
Internatinal Journal of Computer Applications (0975 – 8887)

Volume 51– No.2, August 2012

30

 6 X 6 Playfair Cipher using LFSR based Unique
Random Number Generator

Amandeep Kaur, Harsh Kumar Verma, Ravindra Kumar Singh

Department of Computer Science and Engineering

Dr. B. R. Ambedkar National Institute of Technology, Jalandhar (India)

ABSTRACT

Playfair cipher is the well-known multiple letter encryption

cipher. Here the digraphs in the plaintext are treated as single

units and converted into corresponding cipher text digraphs.

However because of the drawbacks inherent in the 5 X 5 Playfair

cipher which adversely affects the security we proposed a 6 X 6

Playfair cipher and then coupled it with Linear Feedback Shift

Register based Unique Random Number Generator [1]. 6 X 6

Playfair cipher supports all 26 alphabets (A-Z) and 10 digits (0-

9) which eliminate the limitation of 5 X 5 Playfair in which “i”

and “j” both character could not appear at the same time [2, 3].

LFSR not only enhances the security up to a considerable level

by generating random sequences but also provides a much faster

rate of encryption and decryption [1], that’s why LFSR based

Unique Random Number Generator is chosen for the

consideration. This paper deals in with the security issues of the

new proposed system. Various types of cryptography attacks

have been taken under consideration for original Playfair cipher

but not vulnerable for this proposed cipher.

Keywords- Playfair cipher, Random number, LFSR,

Polyalphabetic cipher

1. INTRODUCTION

The relationship of Cryptography and random numbers are

investigated [4, 5]. Linear Feedback Shift Register based Unique

Random Number Generator is a good candidate for generating

random numbers because logical circuit variations are high and

its software and hardware implementation is also very easy [1].

We can easily produce different random numbers by just

changing the seed or taps of LFSR.

This paper presents a new approach for encryption which uses 6

X 6 Playfair cipher with LFSR based unique random number

generator. In 6 X 6 Playfair cipher, the alphabets and numerals

are arranged in 6 X 6 matrix based on secret key.

Table 1: 6 X 6 Playfair matrix based on secret key “NITJ”

N I T J 0 1

2 3 4 5 6 7

8 9 A B C D

E F G H K L

M O P Q R S

U V W X Y Z

Even though it is very difficult to break the ciphertext but it can

be breakable by few hundreds of letters [6, 7]. So random

numbers are taken into consideration for eliminate this limitation

[8]. In our approach, 36 unique random numbers generated by

LSFR based unique random number generator are arranged into

6 X 6 matrix.

Table 2: 36 unique random numbers arranged into 6 X 6

matrix

20 57 15 10 35 49

56 30 19 50 39 37

31 7 3 60 18 33

42 17 62 61 11 44

55 6 36 23 59 13

8 41 47 2 34 25

Then it is used for mapping with the 6 X 6 Playfair matrix to

transmit random numbers instead of ciphertext.

Table 3: Mapping Table (Table 1 & Table 2)

N – 20 I – 57 T – 15 J – 10 0 – 35 1 – 49

2 – 56 3 – 30 4 – 19 5 – 50 6 – 39 7 - 37

8 – 31 9 – 7 A – 3 B – 60 C – 18 D – 33

E – 42 F – 17 G – 62 H – 61 K – 11 L – 44

M – 55 O – 6 P – 36 Q – 23 R – 59 S – 13

U – 8 V – 41 W – 47 X – 2 Y – 34 Z – 25

At first plaintext digraphs are converted into corresponding

ciphertext digraphs based on Playfair cipher rules then these

ciphertext digraphs are used to find out the corresponding

random numbers by using the mapping table and then these

random numbers are used in transmission for enhancing the

security.

