
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.19, August 2012

35

Investigation of the Scheduler for Heterogeneous

Distributed Computing Systems based on Minimal Cover

Method

S.V.Listrovoy

Ukrainian State Academy of
Railway Transport, 61050,

Kharkov, Ukraine

S.V.Minukhin
Kharkiv National University of
Economics, 61166, Kharkov,

Ukraine

S.V.Znakhur
Kharkiv National University of
Economics, 61166, Kharkov,

Ukraine

ABSTRACT

The article describes the scheduling system for heterogeneous

distributed computing systems. The scheduler based on minimal

cover method. The analysis of the effectiveness of the scheduling

system for tasks with varying intensity, the law of distribution

complexity. The advantage of the method of minimal cover

compared to FCFS. A system of rules for the optimization of the

proposed planning changes in the intensity and complexity of

tasks.

General Terms

The procedure for scheduling tasks for clusters

Keywords

 Grid system, task scheduling, scheduling algorithm, minimal

cover, statistical analysis, intensity, complexity

1. INTRODUCTION
Exploitation of modern Grid systems is related to the necessity of

improvement of their performance. It is defined by such metrics

as utilization resources, run time of all tasks on the resources,

total time completion of the tasks set later than other ones, etc.

Now large amount of papers is devoted to the

comparative analysis batch scheduling methods [1–14]. For

example, a detailed description and classification scheduling

algorithms for Grid computing is given in [12, 13, 14].

We investigated articles that examine the most common

method of FCFS, the main advantage of which is the lack of

information on the requirements of task (a method scheduling the

task, standing first in order in query for the first free resource),

with batch modes [6–9]. However, FCFS has significant

disadvantages: its efficiency decreases sharply with increasing

intensity of tasks flows and the heterogeneity of computing

environment: resource queues are formed, which greatly

degraded the utilization of resources due to their inactivity [8, 9].

More preferred is batch scheduling mode. In this mode the

important point is the timing (mapping events) and frequency

scheduling, largely impact on the performance metrics –

minimize makespan and the total execution time of all tasks [10,

11].

Since there is a tendency for increase of the number of

heterogeneous computing clusters and of the tasks with

differentiated solutions complexity (execution time), it is relevant

to use more fine-tuning of scheduling process (procedure), which

will allow to "pack" set of resources effectively on the one hand,

and to provide a high load of all resources on the other hand.

This can be achieved through the use of scheduling algorithms

and additional components (modules) in the mechanism of Grid

resources scheduling.

2. GRID SCHEDULING MODEL
Grid systems schedulers are main components in an

interconnected information-communication system of Grid. Grid

uses various concepts of schedulers based on online and offline

modes. An immediate mode scheduler only considers a single

task for scheduling on a FCFS (first come first served) basis

while a batch mode scheduler considers a number of tasks at

once for scheduling. Scheduling onto the Grid is NP complete

[1]. Therefore, the problem of choosing an effective method of

scheduling is difficult. As a rule the performance of various

scheduling algorithms in the frames of common Grid scheduling

mechanism, should be compared. When comparing the results of

the various scheduling systems operation, evaluations of

scheduler’s efficiency are not always correct and comparable.

This is due to the complexity of the analysis of the timing

characteristics of the tasks solution in various systems and load

of resources to run incoming tasks.

The purpose of this paper is development of a new

scheduling method, which is based on a model problem of the

minimal cover. Two main ideas are the basis for the proposed

approach: at each step to schedule the batch of tasks and at each

step for their running to allocate the minimum number of free

and available resources.

Feature of this method is that it uses the statistical

characteristics that define the Grid environment.

So main objectives of this study are:

analysis of statistical laws identified in the process of

using the proposed tasks scheduling mechanism for

heterogeneous Grid system during the change of characteristics

of the flow of incoming tasks (workflows); justification of

selection of optimal parameters values of mechanism

components for improvement of its efficiency;

to develop a system of rules based on the results of

statistical analysis of the Grid system exploitation, which allows

to determine the optimal values of parameters of scheduling

mechanism components for all characteristics of tasks and

resources, and thus to improve the performance of Grid system.

The goal of the proposed method is to minimize the total

execution time, has to be chosen in order to utilize the

performance resources to minimize execution time on all

resources and maximized average resource utilization.

