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ABSTRACT 

Inverse problems are very frequent in computer vision and 

machine learning applications.  Since noteworthy hints can be 

obtained from motion data, it is important to seek more robust 

models. The advantages of using a more general 

regularization matrix such as  =diag{1,…,K} to robustify 

motion estimation instead of a single parameter λ (=I) are 

investigated and formally stated in this paper, for the optical 

flow problem. Intuitively, this regularization scheme makes 

sense, but it is not common to encounter high-quality 

explanations from the engineering point of view.  The study is 

further confirmed by experimental results and compared to the 

nonregularized Wiener filter approach. 
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1. INTRODUCTION 
Motion provides significant cues to understand and analyze 

scenes in applications such as sensor networks, surveillance 

[18], image reconstruction, deblurring/restoration of 

sequences [6, 9], computer-assisted tomography, classification 

[16], video compression and coding [9]. It may help 

characterize the interaction among objects, collision course, 

occlusion, object docking, obstructions due to sensor 

movement, and motion clutter (multiple moving objects 

superfluous to the investigation). 

A block motion approach (BMA) [9] relies on dividing an 

image in blocks and assigning a motion vector (MV) to each 

of them, but BMAs often separate visually meaningful 

features. Dense optical flow or pel-recursive schemes 

comprise another important family of motion analysis 

methods [1, 2, 14]. An optical flow (OF) method assigns a 

unique MV to each pixel to overcome some of the limitations 

of BMAs. Intermediary frames can be constructed afterwards 

by resampling the image at places determined by linear 

interpolation of the motion vectors existent between adjacent 

frames. pel-recursive approaches allows for  management of  

motion vectors with sub-pixel accuracy. 

Consider the motion model  

z Gu 

with G  m×n (m≥n). The least-squares (LS) estimate u  LS is 

obtained from the known observed data vector zm by 

minimizing the functional 

JLS(u)=║z-Gu║2

2 . 

If, for a full rank overdetermined system, 

                                 u LS=(GTG)-1GTz = G†z                          (1) 

exists, where G†=(GTG)-1GT  is the pseudo-inverse of  G, then 

u  LS might be a poor approximation due to several sources of 

error. Very often, G is ill-conditioned or singular and z is the 

result of noisy measurements [3, 5, 14, 15] caused by 

nonlinearities in the system and/or modeling deficiencies. The 

effect of the conditioning of G can be better understood if one 

looks at its SV decomposition (SVD) of G as follows:   

   G=UPVT,                               (2) 

where the  m×n  matrix  P  has entries Pii=pi, with pi≥0   for i 

= 1, 2, …, min(m, n) and other entries are zero. The pi’s are 

the SVs of G (which are equal to the eigenvalues of GTG). U 


m×m has m orthogonal eigenvectors of GGT as its columns. V 


n×n has n orthogonal eigenvectors of GTG as its columns. 

Then,  u LS can be written as (for further explanations, see  [7, 

17, 18]): 

 

 

with (UTz)i being the i-th entry of vector UTz
 
 and  Vi standing 

for the i-th column of matrix V. If  G is ill-conditioned, then at 

least one of its SVs will be very small when compared to the 

others. Now, when z is an outlier with errors in its i-th 

component, the corresponding term  (UTz)i  will be magnified 

even more if the i-th singular value (SV) is very small.  The 

calculation of (GTG)-1 can be a difficult task due to this noise 

amplification phenomenon. Although this text deals with the 

theoretical aspects of regularization, it should be pointed out 

that in our specific problem (motion estimation), where  G is a 

gradient matrix. The entries of G are spatial derivatives of the 

image intensity and it is a well-known fact that differentiation 

is a noise-inducing operation.  Hence, the matrix inversion 

required by the LS solution [7] presents two sources of error:  

the ill-posedness of the problem and the use of a matrix whose 

entries are obtained through differentiation.  

Regularization allows solving ill-posed problems because it 

transforms them into well-posed ones, that is, problems with 

unique solutions [5, 10, 13] and guaranteed stability when 

numerical methods are called for. Given a system  z=Gu+b, 

regularization tries to solve it by introducing a regularization 

               u LS  =VP-1UTy= 
ip 0 i

1

p

  (UTy)i Vi   ,                  (3) 
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term relying on a priori knowledge about the set of admissible 

solutions [7, 11] in order to compensate the ill-posed nature of  

a matrix G while constraining  the admissible set of solutions 

[1]. There is a relationship between regularization parameters 

and the covariances of the variables involved. The advantages 

of the use of a more general regularization matrix 

=diag{1,…,K} instead of a single parameter λ (=I) for 

the OF problem are investigated and formally stated.  