2. 6 X 6 Playfair Cipher

6 X 6 Playfair cipher is the multiple letter encryption cipher,

which encrypts digraphs of plaintext into corresponding cipher

text digraphs. For that purpose it requires a 6 X 6 matrix to store

alphabets and numerals. These alphabets and numerals are

arranged in 6 X 6 matrix based on secret key. 6 X 6 Playfair

cipher has mainly 3 algorithms, Key-Matrix Generation,

Encryption and Decryption. These are described below-

2.1Key-Matrix Generation

6 X 6 Playfair Cipher makes use of 6 X 6 matrix (table), which is

used to store a keyword that becomes the key for encryption and

decryption. The way this is entered into 6 X 6 matrix is based on

some simple rules, as below.

1. Enter the secret (password) which may contain numerals and

alphabets like: aman2012nitj, ravindra1987singh, cipher,

29101989 etc.

Internatinal Journal of Computer Applications (0975 – 8887)

Volume 51– No.2, August 2012

31

2. Find out the keyword by dropping the duplicate letters of

key. Ex: amn201itj, ravind1987sgh, cipher, 29108 for above

keys.

3. Arrange the keyword in 6 X 6 matrix row-wise: left to right

and then top-to-bottom.

4. Fill the remaining spaces in the matrix with the rest of

numerals (0-9) and alphabets (A-Z) that were not the part of

our keyword.

This is illustrated with the secret “FRIENDS4EVER” then

keyword will be “FRIENDS4V” and Key-Matrix will be :

Table 4: 6 X 6 Playfair Key-Matrix based on secret key

“FRIENDS4EVER”

F R I E N D

S 4 V 0 1 2

3 5 6 7 8 9

A B C G H J

K L M O P Q

T U W X Y Z

2.1 Encryption

To encrypt a message, one would break the message into

digraphs (groups of 2 letters). If both letters are the same or only

one letter is left, add a filler letter “x” after the first letter. So that

“BALLOON” would be treated as “BA” “LX” “LO” “ON” and

"HELLOWORLD" would be treated as "HE” “LX” “LO” “WO”

“RL” “DX". Then apply the following 3 rules, in order, to each

diagraph (pair of letters) in the plaintext:

1. If both letter appear on the same row of Key-Matrix,

replace them with the letters to their immediate right

respectively (wrapping around to the left side of the

row if a letter in the original pair was on the right side

of the row).

2. If both letter appear on the same column of Key-

Matrix, replace them with the letters immediately

below respectively (wrapping around to the top side of

the column if a letter in the original pair was on the

bottom side of the column).

3. If both letters didn’t fall on the same row or column,

replace them with the letters on the same row

respectively but at the column of other letter of pair.

2.2 Decryption

Apply the following 3 rules, in order, to each diagraph (pair of

letters) in the ciphertext to find the digraph:

1. If both letter appear on the same row of Key-Matrix,

replace them with the letters to their immediate left

respectively (wrapping around to the right side of the

row if a letter in the original pair was on the left side of

the row).

2. If both letter appear on the same column of Key-

Matrix, replace them with the letters immediately up

respectively (wrapping around to the bottom of the

column if a letter in the original pair was on the top of

the column).

3. If both letters didn’t fall on the same row or column,

replace them with the letters on the same row

respectively but at the column of other letter of pair.

Remove the filler letter from the digraphs (Dropping any extra

"X"s that don't make sense in the final message when finished) to

find out the actual text (plaintext).

3. LINEAR FEEDBACK SHIFT REGISTER

A Linear Feedback Shift Register is a shift register whose input

state is a linear function of its previous state [9,10]. The only

linear functions of single bits are XOR and inverse-XOR; thus it

is a shift register whose input bit is driven by the exclusive-or

(XOR) of some bits of the overall shift register value [11]. The

L-bit initial value of LFSR is called seed where L is called its

length, the stream values produced by the register is completely

determined by previous state [12]. It can produce various random

sequences by varying the taps [13, 14].The bit position that

affects next state is called tap. This is illustrated as follows [15].

Figure 1. LFSR for Tap = [0, 1, 2, 4, 6], length (L) = 7

In this circuit, at each pulse, the state of the flip-flop is shifted to

the next one down the line and also computes Boolean function

of the state of the flip-flops [9, 16].