For scheduling of load of resources in this paper we

propose to use the mechanism which components are shown in

Fig. 1. This scheduling mechanism is a core of Workload

Management System (WMS), namely, the tasks distribution

service (Resource Broker, RB) [15]. The main type of requests to

WMS are usually requests to perform tasks. WMS goal is to find

the best (optimal) resource for a particular task execution based

on task description made using JD L[16], and on information

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.19, August 2012

36

about available resources. Availability of adequate resources for

the given task depends not only on the condition of resources, but

also on the policy of their use followed by resource managers or

by administrators of a virtual organization. Currently, various

strategies are used for resources allocation to distribute tasks

between resources (e.g. push-model or pull-model). It is

suggested to use strategy in the proposed scheduling mechanism:

batch of task is scheduling on the available resources, however,

the tasks may be in the scheduler until some resource becomes

available, and then the most appropriate task selected for the

allocated resource. We consider following assumptions about

task:

all tasks are independent;

tasks are non-preemptive: their execution on a resource

cannot be suspended until completion;

all resources have the different computing capability.

It should be noted that the services performing tasks

monitoring, tasks restart and resources monitoring are

implemented within the Grid system itself and are not

components of scheduling mechanism. According to scheme in

Fig. 1, the tasks from the global tasks queue come to pool with a

certain frequency and intensity. Pool is a stack for temporary

storage of incoming tasks. The pool size is determined by the

maximum intensity of incoming tasks: if the pool size is less than

the number of incoming tasks, an additional queue will be

created already at the entrance of the system itself. Tasks are

unloaded at regular intervals which defined by scheduling

cyclicity, from the pool to the block of scheduling, where the

scheduling algorithm is implemented. To minimize the time of

scheduling a fast approximate algorithm for solving the problem

of the minimal cover is used [17, 18]. Scheduling time (working

time of algorithm for solving the problem of the minimal cover)

depends on the size of the pool, i.e. the number of the tasks

coming on the scheduling block, and the number of available

recourses and free ones at the time of scheduling. The

approximate scheduling algorithm provides a solution to the task

in polynomial time O (mn
2
) [18]), so the cyclicity of approximate

should be more than time for solving the scheduling task. As a

result of scheduling tasks are assigned to free elements of the

blocks of tasks package (package must have at least one free

element) of correspondent resources, i.e. those which are not

filled completely at the time of scheduling (see Fig. 1).

It should be noted that tasks are coming with a delay,

which determines the communication delay and data transfer

from the scheduling block to resources for their execution.

The presence of a package of tasks in this mechanism is

due to the need to solve two problems:

1) creating artificial queues for each resource that helps to

prevent possible downtime and increases the coefficient of

utilization of resources;

2) creation of managed package of tasks for the

possibility of scheduling and assignment of tasks on the level of

the resource itself (if the resource is a cluster or a multiprocessor

system).

This study is used a serial mode for performing tasks on

each resource, i.e., the tasks to be performed on the resource are

sequentially selected from the tasks package as a resource

becomes de-allocated (free).

package of tasks of cluster 1

Cluster n

Cluster 1

package of tasks of cluster n

tasks

Scheduler tasks

….

Pool

A set of tasks

from the pool

Global tasks queue

Scheduling cyclicity

Response time of task (time spent in the system)

Scheduling time

Waiting time

Communication

delay

The time of formation of

the package
execution

Executing

time

Fig 1: The overall architecture of a scheduling mechanism

The mathematical formulation of the scheduling model is

a problem linear Boolean programming [12]:

 min)(
1

k

n

j

jt txL , (1)

with, subject to the constraints

 ,1,0)(};1,0{

;,1i ,1

1

)(

kij

kij

t
j

x

m
n

j

t
j

x

 (2)

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.19, August 2012

37

where m is a number of tasks, which should be scheduled; n is a

number of the resources that are available and not allocated (free)

at the time of scheduling; tk [T0, TN].

Scheduling is carried out on the time interval [T0, TN], where T0

is the time of scheduling start; TN is the completion time for

scheduling all tasks from global queue.