In the next section, the underlying model for the optical flow 

estimation problem is stated. Section 3  presents a brief 

review of previous work done in regularization of estimates, 

where the simplest and most common estimators are analyzed: 

the ordinary least squares (OLS), besides one of its enhanced 

versions,  the regularized least squares (RLS),  here referred to 

as u  OLS and u RLS, respectively [5, 9, 10-12, 14]. Section 4 shows 

some experiments attesting the performance improvement of 

the proposed algorithm. To conclude, a discussion of the 

results is considered in Section 5.  

2. MOTION ESTIMATION  
The displacements of all pixels between adjacent video frames 

form the displacement vector field (DVF). OF estimation can 

be done using at least two successive frames. This work aims 

at determining the 2D motion resultant from the noticeable 

motion of the image gray level intensities.  

Pel-recursive algorithms are predictor-corrector-type of 

estimators [2, 7, 14] which function in a recursive manner, 

pursuing the direction of image scanning, on a pixel-by-pixel 

basis. Initial estimates for a given point can be projected from 

other neighboring pixels motions. It is also possible to devise 

additional prediction schemes that correct an estimate in 

agreement with some error measure resultant from the 

displaced frame difference (DFD) and/or other criteria. 

It was stated before that a picture element belongs to a region 

undergoing movement if its brightness has changed between 

successive frames k-1 and k. The motion estimation strategy is 

to discover the equivalent brightness value Ik(r) of the k-th 

frame at position r = [x, y]T, and consequently, the exact 

displacement vector (DV) at the working point r in the current 

frame which is given by d(r) = [dx, dy]
T. Pel-recursive 

algorithms seek the minimum value of the DFD function 

contained by a small image part together with the working 

point and presume a constant image intensity along the 

motion path.  The DFD correspond to the gradient defined by 

                     (r;d(r))=Ik(r)-Ik-1(r-d(r))                                

and the ideal registration of frames will give the subsequent 

answer: Ik(r)=Ik-1(r-d(r)). The DFD characterizes the error 

attributable to the nonlinear temporal estimate of the 

brightness field through the DV. It should be mentioned that 

the neighborhood structure (also called mask) has an effect on 

the initial displacement estimate. 

The relationship linking the DVF to the gray level field is 

nonlinear. An estimate of d(r), is achieved straightforwardly 

with minimization of r,d(r)) or via the determination of a 

linear  relationship involving these variables through some 

model. This is consummated using a Taylor series expansion 

of Ik-1(r-d(r)) with reference to the position (r-di(r)), where 

di(r) stands for  a guess of d(r) in i-th step which yields (r; r-

di(r))  -uT Ik-1(r- di(r)),  or in its place 

 (r; r-di(r)) = -uT Ik-1(r- di(r))+e(r, d(r)),         (4) 

where the displacement  update  vector is given by u=[ux, uy]
T 

= d(r) – di(r).  e(r, d(r)) corresponds to the error from pruning 

the higher order terms (linearization error) of the Taylor  

=[δ/δx, δ/δy]
T stands for the spatial 

gradient  operator at r.  The update of the motion estimate is 

founded on the DFD minimization at some pixel. Without 

supplementary suppositions on the pixel motion, this 

estimation problem comes to be ill-posed as a result of the 

succeeding problems: a) model nonlinearities; b) the answer 

to the 2D motion estimation problem is not unique due to the 

aperture problem; and c) the solution does not continuously 

rely on the data due to the fact that motion estimation is 

extremely sensitive to the presence of observation noise in 

video images. 

Applying Equation (4) to all points in the surrounding the 

current pixel and taking into account an error term n∈m 

yields  

                                        z=Gu+n,                                         (5) 

where the gradients with respect to time r, r-di(r)) have 

been piled to compound the z∈N including DFD particulars 

inside an N-pixel neighborhood , the N×2 G results from 

stacking the gradients with respect to spatial coordinates at 

each observation, and the error term amounts to the N×1 noise 

vector n which is considered Gaussian with    n~N(0, σn
2IN). 

Each row of G has entries [axi, ayi]
T, with  i = 1, …, N. A 

bilinear interpolation scheme [2, 14] provides the spatial 

gradients of Ik-1. The assumptions made about n for LS 

estimation are: zero expected value (E(n) = 0), and Var(n) = 

E(nnT) = σ2IN.  IN is an N×N identity matrix, and nT is the 

transpose of  n. The earlier expression emphasizes the fact the 

observations are erroneous or noisy and it will be of help once 

introducing the concept of regularization and expanding it. 

