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ABSTRACT 

The article describes the scheduling system for heterogeneous 

distributed computing systems. The scheduler based on minimal 

cover method. The analysis of the effectiveness of the scheduling 

system for tasks with varying intensity, the law of distribution 

complexity. The advantage of the method of minimal cover 

compared to FCFS. A system of rules for the optimization of the 

proposed planning changes in the intensity and complexity of 

tasks. 
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1. INTRODUCTION 
Exploitation of modern Grid systems is related to the necessity of 

improvement of their performance. It is defined by such metrics 

as utilization resources, run time of all tasks on the resources, 

total time completion of the tasks set later than other ones, etc.  

Now large amount of papers is devoted to the 

comparative analysis batch scheduling methods [1–14]. For 

example, a detailed description and classification scheduling 

algorithms for Grid computing is given in [12, 13, 14]. 

We investigated articles that examine the most common 

method of FCFS, the main advantage of which is the lack of 

information on the requirements of task (a method scheduling the 

task, standing first in order in query for the first free resource), 

with batch modes [6–9]. However, FCFS has significant 

disadvantages: its efficiency decreases sharply with increasing 

intensity of tasks flows and the heterogeneity of computing 

environment: resource queues are formed, which greatly 

degraded the utilization of resources due to their inactivity [8, 9]. 

More preferred is batch scheduling mode. In this mode the 

important point is the timing (mapping events) and frequency 

scheduling, largely impact on the performance metrics – 

minimize makespan and the total execution time of all tasks [10, 

11]. 

Since there is a tendency for increase of the number of 

heterogeneous computing clusters and of the tasks with 

differentiated solutions complexity (execution time), it is relevant 

to use more fine-tuning of scheduling process (procedure), which 

will allow to "pack" set of resources effectively on the one hand, 

and to provide a high load of all resources on the other hand. 

This can be achieved through the use of scheduling algorithms 

and additional components (modules) in the mechanism of Grid 

resources scheduling. 

2. GRID SCHEDULING MODEL 
Grid systems schedulers are main components in an 

interconnected information-communication system of Grid. Grid 

uses various concepts of schedulers based on online and offline 

modes. An immediate mode scheduler only considers a single 

task for scheduling on a FCFS (first come first served) basis 

while a batch mode scheduler considers a number of tasks at 

once for scheduling. Scheduling onto the Grid is NP complete 

[1]. Therefore, the problem of choosing an effective method of 

scheduling is difficult. As a rule the performance of various 

scheduling algorithms in the frames of common Grid scheduling 

mechanism, should be compared. When comparing the results of 

the various scheduling systems operation, evaluations of 

scheduler’s efficiency are not always correct and comparable. 

This is due to the complexity of the analysis of the timing 

characteristics of the tasks solution in various systems and load 

of resources to run incoming tasks. 

The purpose of this paper is development of a new 

scheduling method, which is based on a model problem of the 

minimal cover. Two main ideas are the basis for the proposed 

approach: at each step to schedule the batch of tasks and at each 

step for their running to allocate the minimum number of free 

and available resources. 

Feature of this method is that it uses the statistical 

characteristics that define the Grid environment.  

So main objectives of this study are:  

analysis of statistical laws identified in the process of 

using the proposed tasks scheduling mechanism for 

heterogeneous Grid system during the change of characteristics 

of the flow of incoming tasks (workflows); justification of 

selection of optimal parameters values of mechanism 

components for improvement of its efficiency; 

to develop a system of rules based on the results of  

statistical analysis of the Grid system exploitation, which allows 

to determine the optimal values of parameters of scheduling 

mechanism components  for all characteristics of tasks and 

resources, and thus to improve the performance of Grid system.  

The goal of the proposed method is to minimize the total 

execution time, has to be chosen in order to utilize the 

performance resources to minimize execution time on all 

resources and maximized average resource utilization. 