The problem (1), (2) can be regarded as a minimal cover

(MC) problem – determining the minimum number of columns

in the Boolean matrix B, which covers all rows of the given

matrix whose elements in the context of solving the scheduling

problem are interpreted as follows: columns correspond to the

non-allocated at the time of scheduling grid system resources,

rows correspond to the tasks, subject to scheduling, which must

be resolved on these resources (Table 1).

This approach is based on the following assumptions.

1. The scheduling system is organized in a two-level

structure. A set of tasks (pool) which should be scheduled to

which the method of solving the MC problem (1), (2) should be

applied, is formed on the first level. Next, the tasks selected as a

result of its solving scheduled to the available and free at the time

of scheduling resources, and will be solved there under the

control of the local scheduler.

2. The scheduling method at each step of scheduling

maximally loads the minimum number of resources which are

free and available at the time of scheduling. Thus, for subsequent

distribution of the task in a queue, the amount of resources

available for possible tasks allocation will be maximal.

3. Method (algorithm) for task scheduling (1), (2) must have a

low complexity of its realization in order to minimize the time

spent for tasks scheduling for their execution on free resources.

4. The scheduling system utilizes package technology «pull-

push» so that firstly the tasks, organized as a batch of tasks

(pool), become taken from the global queue (pull). When they

will be scheduled on resources, they will be placed into a task

package on the allocated resource (resources) and then

transferred for a execution (push) onto this resource (resources).

5. At scheduling time points tk m tasks are independent and n

resources for allocation are available and free.

Table 1. Matrix of matching tasks

and resources

 R1* R2 R3* R4 R5* R6 R7 R8

T1 1

T2 1 1 1

T3 1 1

T4 1 1

T5 1 1 1

T6 1 1

T7 1 1

T8 1 1

T9 1

T10 1 1 1

T11 1 1

T12 1 1 1

The following metrics are usually used as performance metrics

(objectives) of the scheduler in Grid system: the execution time

of all tasks in a global queue and resources utilization.

Mean time of one task processing is determined by the formula:

ion_timesk_completaverage_ta
T =

N

i

it
N 1

,execution

1
 (3)

where N is the number of tasks in the global queue.

Execution time of all tasks in a queue TN computed as follows:

 ,firstlastN TTT (4)

where firstT is the arrival time of the first task in the queue;

lastT is the time of completion of the last task in a queue.

The coefficient of the utilization utilK of resource Rj is given by:

 ,
N

T

R
T

utilK
i

 (5)

where TRi is the execution (completion) time for all tasks in the

global queue which were scheduled on resource Rj.

3. STATISTICAL ANALYSIS OF

SIMULATION RESULTS AND

FORMALIZATION OF RULES OF

SCHEDULING
To carry out computing experiments a simulation model

of the Grid scheduling system is used, based on the use of MC

algorithm [18] with the complexity O (mn2). Internal time of

simulation model (one cycle) is used as a time unit of scheduling

and computing in the program. This internal time corresponds to

the time for one task execution which has the complexity of 1000

MI on the resource characterized by 1000 MIPS performance.

Computing experiment involves the study of scheduling

for two types of tasks:

 tasks having low computational complexity, which have a

mean complexity value up to 500 cycles (which corresponds to

the time of the task completion of less than 100 ms);

 tasks having high computational complexity, with its

mean value of 30,000 cycles (which corresponds to the time of

the task completion up to 8 hours).

The following parameters were chosen for imitational

simulation.

For the first group of tasks from input flow random

normal distribution law was selected. The total number of tasks

in the global queue was 2100; the complexity of the task varied

in the range from 20 to 320; the intensity of the tasks varied in

the range from 5 to 40 task with step 5; the universality of task

(the percentage of available resources, which can be used for one

task execution – analogue of the heterogeneity of resources) was

50%; the length of the pool was 100 (the maximum number of

tasks filled (downloaded) in the pool at the same time, or as they

come into the system for execution); scheduling cyclicity varied

from 1 to 40 cycles; a task packages to resources was chosen 5;

amount of resources was 10; single resource productivity

(performance) was 5 cycles; communication delay was 1 cycle.