Each row of G has entries fk-1(r) corresponding to a given 

pixel location within a mask. The components of the spatial 

gradients are computed through a   bilinear   interpolation   

scheme [2, 14]. The preceding expression will permit 

introducing the concept of regularization and extending it. 

3. ANALYSIS OF THE ESTIMATORS  
Previous works [3-6, 10] have shown that regularization 

improves LS estimates for ill-posed problems because they 

reduce the sensitivity of u  RLS to perturbations in z, the 

instability and the non-uniqueness of inverse problems by 

introducing prior information via the regularization operator 

Q and the regularization parameter λ>0. For the linear model 

from Equation (5), u RLS results from the minimization of 

               Jλ(u)= ║z-Gu║2

2+λ║Qu║2

2 ,     

whose solution is given by 

  u  RLS (λ)= (GTG+λQTQ)-1GTz.                 (6) 

The essential idea behind this method is recognizing a 

nonzero residual |z-Gu|, provided the functional Jλ(u) is 

minimum. The regularization factor λ directs the weight given 

to the minimization of the smoothness term ||Qu||2
2 compared 

with the minimization of the residual ||z-Gu||2. The simplest 

form of regularization is to assume ΛRLS=λQTQ=λI. The 

solution u RLS(λ) is no longer unbiased, and it can introduce 

useful prior knowledge about the problem, which is captured 

by the additional qualitative operator Q. In most cases, Q is 

chosen with the intention that the new solution is smoother 

than the one obtainable by the ordinary LS  (OLS) approach. 

This function is likely to encompass a few regularity 

properties as by way of illustration: continuity and 

differentiability. λ→0 leads to u  LS and λ→∞  implies that  

u  RLS()→0.   
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The regularization parameter turns out to resurface as a 

variance quotient, and this permits estimation via variance 

component estimation techniques as discussed in [3, 11].  The 

consequential formulas are similar to those frequently seen in 

deconvolution of sequences. A modern treatment from a 

practical standpoint can be seen, e.g., in [17, 18].   

3.1 Error Analysis of the RLS Estimate 
For the specified observation model, the LMMSE solution 

from [3, 7] is equivalent to Equation (6): 

                      u LMMSE = RuGT(GRuGT+Rn)-1z.              (7) 

u  LS requires knowledge of the covariance matrices of the 

parameter term (Ru) and the noise/linearization error term 

(Rn), respectively. The most common assumptions when 

dealing with such problem is to consider that both vectors are 

zero mean valued, their components are uncorrelated among 

each other, with Ru = σu
2I  and  Rn= σn

2I  where σu
2 and  σn

2 

are the variances of the components of the two vectors. Using 

the matrix inversion lemma [7], one can show that the RLS 

and the LMMSE solutions are identical if   λQTQ=Rn (Ru)-1 as 

stated in [3, 7, 10, 11]. The Linear Minimum Mean Squared 

Error (LMMSE) for the linear observation model is also the 

maximum  a  posteriori (MAP) estimate, when a  Gaussian 

prior on u is assumed and the noise n is also Gaussian (for 

more details, see [3, 11]). If u=0,  Ru= diag(σu1

2, σu2

2), and 

Rn= σ2I,   then Equation (7) becomes                  

                                       u RLS(Λ)= (GTG+Λ)-1GTz,              (8) 

with Λ = diag(σ2/σu1

2,σ2/σu2

2)=λI.  

3.2 Analysis of the RLS Estimate with 

Diagonal Λ  
The mean square error of u RLS is E{L1

2}=E{(u RLS -u)T(u RLS-u)}. 

Applying the unitary transformation  

                 T = Mu,                    (9) 

with M=VT, where  V  comes from the singular value 

decomposition from Equation (2), such  that  

GTG=MTP2M=VP2VT,  then we can define 

                                               G=G*M, and                         (10) 

                                               z=G*t+n.                               (11) 

This transformation reduces the system to a canonical form 

and simplifies some analyses due to the diagonalization of 

some matrices. It follows from Equation (10) that 

                     G*TG*=(GM-1)TGM-1=M-TGTGM-1 

                               = M-TMTP2MM-1=P2, and                     (12) 

                               = tTt=(Mu)TMu=uTMTMu=uTu.          (13)

     