For scheduling of load of resources in this paper we 

propose to use the mechanism which components are shown in 

Fig. 1. This scheduling mechanism is a core of Workload 

Management System (WMS), namely, the tasks distribution 

service (Resource Broker, RB) [15]. The main type of requests to 

WMS are usually requests to perform tasks. WMS goal is to find 

the best (optimal) resource for a particular task execution based 

on task description made using JD L[16], and on information 
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about available resources. Availability of adequate resources for 

the given task depends not only on the condition of resources, but 

also on the policy of their use followed by resource managers or 

by administrators of a virtual organization. Currently, various 

strategies are used for resources allocation to distribute tasks 

between resources (e.g. push-model or pull-model). It is 

suggested to use strategy in the proposed scheduling mechanism: 

batch of task is scheduling on the available resources, however, 

the tasks may be in the scheduler until some resource becomes 

available, and then  the most appropriate task selected for the 

allocated resource. We consider following assumptions about 

task: 

all tasks are independent; 

tasks are non-preemptive: their execution on a resource 

cannot be suspended until completion; 

all resources have the different computing capability. 

It should be noted that the services performing tasks 

monitoring, tasks restart and resources monitoring are 

implemented within the Grid system itself and are not 

components of scheduling mechanism. According to scheme in 

Fig. 1, the tasks from the global tasks queue come to pool with a 

certain frequency and intensity. Pool is a stack for temporary 

storage of incoming tasks. The pool size is determined by the 

maximum intensity of incoming tasks: if the pool size is less than 

the number of incoming tasks, an additional queue will be 

created already at the entrance of the system itself. Tasks are 

unloaded at regular intervals which defined by scheduling 

cyclicity, from the pool to the block of scheduling, where the 

scheduling algorithm is implemented. To minimize the time of 

scheduling a fast approximate algorithm for solving the problem 

of the minimal cover is used [17, 18]. Scheduling time (working 

time of  algorithm for solving the problem of the minimal cover) 

depends on the size of the pool, i.e. the number of the tasks 

coming on the scheduling block, and the number of available 

recourses and free ones at the time of scheduling. The 

approximate scheduling algorithm provides a solution to the task 

in polynomial time O (mn
2
) [18]), so the cyclicity of approximate 

should be more than time for solving the scheduling task. As a 

result of scheduling tasks are assigned to free elements of the 

blocks of tasks package (package must have at least one free 

element) of correspondent resources, i.e. those which are not 

filled completely at the time of scheduling (see Fig. 1). 

It should be noted that tasks are coming with a delay, 

which determines the communication delay and data transfer 

from the scheduling block to resources for their execution. 

The presence of a package of tasks in this mechanism is 

due to the need to solve two problems: 

1) creating artificial queues for each resource that helps to 

prevent possible downtime and increases the coefficient of 

utilization of resources; 

2) creation of managed package of tasks for the 

possibility of scheduling and assignment of tasks on the level of 

the resource itself (if the resource is a cluster or a multiprocessor 

system).  

This study is used a serial mode for performing tasks on 

each resource, i.e., the tasks to be performed on the resource are 

sequentially selected from the tasks package as a resource 

becomes de-allocated (free). 
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Fig 1: The overall architecture of a scheduling mechanism 

 

 

 

The mathematical formulation of the scheduling model is 
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where m is a number of tasks, which should be scheduled; n is a 

number of the resources that are available and not allocated (free) 

at the time of scheduling;  tk   [T0, TN]. 

Scheduling is carried out on the time interval [T0, TN], where T0 

is the time of scheduling start; TN is the completion time for 

scheduling all tasks from global queue. 

The problem (1), (2) can be regarded as a minimal cover 

(MC) problem – determining the minimum number of columns 

in the Boolean matrix B, which covers all rows of the given 

matrix whose elements in the context of solving the scheduling 

problem are interpreted as follows: columns correspond to the 

non-allocated at the time of scheduling grid system resources, 

rows correspond to the tasks, subject to scheduling, which must 

be resolved on these resources (Table 1). 

This approach is based on the following assumptions. 

1. The scheduling system is organized in a two-level 

structure. A set of tasks (pool) which should be scheduled to 

which the method of solving the MC problem (1), (2) should be 

applied, is formed on the first level. Next, the tasks selected as a 

result of its solving scheduled to the available and free at the time 

of scheduling resources, and will be solved there under the 

control of the local scheduler.  

2. The scheduling method at each step of scheduling 

maximally loads the minimum number of resources which are 

free and available at the time of scheduling. Thus, for subsequent 

distribution of the task in a queue, the amount of resources 

available for possible tasks allocation will be maximal. 

3. Method (algorithm) for task scheduling (1), (2) must have a 

low complexity of its realization in order to minimize the time 

spent for tasks scheduling for their execution on free resources. 