For the second group of tasks from input flow random

normal distribution law was selected. The total number of tasks

in the global queue was 1000; the complexity of one task was

30000; complexity variance was 1000 cycles; the intensity of the

tasks varied in the range from 50 to 250 with step 50; the

universality of tasks was 50%; the length of the pool was 100;

scheduling cyclicity varied in the range from 1 to 5 cycles; the

task package size was 10; amount of resources varied from 5 to

30, single resource productivity (performance) was 10 cycles, the

communication delay was 20 cycles.

The study uses the generation of tasks with small (up to 40

tasks) and high intensity (from 40 to 250 tasks). In this case, the

characteristics of low and high tasks intensity can be determined

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.19, August 2012

38

only by comparing them with the number of available resources.

If there are more resources than tasks, intensity is low, otherwise

it is high.

These statistical results of simulation are mean values of

measures obtained on the basis of 20 tests (samples) generated.

To ensure the adequacy of the experiments conducted, total tasks

complexity and their number for the generated samples is the

same for each test.

The experimental results showed that the greatest influence

on scheduling mechanism (procedure) is made by the intensity of

the input tasks flow and their computational complexity, and that

the main control parameters for the effective scheduling

procedure are the pool size and scheduling cyclicity.

The main task of the scheduler is the optimal «packing»

tasks on resources, therefore input intensity of the tasks will be

transformed by scheduler during each scheduling cycle into tasks

packages to N resources. The maximum intensity of the tasks

incoming on the resources during each scheduling cycle can be

computed using the following equation:

).__/()_(resoursesofnumbersizepool

(6)

The higher scheduling cyclicity (greater periodicity),

the greater the number of tasks enters the pool and then assigned

to the tasks packages during each scheduling cycle. In the case of

high task input intensity or high scheduling cyclicity pool will be

fully loaded and, thus, determines the maximum number of tasks

involved in the scheduling procedure.

For tasks with low intensity and low computational

complexity, optimal organization of the scheduling procedure

assumes that the tasks packages for each resource should include

only one task. This ensures minimal task downtime in the system

and uniform resources load due to the fact that any time at least

one task from the package will always enter the resource which

is free at this particular moment of time.

If the flow of tasks with high intensity or high

computational complexity is present, the scheduling is carried

out for future, i.e. tasks are in queue in the pool or in a task

package. The increase of scheduling periodicity (cyclicity

decrease) allows to increase the number of task in task package

for each resource; the increase of scheduling cyclicity allows to

increase the time of task presence in the pool. Accordingly, with

decreasing of scheduling cyclicity it is necessary to increase the

tasks package size up to a maximum (according to equation (6)),

otherwise the pool size should be increased to a value of

maximum intensity of the input task flow.

Results of statistical analysis of scheduling procedure

for tasks with small computational complexity depending on the

change of their flow intensity and scheduling cyclicity are shown

in Fig. 2, 3. The Figures showing that for given task type an

execution time is linearly dependent on scheduling cyclicity, i.e.

execution time increases with increasing cyclicity. Studies are

showing that if other characteristics being equal, minimum

scheduling cyclicity, which is equal to one cycle, yields the

smallest value of execution time. This relationship holds when

task complexity is greater than 1 cycle.

When the intensity of tasks flow is increasing the linear

dependence remains unchanged, but the gain from scheduling

cyclicity change decreases. With increasing of intensity to a

value more than 100 task, change of scheduling cyclicity does

not affect the time of tasks completion. This is due to the fact that

the pool limits the number of task entering for the task

scheduling.

To obtain positive effect by changing scheduling

cyclicity it was suggested to use the equation (7), which allows to

define the upper bound of scheduling cyclicity. It should be

noted that when the input intensity of tasks increases, the average

number of tasks in the pool will also increase. This leads to the

possibility to increase the scheduling cyclicity without sacrificing

overall tasks completion time for fixed values of other

characteristics.

Unlike the overall tasks completion time, the mean

response time (the mean completion time of one task) shows a

nonlinear relationship. In cases when scheduling cyclicity is less

than the mean time for a resource deallocation (in this case it is 5

cycles, which is less than the ratio (30 cycles is task complexity)

/ (5 cycles of the resource productivity)), the queue of the

incoming scheduled tasks will be formed in the system. These

tasks await release of the resource, which leads to a sharp

increase in response time.