The expression for E{L1

2}  can be more easily developed if 

one  keeps in mind the fact that it is invariant under 

orthogonal transformations like its shown in Equation (9): 

            E{L1

2}= E{(u RLS-u)T(u RLS-u)}= E{(t  RLS-t)
T(t  RLS-t).       (14) 

The RLS estimate of t, for the model in Equation (11) is given 

by 

       t  RLS= RtG
*T[G*RtG

*T
+ Rn]-1z.                (15) 

Equations (10) to (15) result in μt=μu=0 and 

Rt=E{ttT}=E{MuuTMT}=MRuMT.  Obviously,   Equation 

(15) can be restated as follows: 

            t RLS = [Rt
-1+G*T σ -2G*]-1G*T σ -2z,                (16) 

                               = [t+G*TG*]-1G*Tz                              (17) 

                               =M[+GTG]-1GTz                                (18) 

The last equation confirms the obvious result 

                             t RLS = Mu  RLS,                                             (19) 

where  no longer conforms to  the  definition provided in  

Section 3.1.  The transition between Equations (16)  and (18)  

takes into consideration  Equation (12) and the relationship 

below 

              t= σ 2Rt
-1 = σ 2M-TRu

-1M-1=MMT .                    (20) 

Furthermore, if we assume that  

          t  LS=[ G*TG*]-1G*Tz,                              (21) 

                Z*=[I+(G*TG*)-1Λt ]
-1=I- ΛtW

*, and              (22) 

  W*=[G*TG*+Λt ]
-1, then we have                                      (23) 

                                 t RLS = Z*t  LS .               (24) 

Combining  Equations (14) and (10) yields 

          E{L1

2}= E{( Z*t LS-t)
T(Z*t  LS-t)}.                        (25) 

                    = E{t LS
T Z*T Z*t LS +tTt - 2 t LS

T Z*T -t} 

                     = σ2Tr{(G*TG*)-1Z*TZ*}+tT(Z*-I)T(Z*-I)t.     (26) 

With the help of Equations (12), (22) and (23),  it is possible 

to write 

       E{L1
2}=σ2Tr{P-2[I+(G*TG*)-1Λt ]

-T[I+(G*TG*)-1Λt ]
-1}                

                                                +tT W*TΛt
TΛt W*t.               (27) 

The use of a canonical form makes the above calculations 

easier because all matrices are diagonal and leads to 

           E{L1
2}=σ2Tr{P-2[I+P-2Λt ]

-2} +tT Λt
2[P2+Λt]

-2t.       (28) 

E{L1
2}= E{L1

*2}  can be enunciated in terms of the SVs of G, 

that is, pi’s, the nonzero entries λti  of the regularization matrix  

Λt of the transformed system and the individual components 

of the transformed unknown t as follows:  

           

2 22
2 2

1 2 2 2 2
1 1

{ }
( ) ( )

i

i i

n n
i ti

i ii t i t

tp
E L

p p




  

   
    

       
  .       (29) 

Alternatively, 

                            E{L1
*2(Λt)}=  γ1(Λt) + γ2(Λt) ,                   (30) 

where 

2
2

1 2 2
1

( )
( )

i

n
i

i i t

p

p
 



 
  

  
t , and               (31) 

2 2

2 2 2
1

( )
( )

i

i

n
i t

i i t

t

p






 
  

  
t .                          (32) 

The earlier decomposition will be helpful in analyzing the 

properties of u  RLS and t RLS  in the succeeding theorems. 

THEOREM 1. The total variance  γ1(Λt) is the sum of the  

variances of all the entries of t RLS, that is, γ1(Λt) is the sum of 

all the elements of the main diagonal of matrix  Rt  RLS

 
 [5, 11]. 

PROOF: The covariance matrix of   t RLS  can be obtained from 

Equations (16) to  (24) and it is given by      
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                               Rt RLS=σ2Z*[G*TG*]-1Z*T.                         (33)  

Each diagonal entry of Rt  RLS  contains the variance of the i-th 

component of  t RLS, that is, t RLS(i) and their sum is  

       

2 1

1

{ ( )} { } { [( ) ] ( ) }
n

* * T * * T

i

Var i Tr Tr 



 
RLS

RLS
t

t R Z G G Z$
$ .  