If Tap = {0, 2, 3, 5, 6} and Seed = 51 whose binary equivalent is

0110011. Then-

Table 5: Generated Sequence By LFSR

Feedback

Symbol

State of Shift Register
Output

Symbol
D6 D5 D4 D3 D2 D1 D0

0 1 1 0 0 1 1

0 0 0 1 1 0 0 1 1

0 0 0 0 1 1 0 0 1

0 0 0 0 0 1 1 0 0

1 1 0 0 0 0 1 1 0

0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0

1 1 0 1 0 0 0 1 0

0 0 1 0 1 0 0 0 1

0 0 0 1 0 1 0 0 0

1 1 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1 0

1 1 0 1 0 0 1 0 1

1 1 1 0 1 0 0 1 0

0 0 1 1 0 1 0 0 1

0 0 0 1 1 0 1 0 0

1 1 0 0 1 1 0 1 0

0 0 1 0 0 1 1 0 1

D6 D5 D4 D3 D2 D1 D0

CLK

Seed

Feedback Symbol, Output Symbol

O F

 Di D flip-flop X-OR gate

Internatinal Journal of Computer Applications (0975 – 8887)

Volume 51– No.2, August 2012

32

0 0 0 1 0 0 1 1 0

1 1 0 0 1 0 0 1 1

1 1 1 0 0 1 0 0 1

1 1 1 1 0 0 1 0 0

0 0 1 1 1 0 0 1 0

1 1 0 1 1 1 0 0 1

1 1 1 0 1 1 1 0 0

0 0 1 1 0 1 1 1 0

1 1 0 1 1 0 1 1 1

1 1 1 0 1 1 0 1 1

1 1 1 1 0 1 1 0 1

1 1 1 1 1 0 1 1 0

0 0 1 1 1 1 0 1 1

0 0 0 1 1 1 1 0 1

0 0 0 0 1 1 1 1 0

1 1 0 0 0 1 1 1 1

1 1 1 0 0 0 1 1 1

1 1 1 1 0 0 0 1 1

1 1 1 1 1 0 0 0 1

1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0

1 1 0 1 1 1 1 1 0

0 0 1 0 1 1 1 1 1

0 0 0 1 0 1 1 1 1

0 0 0 0 1 0 1 1 1

0 0 0 0 0 1 0 1 1

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

1 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 0 0

1 1 0 1 0 1 1 0 0

0 0 1 0 1 0 1 1 0

1 1 0 1 0 1 0 1 1

1 1 1 0 1 0 1 0 1

1 1 1 1 0 1 0 1 0

0 0 1 1 1 0 1 0 1

0 0 0 1 1 1 0 1 0

1 1 0 0 1 1 1 0 1

1 1 1 0 0 1 1 1 0

0 0 1 1 0 0 1 1 1

Generated sequence will be (1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0

1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0

0 1 1 0 1 0 1 0 1) [1]

LFSR can also be used as a random number generator [17, 18].

By using the range (R) of random number it can be determined

that how many bits (B) will be grouped together to represent a

random number by the formula-

122  BB R (1)

If the range of random number is 0 to 63 then number of bits will

be 6 to represent the random number. Generated sequences of

random numbers are repeated to generate the required count of

random numbers [19].

The binary value of produced random number from above LSFR

is 110011, 000010, 001010, 010110, 010011, 101101, 111000,

111110, 100000 and 011010 while 101 is left, it will be used in

next repetition on the top of generated sequence. So next values

will be 101110, 011000, 010001, 010010, 110010, 011101,

101111, 000111, 110100, 000011 and 010101, these numbers

will be repeated again and again to generate the specified count

of random numbers [20].

But the fastest moving era of computer science demands the non

repeating random numbers in some applications. At those

situations the existing approach can not satisfy the demand, that’s

why LFSR Based Unique Random Number Generators came in

the focus.