With increasing of scheduling cyclicity tasks waiting

time in the queue decreases because during this time most of the

previous tasks from the pool will be completed already. For large

cyclicity values response time of task includes only time spent in

the pool + transportation time (communication delay time) + task

completion time on the resource (Fig. 1), which determines it’s

the minimum value.

).resources of eperformanc average tasksofy versatilitcomplexity average(

/) tasksof complexity averagepool in the tasksofnumber average(

 (7)

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.19, August 2012

39

Scheduling cyclicity, cycle

E
x
e

c
u

ti
o

n
 t
im

e
,
c
y
c
le

intensity of tasks : 5

intensity of tasks : 10

intensity of tasks : 15

intensity of tasks : 20

intensity of tasks : 40
-5 0 5 10 15 20 25 30 35

-10000

0

10000

20000

30000

40000

50000

60000

Fig 2: The dependence of tasks execution (completion) time on the scheduling cyclicity and intensity of tasks

The maximum value of the coefficient of resources use is

possible in the case of a constant resources load (their idle time

minimization). This could be achieved by an intensity increase,

or by decrease of scheduling cyclicity. Thus, at low intensity of 5

(less than the amount of resources), scheduling cyclicity should

be equal to one cycle, at an intensity of 20 scheduling cyclicity

must be no more than 5 cycles, at high intensity of 40 scheduling

cyclicity, which ensures a high load of resources will be equal to

10 cycles.

U
ti
li
z
a

ti
o

n
 c

o
e

ff
ic

ie
n

t

intensity of tasks : 5

intensity of tasks : 10

intensity of tasks : 15

intensity of tasks : 20

intensity of tasks : 40
-5 0 5 10 15 20 25 30 35

Scheduling cyclicity, cycle

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Fig 3: Dependence of the utilization coefficient on the scheduling cyclicity and intensity of tasks flow

To analyze the effect of changes in task characteristics

on scheduling procedure in this study we separately analyzed the

effect of the tasks complexity (work content) growth on the

results (effectiveness) of scheduling. It should be noted that as

the complexity of the task is measured in cycles, the study used a

range of tasks complexity from 5 to 350 cycles (at a fixed low-

intensity equal to 5, performance equal to 5 and the number of

resources equal to 10). The experimental results are shown in

Fig. 4, 5. Fig. 4 shows that the increase in execution time is

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.19, August 2012

40

almost linearly dependent on the increasing complexity of the

task, which is typical for all selected scheduling cyclicities.

However, with increasing task complexity utilization

of the resource begins to exponentially depend on scheduling

cyclicity, even at low intensity of tasks (Fig. 5). Thus, when the

complexity of tasks equal to 160 and 320, there is a maximum

loading of resources (utilization coefficient is close to 1), which

could be explained by the queue of tasks appearance on

resources.

Here we will consider scheduling results in the

conditions of changing amount of resources for tasks having

large computational complexity. The peculiarity of these tasks is

that in a real Grid system they can be completed during the time

from several hours to several days. In virtual organizations, the

share of such tasks is quite high, and administrators must to

explicitly allocate tasks of high complexity in a separate queue,

and to prescribe certain rules of scheduling for them.

Figs. 6, 7 shows the change in completion time of all

tasks in the queue depending on scheduling cyclicity (for the MC

algorithm) and comparison of this time with the completion time

obtained using the FCFS algorithm. It should be noted that

scheduling efficiency of a high complexity tasks is not

significantly affected by tasks package size or scheduling

periodicity. For example, for only 5 resources run time of tasks

with great complexity does not depend on scheduling periodicity

and tasks intensity. After a few scheduling cycles task queues

will be generated for resources and further scheduling is carried

out "for future ". However, it should be noted that the proposed

“list algorithm” MC has a considerable advantage in relation to

FCFS due to possibility of the optimum packing of resources. In

Fig. 6 gain in the tasks run-time is up to 45%. Increasing the

number of resources to 30 leads to the effect of reducing of tasks

completion time, but intensity increase leads to linear increase of

this indicator value, which indicates that resources are

underloaded (Fig. 7). A similar result shown in the diagrams in

Fig. 8, 9. For a linear change of tasks intensity for 5 resources

“list algorithm” MC shows the highest value of utilization

coefficient (0.95), suggesting that there is a queue before each

resource. Unlike MC, FCFS allows to load only 50% of the

resources (0,5). Increasing the number of resources to 30 leads to

a decrease of utilization coefficient for MC method making its

efficiency to be close to the efficiency of FCFS. Consequently,

the gain for tasks having great complexity for MC algorithm can

be obtained in the case of a small amount of free resources, or

high tasks intensity.