Combining the previous expression with Equations (2), (12), 

(22) and (23) yields  

2 * * 1 * * * *

1

{ ( )} {[ ] { } [ ] }
n

T T T T T

i

Var i Tr   



   RLS t tt G G G G G G$

                   
2

2 2 2

2 2
1

{ [ ] }
( )

i

n
i

i i t

p
Tr

p
 







 
    

  
2 2

tP P  , 

(34) 

which agrees with Equation (31). Thus, γ1(Λt) is the sum of 

variances of all the entries of t  RLS and it is also the sum of all 

elements along the diagonal of Equation (33). 

 

COROLLARY 1. The total variance is the same in the 

original basis and in the canonical system, that is 

                                              γ1(Λt) = γ1(Λ) .               (35) 

PROOF:  Equations (11), (28), (26), and (30) result in  

2

1

2

1

{ ( )} { } { }

{ } ( ).

n
T

u
i

Var u i Tr Tr

Tr



  



 

 


RLS RLS

RLS

RLS
t

tt

R MR M

R

$ $

$

$

   

Defining 

                                 Z=((GTG)-1Λ+I)-1,        

then Equations (1), (11), and (35)  imply that 

                               u RLS =Z u LS =Z(GTG)-1GTz.                  

We can rewrite E{L1
2}  in terms of u  RLS as 

   E{L1

2}= E{(u RLS -u)T(u RLS -u)} 

              = σ2Tr{(GTG)-1ZT Z}+uT(Z-I)T(Z-I)u        

              = σ2Tr{(GTG+ Λ)-1}- σ2Tr{(GTG+ Λ)-1Λ(GTG+ Λ)-1} 

                               + ║Λ(GTG+ Λ)-1u║2
2 .                            (37) 

Similarly to what was done before 

E{L1

2}= E{( u RLS -u)T(u RLS -u)}=γ1(Λ)+ γ2(Λ),     
   

where 

 γ1(Λ)= σ2Tr{(GTG)-1ZT Z}                                                  (38)  

         = σ2Tr{(GTG+ Λ)-1}- σ2Tr{(GTG+ Λ)-1Λ(GTG+ Λ)-1},  

and     

                        γ2(Λ)= ║Λ(GTG+ Λ)-1u║2
2 .                         (39) 

Ru  RLS can be written likewise to Equation (33): 

                        Ru RLS = σ2Z(GTG)-1ZT.                                   (40) 

Additionally,    

2 1 2 1{ } { ( ) } {( ) }T T T T

u
Tr Tr Tr   

RLS
R Z G G Z G G Z Z$ , 

 

 

where it was used the property that for two  k×k matrices C 

and D we have Tr{CD}=Tr{DC}. Comparing Equations (32), 

(38), (41) and using some of the results from Theorem 3 yield    

γ1(Λt)= γ1(Λ). Thus, γ1(Λ) is the sum of variances of all the 

entries of  u RLS  which is the sum of all elements along the 

main diagonal of Ru RLS. 

 

COROLLARY 2. The total variance is independent of the 

basis chosen. 

PROOF: It follows promptly from Corollary 3. 

 

THEOREM 2.  As  Λ tends to 0, that is, the regularization 

tends to none, the value of  E{L1
2} approaches the sum of the 

diagonal entries of the  covariance matrix for the LS estimate 

of u. In mathematical terms [3, 5, 11]: 

                       2 2

1 2
1

1
lim { } { }

n

i i

E L Tr
p






  
LSuΛ 0

R$ .                (41) 

PROOF: When  Λ approaches 0, the last two terms of 

Equation (36) become zero and what is left is  

                       2 2 1

1lim { } {( ) }TE L Tr 




Λ 0
G G .                        (42) 

The covariance matrix of the LS estimate of u is given by 

                 Ru LS = E{ u LSu  LS

T}E{(GTG)-1GTzzTG(GTG)-1} 

                        = σ2(GTG).                                                   (43) 

Comparing the previous two equations results in    
2

1lim { } { }E L Tr


 $
LSu

0

R . Since GTG=VP2VT we also have                

2 1

1

2 2

2
1

( ) { } {( ) }

1
{ }

n
T

i

n

i i

ii Tr Tr

Tr
p



 









 

 





LS LSu u

2

R R G G

P

$ $

 

verifying thus the theorem.   

 

COROLLARY 3. As Λt
 
 tends to 0, the sum of the diagonal 

entries of the  covariance matrix for the LS estimate of t  is 

equal to the sum of the diagonal entries of the  covariance 

matrix for the LS estimate of u: 

                2

2
1 1 1

1
( ) ( )

n n n

i i i i

ii ii
p


  

   
LS LSu t

R R$ $ .              (45)  

PROOF: First let us notice that Rt   LS =M Ru  LSM
T, so that  

1

( ) { } { }
n

i

i Tr Tr


 
LS LS LSt t u

R R R$ $ $                      (46)                                                    

2 1 2 2

2
1

1
{( ) } { }

n
T

i i

Tr Tr
p

   



   2A A P ,        

(47) 

which agrees with Equation (45).  

