieve

both load balancing and downloading information efficiently.

It implements a new proposed algorithm on the server which

uses store and forward like technique that reduces the

resource download time. [4] Carries out the study and

comparison of six load balancing algorithms, various

parameters are used to check the results. It concludes that

static load balancing algorithms are more stable in comparison

to dynamic and it is also easy to predict the behavior of static,

but the dynamic distributed algorithms are always considered

better than static algorithms. [5] Concludes that the load

balancing algorithm developed leans on a structure of data of

network type WAN, what guarantees its portability on any

grid computing. The distribution of loads indeed assures the

convergence of the algorithm in acceptable time [11].

4. LOAD DISTRIBUTION
Load distribution is the problem of distributing workload

among physically dispersed nodes during run time. It is

carried out in such a way that a set of independent jobs are

distributed among the computing nodes of the multiprocessor

architecture so that the jobs are uniformly distributed and

none of the nodes are overloaded or underloaded. This is the

load balancing problem. A load

balancing algorithm, in general, improves the system

performance. However, the degree of improvement not only

depends on the specific load balancing algorithm used, but

also on the degree of uneven distribution of load over the

nodes. Many scheduling and load balancing solutions have

been proposed for traditional distributed computing systems

[1].

Load balancing strategies may be static or dynamic [1][3]. In

static scheduling, the assignment of the tasks to the nodes is

done before the execution of the program. A task is always

executed on the node to which it is assigned. Dynamic

scheduling is based on the re-distribution of processes among

the processors during execution time. This redistribution is

performed by transferring tasks from heavily-loaded

processors to lightly-loaded processors with an aim to

minimize the processing time of the application. The

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.21, August 2012

2

flexibility inherent in dynamic load balancing allows for

adaptation to unforeseen application requirements at run-time.

In general, load-balancing algorithms can be broadly

categorized as centralized or decentralized, dynamic or static,

periodic or non-periodic, and those with thresholds or without

thresholds [3].

5. PROPOSED ALGORITHM FOR LOAD

BALANCING

5.1 Linearly Extensible Tree (LET)

.
The LET network combines linear extensibility with small

number of processing elements per extension. In LET network

the number of nodes at level j is (j+1) [8] as shown in Figure

1.

Fig 1: LET Network with 6 Processors

Load balancing starts out at the node with smallest degree i.e.

node which has minimum number of links. The load

balancing algorithm is given below.

5.2 MTSS for LET network

1. Select the root processor

2. Allocate ideal load to this processor

3. Distribute the remaining load on the processors

connected to the 2*(no of processors in step 1) links

4. Repeat n (no. of levels) - 1 times to perform load

balancing on the remaining processors

4.1 Distribute the remaining load among these

processors with each processor getting

(IL)/ step 3

4.2 Assign same amount of load on processors

in next subsequent level

4.3 Add IL to these processors

5. Calculate final value of load for P

5.1 P0 = P*0 – 2(N/2) P*0

5.2 P’N-n = P*N-n + 2(N/2) P*0

5.3 PN-n = P’N-n - P’N-n/(N/2)

5.4 PN = P*N + P*N-n/(N/2)

 where P* is load obtained from 2, 3 and 4

6. Repeat till LIF can be minimized no further

6.1 Find the node with maximum load

6.2 Assign that node ideal load and distribute

the remaining load equally on links from

that processor

5.2 Linearly Extensible Triangle (LEΔ)

This triangle-based multiprocessor network has concept of

simple geometry and its interconnections topology exhibits

the properties of linearly extensible multiprocessor

architecture [6][11]. An LEΔ network with four processors is

shown in Figure 2. Load balancing starts at the (N-1)th node.