Based on the results of experiments conducted in order

to calculate the lower limit of scheduling cyclicity value for

known minimal task complexity, the following heuristics have

been found which can be described by equation (8). Equation (8)

is valid provided that pool size (or intensity) is greater or equal to

the amount of resources. In this case scheduling cyclicity is

determined to a greater extent by minimal time of resource

deallocation i.e. by the ratio (minimal task complexity /

maximum resource performance).

Because pool size can be changed and set equal to the

amount of resources it is always possible to ensure a minimal

completion time of all tasks and maximal resources utilization

coefficient in the proposed scheduling mechanism.

Thus, the desired problem can be reduced to the

problem of resources scheduling process management.

).typroductivi resource maximum*resources ofnumber (

/)complexity tasksminimal*intensity tasksaverage(

 (8)

Task complexity, cycle

E
x
e

c
u

ti
o

n
 t
im

e
 ,
 c

y
c
le

scheduling cyclicity : 5

scheduling cyclicity : 10

scheduling cyclicity : 15

scheduling cyclicity : 20

scheduling cyclicity : 25

scheduling cyclicity : 30
0 50 100 150 200 250 300 350

5000

10000

15000

20000

25000

30000

35000

40000

45000

Fig 4: Dependence of tasks execution (completion) time on task complexity for various scheduling cyclicities

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.19, August 2012

41

Scheduling cyclicity, cycle

U
til

iz
a
tio

n
 c

o
e
ff
ic

ie
n
t

task complexity : 20

task complexity : 30

task complexity : 40

task complexity : 80

task complexity : 160

task complexity : 320
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

Fig 5: Dependence of the utilization coefficient on scheduling cyclicity for the tasks of various complexities

40 60 80 100 120 140 160 180 200 220 240 260

Intensity of tasks

400000

600000

800000

1000000

1200000

1400000

1600000

E
x
e

c
u

ti
o

n
 t
im

e
,
c
y
c
le MC scheduling cyclicity - 1 cycle

MC scheduling cyclicity - 5 cycle

 FCFS

Fig 6: Dependence of tasks completion time values for MC and FCFS schedulers for various intensities and tasks scheduling

cyclicities with large computational complexity for 5 resources

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.19, August 2012

42

40 60 80 100 120 140 160 180 200 220 240 260

Intensity of tasks

180000

190000

200000

210000

220000

230000

240000

250000

260000

270000

E
x
e

c
u

ti
o

n
 t
im

e
,
c
y
c
le

 MC scheduling cyclicity - 1 cycle

MC scheduling cyclicity - 5 cycle

 FCFS

Fig 7: Dependence of completion time values for MC and FCFS schedulers for various intensities and tasks scheduling

cyclicities with high computational complexity for 30 resources

40 60 80 100 120 140 160 180 200 220 240 260

Intensity of tasks

0,4

0,5

0,6

0,7

0,8

0,9

1,0

U
ti
liz

a
ti
o

n
 c

o
e

ff
ic

ie
n

t

 MC scheduling cyclicity - 1 cycle

MC scheduling cyclicity - 5 cycle

 FCFS

Fig 8: Dependence of utilization coefficient values for MC and FCFS schedulers for various intensities and tasks scheduling

cyclicities with high computational complexity for 5 resources

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.19, August 2012

43

40 60 80 100 120 140 160 180 200 220 240 260

Intensity of tasks

0,40

0,42

0,44

0,46

0,48

0,50

0,52

0,54

0,56

0,58

0,60

0,62

0,64

U
ti
li
z
a

ti
o

n
 c

o
e

ff
ic

ie
n

t

 MC scheduling cyclicity - 1 cycle

MC scheduling cyclicity - 5 cycle

 FCFS

Fig 9: Dependence of utilization coefficient values for MC and FCFS schedulers for various intensities and tasks scheduling

cyclicities with high computational complexity for 30 resources

Description of the system of rules for effective scheduling of

resources load is shown in Table 2. The system of rules includes

recommendations on setting up three main parameters of

scheduling mechanism, which should be installed simultaneously

when intensity conditions, distribution law and tasks

characteristics will be changing.