4. The scheduling system utilizes package technology «pull-

push» so that firstly the tasks, organized as a batch of tasks 

(pool), become taken from the global queue (pull). When they 

will be scheduled on resources, they will be placed into a task 

package on the allocated resource (resources) and then 

transferred for a execution (push) onto this resource (resources). 

5. At scheduling time points tk m tasks are independent and n 

resources for allocation are available and free. 

 

Table 1. Matrix of matching tasks 

and resources 

 R1* R2 R3* R4 R5* R6 R7 R8 

T1 1        

T2  1 1 1     

T3 1     1   

T4   1     1 

T5  1 1 1     

T6 1      1  

T7     1   1 

T8     1  1  

T9     1    

T10  1 1     1 

T11  1   1    

T12 1   1  1   

 

The following metrics are usually used as performance metrics 

(objectives) of the scheduler in Grid system: the execution time 

of all tasks in a global queue and resources utilization. 

 

Mean time of one task processing is determined by the formula: 
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where N is the number of tasks in the global queue. 

 

Execution time of all tasks in a queue TN computed as follows:  
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where firstT  is the arrival time of the first task in the queue; 

lastT  is the time of completion of the last task in a queue. 

The coefficient of the utilization utilK  of resource Rj is given by: 
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where TRi is the execution (completion) time for all tasks in the 

global queue which were scheduled on resource Rj.  

3. STATISTICAL ANALYSIS OF 

SIMULATION RESULTS AND 

FORMALIZATION OF RULES OF 

SCHEDULING  
To carry out computing experiments a simulation model 

of the Grid scheduling system is used, based on the use of MC 

algorithm [18] with the complexity O (mn2). Internal time of 

simulation model (one cycle) is used as a time unit of scheduling 

and computing  in the program. This internal time corresponds to 

the time for one task execution which has the complexity of 1000 

MI on the resource characterized by 1000 MIPS performance. 

Computing experiment involves the study of scheduling 

for two types of tasks: 

 tasks having low computational complexity, which have a 

mean complexity value up to 500 cycles (which corresponds to 

the time of the task completion of less than 100 ms); 

 tasks having high computational complexity, with its 

mean value of 30,000 cycles (which corresponds to the time of 

the task completion up to 8 hours). 

The following parameters were chosen for imitational 

simulation. 

For the first group of tasks from input flow random 

normal distribution law was selected. The total number of tasks 

in the global queue was 2100; the complexity of the task varied 

in the range from 20 to 320; the intensity of the tasks varied in 

the range from 5 to 40 task with step 5; the universality of task 

(the percentage of available resources, which can be used for one 

task execution – analogue of the heterogeneity of resources) was 

50%; the length of the pool was 100 (the maximum number of 

tasks filled (downloaded) in the pool at the same time, or as they 

come into the system for execution); scheduling cyclicity varied 

from 1 to 40 cycles; a task packages to resources was chosen 5; 

amount of resources was 10; single resource productivity 

(performance) was 5 cycles; communication delay was 1 cycle.  

For the second group of tasks from input flow random 

normal distribution law was selected. The total number of tasks 

in the global queue was 1000; the complexity of one task was 

30000; complexity variance was 1000 cycles; the intensity of the 

tasks varied in the range from 50 to 250 with step 50; the 

universality of tasks was 50%; the length of the pool was 100; 

scheduling cyclicity varied in the range from 1 to 5 cycles; the 

task package size was 10; amount of resources varied from 5 to 

30, single resource productivity (performance) was 10 cycles, the 

communication delay was 20 cycles.  

The study uses the generation of tasks with small (up to 40 

tasks) and high intensity (from 40 to 250 tasks). In this case, the 

characteristics of low and high tasks intensity can be determined 
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only by comparing them with the number of available resources. 

If there are more resources than tasks, intensity is low, otherwise 

it is high. 

These statistical results of simulation are mean values of 

measures obtained on the basis of 20 tests (samples) generated. 

To ensure the adequacy of the experiments conducted, total tasks 

complexity and their number for the generated samples is the 

same for each test. 

The experimental results showed that the greatest influence 

on scheduling mechanism (procedure) is made by the intensity of 

the input tasks flow and their computational complexity, and that 

the main control parameters for the effective scheduling 

procedure are the pool size and scheduling cyclicity. 