4. LFSR BASED UNIQUE RANDOM

NUMBER GENERATOR

The proposed algorithm ensures to generate the specified count

of unique random numbers by using linear feedback shift register

with some associated rules [1].

4.1 Basic Terms

There are some basic terms required in LFSR based Unique

Random Number Generator.

4.1.1 Required Registers(R)

Number of required registers in LFSR based Unique Random

Number Generator is depends on the number of letters exist in

that number system. If there are N letters in any number system

then it will need “R” registers. Where-

122  RR N (2)

 Ex: ascii codes requires 7 registers, (27 = 128). Because there are

total 128 letters in ascii number system. A letter may be alphabet

(case sensitive), numeral or a special symbol [1].

4.1.2 Relevant Values
A relevant value is assigned to all letters exist in the number

system. Ex: ascii codes are that relevant numbers for ascii

number system which contain 128 letters [1].

4.1.3 Seed Sequence
Seed sequence is also depends upon the keyword. Keyword’s

relevant values stores in first come first serve manner by

removing duplicates is called Seed Sequence [1].

4.1.4 Tap Sequence
Tap sequence depends upon the keyword. ModR of keyword’s

relevant values stores in first come first serve manner by

removing duplicates is called Tap Sequence [1].

4.1.5 Length (L) of Unique Random Number
Length of unique random number is totally depending on the

total count of required unique random number (U), which can be

calculated by the given formula [1]-

122  LL U (3)

4.2 Algorithm
These are the following steps to produce unique random

numbers-

4.2.1 Unique Random Number Generator (Keyword, N,

OS[N][2], U, URnum[U], R, L, i, j, k, m, x, y, z, w, flag)
This algorithm is used for generating U count of unique random

numbers by using user’s Keyword. URnum is a linear array of U

Internatinal Journal of Computer Applications (0975 – 8887)

Volume 51– No.2, August 2012

33

length for storing U cout of unique random number where OS is

a 2-D array which stores output symbols of LFSR [1].

{

1. [Initialize]

y = 0, z = 0, w = 0, flag = 0;

2. [Find the number of Required Registers(R) of that number

system.]

2R >=N > 2R-1;

3. [Find the Length (L) of Unique Random Number.]

2L >U >= 2L-1;

4. Find the Seed Sequence of that keyword.

5. Using modR operations find out the Tap Sequence of the

keyword.

6. Fetch the first value from Seed Sequence for the Seed of

LFSR and delete it from the Seed Sequence.

7. Use the Tap Sequence as the Tap for the LFSR.

8. Generate the Output symbols from LFSR (described

detailed in next algorithm) until the seed gets repeated. And

store it in OS[k][0] where k = 0 to number of output

symbols (x) generated by LFSR while OS[k][1] will be 0 for

all.

9. do

{

z = flag = 0;

if (OS[y][1] = = 0)

{

OS[y][1] = 1;

m = y;

for (k = L-1 to 0)

{

z = z + (2k) * (OS[y][0])

y = ((y+1) % x);

}

for (j = 0 to w)

{

if (URnum[j] = = z)

flag = 1;

}

if (flag = = 0)

{

URnum[w] = z;

z = 0;

w = w + 1;

if (w = = U)

goto 13;

}

else

{

y = (m + 1) % x;

flag = 0;

}

}

else

{

y = (y + 1) % x;

}

}

until (OS[i][1] = = 0)

10. y = 0, x = 0;

11. if (length [Tap Sequence] > 2) then remove first value of

Tap Sequence and consider it as the seed. goto 8;

12. goto 6;

13. return URnum[U];

}

4.2.2 LFSR (LFSRT[R], Tap[Lt], Seed[R], Lt, R, w, i, j,

k)
This algorithm is used to generate the random Output Symbols

by using Seed[R] and Tap[Lt], Lt represents the length of Tap.

LFSRT is a linear array of R length for storing the next Seed [1].