Fig. 2: LEΔ Network with 4 Processors

5.4 MTSS for LEΔ network

1. Assign ideal load to the processor at nth level in an

N(N=n+3) processor network

2. Distribute the remaining load equally among the N-

1 processors with each processor getting (load-

IL)/N of the remaining load

3. Load accumulates on the processors forming the

base of the triangle

4. Repeat for the base nodes m=1,2,...,(N-1)-2 times

4.1 Distribute the load on these processors as

load on P/(i+3): i = 0,1,2,...,(N-1)-2

4.2 Repeat 4 with remaining load on P

5. Calculate the final load on P

 5.1 PN-1 = PN-1 – (P*N-1/2)

 5.2 PN-2 = PN-2 – (P*N-2/2)

6. RESULTS
The proposed algorithms for LET and LEΔ were implemented

in Matlab and the curves obtained were compared with

various other algorithms for load balancing as shown in

Figure 3 & 4.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.21, August 2012

3

Fig. 3: Load vs LIF for a LET Network

Fig. 4: Load vs LIF for a LEΔ Network

The results of the algorithm for LET & LEΔ are compared

with results for Hierarchical Balancing Method (HBM),

Minimum Distance Scheduling (MDS), Two Round

Scheduling (TRS) and the results obtained are shown above.

Figure 5 shows the average LIF (%) at various stages against

no. of processors and Figure 6 shows load balancing time

against no. of processors. It can be seen that in comparison to

the LET network, LEΔ network gives better results.

Fig. 5: No. of Processors vs LIF

Fig. 6 No. of Processors vs execution time

7. CONCLUSION
From the above results and discussion it is shown that an

efficient scalable algorithm for load balancing in the LET and

LEΔ networks has been designed. It also reduces the response

time of tasks running in parallel. It also reduces the Load

Imbalance Factor (LIF) to less than 25 %.

8. REFERENCES
[1] Janhavi B., Sunil Surve, Sapna Prabhu, “Comparison of

Load Balancing Algorithms in a Grid”, 2010

International Conference on Data Storage and Data

Engineering, pp 20-23, 2010

[2] Abdus Samad, M. Q. Rafiq and Omar Farooq, “A

NovelAlgorithm for Fast Retrieval of Information from a

Multiprocessor Server”, 7th WSEAS Int’l Conf. on

SOFTWARE ENGINEERING, PARALLEL AND

DISTRIBUTED SYSTEMS (SEPADS ’08), University

of Cambridge, UK, pp 68-73, 2008

[3] Chandra, Pushpendra Kumar, Sahoo, Bibhudatta,

“Dynamic Load Distribution Algorithm Performance in

Heterogeneous Distributed System for I/O Intensive

Task”, TENCON 2008 - 2008, TENCON 2008, IEEE

Region 10 Conference, pp 1-5, 2008.

[4] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma,

“Performance Analysis of Load Balancing Algorithms”,

World Academy of Science, Engineering and

Technology 38, pp 269-271, 2008.

[5] Abdallah Boukerram, Samira Ait Kaci Azzou,

“Implementation of Load Balancing Algorithm in a Grid

Computing”, American Journal of Applied Sciences,

2006.

[6] Manaullah, “Performance Evaluation of Multiprocessor

Architectures”, Ph.D. thesis, Jamia Millia Islamia, 2002.

[7] Abdus Samad, “Performance Evaluation of Linearly

Extensible Multiprocessor Architectures for

Networking”, Ph.D. thesis, Aligarh Muslim University,

2009.

[8] M. Q. Rafiq, “Studies on the Performance Evaluation of

a Linearly Extensible Multiprocessor Network”, Ph.D

thesis, Univ. of Roorkee, 1995.

[9] D. Acker, S. Kulkarni, “A Dynamic Load Dispersion

Algorithm for Load-Balancing in a Heterogeneous Grid

System”, Sarnoff Symposium IEEE, pp 1- 5, 2007.

[10] A. Chhabra, G. Singh, “Qualitative Parametric

Comparison of Load Balancing Algorithms in

Distributed Computing Environment”, 14th International

Conference on Advanced Computing and

Communication, IEEE, pp 58– 61, 2006.

[11] Ambreen Ahmad, M. Qasim Rafiq, “Design and

Development of a Scalable Multiprocessor Architecture”,

International Conference on emerging Trends in

Technology (ICETT 2011).