The main task of the scheduler is the optimal «packing» 

tasks on resources, therefore input intensity of the tasks will be 

transformed by scheduler during each scheduling cycle into tasks 

packages to N resources. The maximum intensity of the tasks 

incoming on the resources during each scheduling cycle can be 

computed using the following equation: 

 

).__/()_( resoursesofnumbersizepool               

(6) 

 

 

The higher scheduling cyclicity (greater periodicity), 

the greater the number of tasks enters the pool and then assigned 

to the tasks packages during each scheduling cycle. In the case of 

high task input intensity or high scheduling cyclicity pool will be 

fully loaded and, thus, determines the maximum number of tasks 

involved in the scheduling procedure. 

For tasks with low intensity and low computational 

complexity, optimal organization of the scheduling procedure 

assumes that the tasks packages for each resource should include 

only one task. This ensures minimal task downtime in the system 

and uniform resources load due to the fact that any time at least 

one task from the package will always enter the resource which 

is free at this particular moment of time.  

If the flow of tasks with high intensity or high 

computational complexity is present, the scheduling is carried 

out for future, i.e. tasks are in queue in the pool or in a task 

package. The increase of scheduling periodicity (cyclicity 

decrease) allows to increase the number of task in task package 

for each resource; the increase of scheduling cyclicity allows to 

increase the time of task presence in the pool. Accordingly, with 

decreasing of scheduling cyclicity it is necessary to increase the 

tasks package size up to a maximum (according to equation (6)), 

otherwise the pool size should be increased to a value of 

maximum intensity of the input task flow. 

Results of statistical analysis of scheduling procedure 

for tasks with small computational complexity depending on the 

change of their flow intensity and scheduling cyclicity are shown 

in Fig. 2, 3. The Figures showing that for given task type an 

execution time is linearly dependent on scheduling cyclicity, i.e. 

execution time increases with increasing cyclicity. Studies are 

showing that if other characteristics being equal, minimum 

scheduling cyclicity, which is equal to one cycle, yields the 

smallest value of execution time. This relationship holds when 

task complexity is greater than 1 cycle. 

When the intensity of tasks flow is increasing the linear 

dependence remains unchanged, but the gain from scheduling 

cyclicity change decreases. With increasing of intensity to a 

value more than 100 task, change of scheduling cyclicity does 

not affect the time of tasks completion. This is due to the fact that 

the pool limits the number of task entering for the task 

scheduling. 

To obtain positive effect by changing scheduling 

cyclicity it was suggested to use the equation (7), which allows to 

define the upper bound of scheduling cyclicity. It should be 

noted that when the input intensity of tasks increases, the average 

number of tasks in the pool will also increase. This leads to the 

possibility to increase the scheduling cyclicity without sacrificing 

overall tasks completion time for fixed values of other 

characteristics. 

Unlike the overall tasks completion time, the mean 

response time (the mean completion time of one task) shows a 

nonlinear relationship. In cases when scheduling cyclicity is less 

than the mean time for a resource deallocation (in this case it is 5 

cycles, which is less than the ratio (30 cycles is task complexity) 

/ (5 cycles of the resource productivity)), the queue of the 

incoming scheduled tasks will be formed in the system. These 

tasks await release of the resource, which leads to a sharp 

increase in response time. 

With increasing of scheduling cyclicity tasks waiting 

time in the queue decreases because during this time most of the 

previous tasks from the pool will be completed already. For large 

cyclicity values response time of task includes only time spent in 

the pool + transportation time (communication delay time) + task 

completion time on the resource (Fig. 1), which determines it’s 

the minimum value. 
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Fig 2: The dependence of tasks execution (completion) time on the scheduling cyclicity and intensity of tasks 

 

The maximum value of the coefficient of resources use is 

possible in the case of a constant resources load (their idle time 

minimization). This could be achieved by an intensity increase, 

or by decrease of scheduling cyclicity. Thus, at low intensity of 5 

(less than the amount of resources), scheduling cyclicity should 

be equal to one cycle, at an intensity of 20 scheduling cyclicity 

must be no more than 5 cycles, at high intensity of 40 scheduling 

cyclicity, which ensures a high load of resources will be equal to 

10 cycles. 
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Fig 3: Dependence of the utilization coefficient on the scheduling cyclicity and intensity of tasks flow 