Table 2. The rules for setting up scheduling mechanism parameters when task characteristics change

Conditions The system of rules to improve efficiency

Task intensity Task complexity Pool size Tasks package Scheduling cyclicity

Low (average number of
Tasks entering the system

is less than the amount of

resources)

The average Task

complexity by an order of

magnitude (significantly)
greater than the average

resource performance

Greater than maximum Task

intensity. For a normal

distribution the pool size
corresponds to value (M+3σ)

Size is equal to the average

intensity.

Determined by

minimal task

completion time
(minimal tasks

computational

complexity)

The average Task

complexity greater than

the average resource
performance

Greater than maximum task

intensity. For a normal

distribution the pool size
corresponds to value (M+3σ)

Size is equal to the average

intensity.

Determined by

average resource

deallocation time

The average Task

complexity less than the
average resource

performance

Greater than maximum task

intensity. For a normal
distribution the pool size

corresponds to value (M+3σ)

Size is equal to the average

intensity.

Determined by

minimal resource
deallocation time

High (average number of

tasks entering the system

exceeds the number of

resources)

The average task

complexity by an order of

magnitude (significantly)

greatere than the average

resource performance

Corresponds to the amount of

resources

Size is equal to the average

intensity.

Determined by

minimal resource

deallocation time

The average task

complexity greater than

the average resource
performance

Corresponds to the amount of

resources

Size is equal to or greater than

1

Determined by

minimal resource

deallocation time

The average task

complexity less than the

average resource
performance

Corresponds to the average

intensity

Size is equal to or greater than

1

Scheduling is carried

out at each cycle of

system operation

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.19, August 2012

44

4. CONCLUSIONS
1. The effectiveness of the proposed scheduling mechanism

depends on the interaction of scheduling and pool setting,

scheduling block, tasks packages for resources. Our studies have

shown that the most important parameter influencing scheduling

efficiency is the scheduling cyclicity. Optimally chosen

scheduling cyclicity allows to minimized the influence of

intensity dynamics and incoming tasks complexity.

2. Selection of the optimal scheduling cyclicity depends on

resource deallocation time. Scheduling cyclicity must be less

than average resource deallocation time for a given tasks

complexity and resource performance.

3. Resources utilization coefficient and all tasks completion

time have an inverse relationship. Utilization coefficient increase

leads to a linear decrease of all tasks completion time. The

empiric dependence (3) found as a result of the conducted

experiments allows to calculate the expected tasks completion

time in case if the certain level of resources load must be ensured

in the system.

4. The results obtained indicate a close relationship of

various Grid system efficiency indicators and allow to provide

resources scheduling processes management in these systems

based on the choice of resources load maximization strategy or

strategy for average response time minimization for the task.

Future work will be to continue the study in the direction of

the comparative analysis of effectives cover algorithms (for

example, greedy algorithms) with the presented in this paper

approximation algorithm. The study also involves evaluating the

use of the approximation algorithm in Maui for scheduling in

heterogeneous distributed systems.

REFERENCES
[1] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, R. F.

Freund. "Dynamic mapping of a class of independent tasks

onto heterogeneous computing systems", Journal of Parallel

and Distributed Computing, no. 59(2), pp. 107 – 121, 1999.

[2] F. Xhafa, L.Barolli, A. Durresi. "Batch mode scheduling in

grid systems", Int. J. Web and Grid Services, no. 3(1), pp.

19 – 37, 2007.

[3] F. Xhafa, A. Abraham. "Meta-heuristics for Grid

Scheduling Problems", Meta. for Sched. in Distri. Comp.

Envi., SCI 146, pp. 1–37, 2008.

[4] T. D. Braun, H. J. Siegel, N. Beck, Ladislau L. Boloni, R. F.

Freund, D. Hensgen, M. Maheswaran, A. I. Reuther, J. P.

Robertson, M. D. Theys, B. Yao. "A comparison of eleven

static heuristics for mapping a class of independent tasks

onto heterogeneous distributed computing systems", Journal

of Parallel and Distributed Computing, no. 61(6): pp. 810

– 837, 2001.