{

w = 0;

for (i = 0 to Lt)

{

j=Tap[i];

w = X-OR (w , LFSRT[(R-1) - j]);

}

OS[k][0]=LFSRT[R-1];

OS[k][1]=0;

for (i = R-2 to 0)

{

LFSRT[i+1]=LFSRT[i];

}

LFSRT[0] = w;

k = k + 1;

} until (Seed gets repeated);

5. Result and Analysis
6 X 6 Playfair cipher requires only 36 unique random numbers so

it requires 6 registers (2R >= N). Where R is the no of register

required and N denotes the total unique random numbers needed

(so 26 >= 36).

5.1 Tap Sequence
If keyword is “FRIENDS4V” then tap sequence will be:
F≈15 % 6 =3

R≈27 % 6= 3

I≈18 % 6 = 0

E≈14 % 6= 2

N≈23 % 6= 5

D≈13 % 6= 1

S≈28 % 6 = 4

4 ≈ 4 % 6 = 4

V ≈ 31 % 6 = 1

Tap sequence: {3, 0, 2, 5, 1, 4}

5.2 Seed Sequence
If keyword is “FRIENDS4V” then seed sequence will be:
F≈15

R≈27

I≈18

E≈14

N≈23

D≈13

S≈28

4 ≈ 4

V ≈ 31

Seed sequence: {15, 27, 18, 14, 23, 13, 28, 4, 31}

5.3 Unique Random Numbers
If keyword is “FRIENDS4V” then Tap sequence will be {3, 0,

2, 5, 1, 4} and Seed sequence will be {15, 27, 18, 14, 23, 13, 28,

Internatinal Journal of Computer Applications (0975 – 8887)

Volume 51– No.2, August 2012

34

4, 31}. So LFSR based Unique Random Number Generator will

generate the following random numbers:

60, 30, 15, 7, 35, 49, 56, 57, 19, 50, 39, 37, 31, 10, 62, 20, 41, 33,

42, 17, 61, 3, 18, 11, 59, 6, 36, 23, 55, 13, 8, 47, 44, 26, 34, 25

There are 36 letters so there may be 36 X 36 = 1296 unique

matrix that is very difficult to identify the particular structure. It

can be cracked if there is enough text by known plaintext attack

method. Involvement of random numbers reduces this drawback

up to an acceptable limit by hiding the actual structure from the

intruder. This may possible by using random numbers for

transmission of user message. For this technique 36 unique

random numbers are required for mapping this actual structure to

those random numbers. These random numbers will be arranged

in 6 X 6 matrix for the mapping purpose. For example if 6 X 6

random number matrix is-

Table 6: 36 unique random numbers generated on keyword

“FRIENDS4V”

60 30 15 7 35 49

56 57 19 50 39 37

31 10 62 20 41 33

42 17 61 3 18 11

59 6 36 23 55 13

8 47 44 26 34 25

5.4 Mapping Table
If keyword is “FRIENDS4V” then Key-Matrix will be

according to table 4. So the mapping table will be (Table 4

with Table 6):

Table 7: Mapping table for keyword “FRIENDS4V”

F – 60 R – 30 I – 15 E – 7 N – 35 D – 49

S – 56 4 – 57 V – 19 0 – 50 1 – 39 2 - 37

3 – 31 5 – 10 6 – 62 7 – 20 8 – 41 9 – 33

A – 42 B – 17 C – 61 G – 3 H – 18 J – 11

K – 59 L – 6 M – 36 O – 23 P – 55 Q – 13

T – 8 U – 47 W – 44 X – 26 Y – 34 Z – 25

5.5 Encryption
If keyword is “FRIENDS4V” then encryption will we as

following-
Plaintext: HELLO

HE - GN

LX - OU

LO - MP

Ciphertext:

G, N = 3, 35

O, U = 23, 47

M, P = 36, 55

The transmitted ciphertext is {(3, 35), (23, 47), (36, 55)} instead

of alphabetical letter.

5.6 Decryption
If keyword is “FRIENDS4V” then encryption will we as

following-
Ciphertext: transmitted ciphertext is {(3, 35), (23, 47), (36, 55)}

3, 35 = G, N

23, 47 = O, U

36, 55 = M, P

Ciphertext:

GN = HE

OU = LX

MP = LO

The actual plaintext will be “HELLO” after ignoring the filling

character.