 

To analyze the effect of changes in task characteristics 

on scheduling procedure in this study we separately analyzed the 

effect of the tasks complexity (work content) growth on the 

results (effectiveness) of scheduling. It should be noted that as 

the complexity of the task is measured in cycles, the study used a 

range of tasks complexity from 5 to 350 cycles (at a fixed low-

intensity equal to 5, performance equal to 5 and the number of 

resources equal to 10). The experimental results are shown in 

Fig. 4, 5. Fig. 4 shows that the increase in execution time is 
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almost linearly dependent on the increasing complexity of the 

task, which is typical for all selected scheduling cyclicities. 

However, with increasing task complexity utilization 

of the resource begins to exponentially depend on scheduling 

cyclicity, even at low intensity of tasks (Fig. 5). Thus, when the 

complexity of tasks equal to 160 and 320, there is a maximum 

loading of resources (utilization coefficient is close to 1), which 

could be explained by the queue of tasks appearance on 

resources. 

Here we will consider scheduling results in the 

conditions of changing amount of resources for tasks having 

large computational complexity. The peculiarity of these tasks is 

that in a real Grid system they can be completed during the time 

from several hours to several days. In virtual organizations, the 

share of such tasks is quite high, and administrators must to 

explicitly allocate tasks of high complexity in a separate queue, 

and to prescribe certain rules of scheduling for them. 

Figs. 6, 7 shows the change in completion time of all 

tasks in the queue depending on scheduling cyclicity (for the MC 

algorithm) and comparison of this time with the completion time 

obtained using the FCFS algorithm. It should be noted that 

scheduling efficiency of a high complexity tasks is not 

significantly affected by tasks package size or scheduling 

periodicity. For example, for only 5 resources run time of tasks 

with great complexity does not depend on scheduling periodicity 

and tasks intensity. After a few scheduling cycles task queues 

will be generated for resources and further scheduling is carried 

out "for future ". However, it should be noted that the proposed 

“list algorithm” MC has a considerable advantage in relation to 

FCFS due to possibility of the optimum packing of resources. In 

Fig. 6 gain in the tasks run-time is up to 45%. Increasing the 

number of resources to 30 leads to the effect of reducing of tasks 

completion time, but intensity increase leads to linear increase of 

this indicator value, which indicates that resources are 

underloaded (Fig. 7). A similar result shown in the diagrams in 

Fig. 8, 9. For a linear change of tasks intensity for 5 resources 

“list algorithm” MC shows the highest value of utilization 

coefficient (0.95), suggesting that there is a queue before each 

resource. Unlike MC, FCFS allows to load only 50% of the 

resources (0,5). Increasing the number of resources to 30 leads to 

a decrease of utilization coefficient for MC method making its 

efficiency to be close to the efficiency of FCFS. Consequently, 

the gain for tasks having great complexity for MC algorithm can 

be obtained in the case of a small amount of free resources, or 

high tasks intensity. 

Based on the results of experiments conducted in order 

to calculate the lower limit of scheduling cyclicity value for 

known minimal task complexity, the following heuristics have 

been found which can be described by equation (8). Equation (8) 

is valid provided that pool size (or intensity) is greater or equal to 

the amount of resources. In this case scheduling cyclicity is 

determined to a greater extent by minimal time of resource 

deallocation i.e. by the ratio (minimal task complexity / 

maximum resource performance). 

Because pool size can be changed and set equal to the 

amount of resources it is always possible to ensure a minimal 

completion time of all tasks and maximal resources utilization 

coefficient in the proposed scheduling mechanism. 

Thus, the desired problem can be reduced to the 

problem of resources scheduling process management. 
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Fig 4: Dependence of tasks execution (completion) time on task complexity for various scheduling cyclicities 
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Fig 5: Dependence of the utilization coefficient on scheduling cyclicity for the tasks of various complexities 
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Fig 6: Dependence of tasks completion time values for MC and FCFS schedulers for various intensities and tasks scheduling 

cyclicities with large computational complexity for 5 resources 
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Fig 7: Dependence of completion time values for MC and FCFS schedulers for various intensities and tasks scheduling 

cyclicities with high computational complexity for 30 resources  
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Fig 8: Dependence of utilization coefficient values for MC and FCFS schedulers for various intensities and tasks scheduling 

cyclicities with high computational complexity for 5 resources 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 51– No.19, August 2012 