[5] J. Smith, J. Apodaca, Anthony A. Maciejewski, H. J. Siegel.

"Batch Mode Stochastic-Based Robust Dynamic Resource

Allocation in a Heterogeneous Computing System", In

Proceedings of PDPTA'2010, pp. 263 – 269, 2010.

[6] Ashish Chandak, Bibhudatta Sahoo, Ashok Kumar. Turuk.

"An Observation on Performance Analysis of Grid

Scheduler", IJCST, no. 2 (4), pp. 516–520, 2011.

[7] Bibhudatta Sahoo, Aser Avinash Ekka. Performance

"Analysis Of Concurrent Tasks Scheduling Schemes In A

Heterogeneous Distributed Computing System", In

Proceedings of the National Conference on Computer

Science and Technology, 11-12 Nov 2006, KIET,

Ghaziabad.

[8] Issam Al-Azzoni, Douglas G. Down. "Dynamic Scheduling

for Heterogeneous Desktop Grids", Journal of Parallel and

Distributed Computing, no. 70(12), pp. 1231–1240, 2010.

[9] Jong-Kook Kima, Sameer Shivleb, Howard Jay Siegelb,

Anthony A. Maciejewskib, Tracy D. Braunb, Myron

Schneiderb, Sonja Tidemanc, Ramakrishna Chittac, Raheleh

B. Dilmaghanib, Rohit Joshib, Aditya Kaulb, Ashish

Sharmab, Siddhartha Sripadab, Praveen Vangarib, Siva

SankarYellampallie. "Dynamically mapping tasks with

priorities and multiple deadlines in a heterogeneous

environment", J. Parallel Distrib. Comput., no. 67,

pp. 154 – 169, 2007.

[10] HE Xiaoshan, Xian-He Sun, Gregor von Laszewski. "QoS

Guided Min-Min Heuristic for Grid Task Scheduling",

Journal of Computer Science and Technology - Grid

computing, no 18 (4), pp. 442 – 451, 2003.

[11] Abdul Aziz, Hesham El-Rewini. "Grid Resource Allocation

and Task Scheduling for Resource Intensive

Applications",http://www.cecs.uci.edu/~papers/icpp06/ICP

PW/papers/008_aaziz-grid.pdf.

[12] J. Schopf. "Ten Actions When SuperScheduling, document

of Scheduling Working Group", Global Grid Forum, July

2001, http://www.ggf.org/documents/GFD.4.pdf.

[13] H. Chen and M. Maheswaran. "Distributed Dynamic

Scheduling of Composite Tasks on Grid Computing

Systems", In Proc. of the 16th International Parallel and

Distributed Processing Symposium (IPDPS 2002), pp. 88–

97, Fort Lauderdale, Florida USA, April 2002.

[14] Fangpeng Dong and Selim G. Akl. "Scheduling Algorithms

for Grid Computing: State of the Art and Open Problems",
Technical Report No. 2006-504 School of Computing,

Queen's University Kingston, Ontario January 2006.

[15] S. Tuecke, K. Czajkowski, I. Foster, S. Graham, C.

Kesselman, P. Vanderbilt and D. Snelling. "Grid Service

Specification, Open Grid Service Infrastructure Working

Group (OGSI)", Global Grid Forum,

http://www.cs.ucy.ac.cy/crossgrid/cygriddl/gsspec.pdf.

[16] Job Submission Description Language (JSDL)

Specification, http://forge.gridforum.org/projects/jsdl-wg.

[17] S.V. Listrovoy, A.Yu. Gul. "Method of Minimum Covering

Problem Solution on the Basis of Rank Approach",
Engineering Simulation, 1999, Vol. 17, pp. 73–89.

[18] S.V. Listrovoy, S.V. Minukhin. "Method for solving the

minimum vertex cover in a an arbitrary graph and the

problem of the minimal cover", Electronic modeling,

no 1 (34), pp. 29–43, 2012.

http://www.cecs.uci.edu/~papers/icpp06/ICPPW/papers/008_aaziz-grid.pdf
http://www.cecs.uci.edu/~papers/icpp06/ICPPW/papers/008_aaziz-grid.pdf
http://www.cs.ucy.ac.cy/crossgrid/cygriddl/gsspec.pdf