6. CONCLUSION
This proposed cipher rapidly increases the security of the

ciphertext by transferring random numbers on behalf of the

actual ciphertext letters. The proposed algorithm make use of

LFSR based Unique Random Number Generator, that can be

used to generate unpredictable different random sequences by

varying seed sequence and tap sequence. Inner structure of LFSR

is very simple, and its quiet easy and cost effective to implement

it on hardware and Software. It is considerably fast compare to

other methods so it will be best for low bandwidth less memory

storage small applications where only alphabets and numeric

values are required to be protected.

7. REFERENCES
[1] Harsh Kumar Verma, Ravindra Kumar Singh, “Linear

Feedback Shift Register based Unique Random Number

Generator” International Conference on Electrical

Engineering and Computer Science, Goa (India), April 7th

2012.

[2] William Stallings, Cryptography and Network Security

Principles and Practice. Second edition, Pearson Education.

[3] Behrouz A. Forouzan, Cryptography and Network Security.

Special Indian Edition, The McGraw- Hill companies, New

Delhi,2007.

[4] Menezes AJ, Oorschot PCV, Vanstone SA, Handbook of

applied cryptography. Boca Raton, Florida, USA: CRC

Press; 1997.

[5] Johannes A.Buchmann, Introduction to Cryptography.

Second Edition, Springer –Verlag NY, LLC, 2001.

[6] Dhiren R.Patel, Information Security Theory and Practice.

First Edition, Prentice-Hall of India Private Limited, 2008.

[7] Keith Harrison, Bill Munro and Tim Spiller, Security

through uncertainty. P Laboratories, February, 2007.

[8] Schnier B, Applied cryptography: protocols, algorithms and

source code in C. New York: John Wiley and sons, 1996.

[9] Wayne Tomasi “Electronic Communications System

Fundamentals through Advanced . 5th edition, Pearson

Education, 2008.

[10] Rajski J, Tyszer J, “On the diagnostic properties of linear

feedback shift registers”, ISSN : 0278-0070, IEEE @ 06

August 2002

[11] Raina R, Marionos P, “Signature analysis with modified

linear feedback shift registers (M-LFSRs)”, Print ISBN: 0-

8186-2150-8, IEEE @ 06 August 2002

[12] Simon Haykin , Communication Systems. , 4th Edition ,

Willey.

[13] Krishnaswamy S, Pillai H K, “On the Number of Linear

Feedback Shift Registers With a Special Structure”, ISSN

: 0018-9448, IEEE @ 27 February 2012

[14] Murali P, Senthilkumar G, “Modified Version of Playfair

Cipher Using Linear Feedback Shift Register”, Print

ISBN: 978-0-7695-3595-1, IEEE @ 19 June 2009

[15] “Linear Feedback Shift Registers”, Available at :

http://homepage.mac.com/afj/lfsr.html.

Internatinal Journal of Computer Applications (0975 – 8887)

Volume 51– No.2, August 2012

35

[16] “Linear feedback shift register ”, Wikipedia [online],

Available at :

http://en.wikipedia.org/wiki/Linear_feedback_shift_

register.html.

[17] The Art of Electronics, 2ndEdition,Horowitzand Hill, 1989,

pp. 665-667

[18] Dan Healy, “Understanding Linear Feedback Shift Registers

– The Easy Way”, Yikes [online], Available at :

http://www.yikes.com/~ptolemy/lfsr_web/index.htm

[19] P. Alfke, “Efficient Shift Registers, LFSR, Counters, and

Long Pseudo-Random Sequence Generators,”XAPP 052,

July 7,1996 (Version 1.1)

[20] W.W. Peterson and E.J. Weldon, Jr. Error Correcting

Codes, MIT press, Cambridge, MA 1972.

http://www.yikes.com/~ptolemy/lfsr_web/index.htm