43 

40 60 80 100 120 140 160 180 200 220 240 260

Intensity of tasks

0,40

0,42

0,44

0,46

0,48

0,50

0,52

0,54

0,56

0,58

0,60

0,62

0,64

U
ti
li
z
a

ti
o

n
 c

o
e

ff
ic

ie
n

t 

 MC scheduling cyclicity - 1 cycle

MC scheduling cyclicity - 5 cycle

 FCFS

 
 

Fig 9: Dependence of utilization coefficient values for MC and FCFS schedulers for various intensities and tasks scheduling 

cyclicities with high computational complexity for 30 resources  

 

Description of the system of rules for effective scheduling of 

resources load is shown in Table 2. The system of rules includes 

recommendations on setting up three main parameters of 

scheduling mechanism, which should be installed simultaneously 

when intensity conditions, distribution law and tasks 

characteristics will be changing.  

 

 

Table 2. The rules for setting up scheduling mechanism parameters when task characteristics change 
 

Conditions The system of rules to improve efficiency 

Task intensity Task complexity Pool size Tasks package Scheduling cyclicity 

Low (average number of 
Tasks entering the system 

is less than the amount of 

resources) 

The average Task 

complexity by an order of 

magnitude (significantly) 
greater than the average 

resource performance  

Greater than maximum Task 

intensity. For a normal 

distribution the pool size 
corresponds to value (M+3σ) 

Size is equal to the average 

intensity. 

Determined by 

minimal task 

completion time 
(minimal tasks 

computational 

complexity) 

The average Task 

complexity greater than 

the average resource 
performance 

Greater than maximum task 

intensity. For a normal 

distribution the pool size 
corresponds to value (M+3σ) 

Size is equal to the average 

intensity.  

Determined by 

average resource 

deallocation time 

The average Task 

complexity less than the 
average resource 

performance  

Greater than maximum task 

intensity. For a normal 
distribution the pool size 

corresponds to value (M+3σ) 

Size is equal to the average 

intensity. 

Determined by 

minimal resource 
deallocation time 

High (average number of 

tasks entering the system 

exceeds the number of 

resources) 

The average task 

complexity by an order of 

magnitude (significantly) 

greatere than the average 

resource performance  

Corresponds to the amount of 

resources 

Size is equal to the average 

intensity. 

Determined by 

minimal resource 

deallocation time 

The average task 

complexity greater than 

the average resource 
performance  

Corresponds to the amount of 

resources 

Size is equal to or greater than 

1 

Determined by 

minimal resource 

deallocation time 

The average task 

complexity less than the 

average resource 
performance 

Corresponds to the average 

intensity 

Size is equal to or greater than 

1 

Scheduling is carried 

out at each cycle of 

system operation 
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4. CONCLUSIONS 
1. The effectiveness of the proposed scheduling mechanism 

depends on the interaction of scheduling and pool setting, 

scheduling block, tasks packages for resources. Our studies have 

shown that the most important parameter influencing scheduling 

efficiency is the scheduling cyclicity. Optimally chosen 

scheduling cyclicity allows to minimized the influence of 

intensity dynamics and incoming tasks complexity. 

2. Selection of the optimal scheduling cyclicity depends on 

resource deallocation time. Scheduling cyclicity must be less 

than average resource deallocation time for a given tasks 

complexity and resource performance. 

3. Resources utilization coefficient and all tasks completion 

time have an inverse relationship. Utilization coefficient increase 

leads to a linear decrease of all tasks completion time. The 

empiric dependence (3) found as a result of the conducted 

experiments allows to calculate the expected tasks completion 

time in case if the certain level of resources load must be ensured 

in the system. 

4. The results obtained indicate a close relationship of 

various Grid system efficiency indicators and allow to provide 

resources scheduling processes management in these systems 

based on the choice of resources load maximization strategy or 

strategy for average response time minimization for the task. 

Future work will be to continue the study in the direction of 

the comparative analysis of effectives cover algorithms (for 

example, greedy algorithms) with the presented in this paper 

approximation algorithm. The study also involves evaluating the 

use of the approximation algorithm in Maui for scheduling in 

heterogeneous distributed systems. 
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