 

 

(36) 

(44) 
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THEOREM 3. The total variance γ1(Λt) is a continuous, 

monotonically decreasing function of the entries of the main 

diagonal of  Λt, that is, λti, i=1,…,n [5]. 

PROOF: The first derivative of   γ1(Λt) with respect to  λti can 

be obtained from Equation (31) and it equals to 

                              
2 2

1

2 3
2

( )

i

i

p

p

 

 


 

 
i it t

. 

COROLLARY 4. The first derivative with respect to λti of 

the total variance γ1(Λt) approaches -∞ as λti0, and pi
2
 0.  

PROOF: In the neighborhood of the origin this derivative is 

negative  and it is given by  

           
2

1

40
lim 2

ip

 
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ti
it

, and             
2

1

0 , 0
lim

ip



  


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ti
it

.                      

THEOREM 4. The squared bias  γ2(Λt)  is a continuous, 

monotonically increasing function of  λti, i=,…,n [5, 11]. 

PROOF: The squared bias γ2(Λt) is defined in Equation (32). 

The denominator of  γ2(Λt) is always positive because pi
2
 >0 

for all values of i and λti≥0, provided GTG  is orthogonal (no 

singularities in the denominator). The function exists at the 

origin: γ2(0)=0.  γ2(Λt) can be rewritten as 
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t

Λ .              (50) 

The terms   pi
2/λti are monotone decreasing for increasing λti’s. 

Hence, γ2(Λt) is monotone increasing. 

 

COROLLARY 5. The first derivative with respect to λti  of 

the squared bias γ2(Λt) is zero at the origin as λti 0+. 

PROOF: The first derivative of γ2(Λt) with respect to λti  can 

be obtained from Equation (32) and it equals to 
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Around the origin this derivative is zero: 

                                               

2

0
lim 0


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ti
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.   

COROLLARY 6. The squared bias γ2(Λt) approaches  uTu as 

an upper limit when the solution is oversmoothed, that is, Λt 

→diag{∞,…,∞}. 

PROOF:  Rewriting γ2(Λt) as in Equation (50), the pursued 

limit becomes   

     

2

2
( ,..., )

1

lim ( )
n

T T T T

i
diag

i

t
  



   
t

t
Λ

Λ t t u M Mu u u .     

COROLLARY 7. ║Rt  RLS║2 is smaller than║Rt  LS║2   for Λt>0.   

PROOF: According to linear algebra, ║G║2=λGMAX, where 

λGMAX is the largest SV of G. From Equations (10) and (43), it 

follows that 

                                  ║Rt  LS║2 =σ2Tr{P -2}.                      

If  pn is the smallest SV of G, then   

                                     ║Rt  LS║2 =σ2 /pn
2.             (51) 

Similarly, by looking at Equation (33) we obtain 

                       ║Rt  RLS║2 = σ2pn
2 /(pn

2+ λtn)
2.       

The analysis of the two previous expressions shows that the 

introduction of the regularization factor λtn damps the 

denominator of  ║Rt   RLS║2  when compared to ║Rt  LS║2 . 

 

COROLLARY 8. The use of a regularization matrix  Λt 

reduces the variances of the entries of  u  RLS when compared to 

the variances of the entries of u  LS. 

PROOF: Comparing Equations (36) and (46) shows that 

Var{ u RLS(i)}, i = ,…,n is damped by the corresponding   λti of 

Λt. As a result, Var{u RLS(i)}, is smaller than Var{u LS(i)}. 

Therefore, the RLS estimate has smaller error than the LS 

estimate.  

THEOREM 5. There always exists a matrix Λt = diag{λt1, …,  

λti, …, λtn}  where λti >0 and a constant k > 0, such that  

      

2 2 2 2 2

1 1 1

1

{ ( )} { ( )} { ( )} {1 }
n

iE L E L k E L p   tΛ I 0 .     

 

 

Fig 1: Frames 1(left) and 2 (right) of the "Synthetic" 

sequence. 
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PROOF: Two cases need investigation: Λt =kI and Λt 

=diag{λt1, …,  λti, …, λtn}. First, let us evaluate  

        

2 2 2 2 2 2 2 2 2

1

1 1

{ ( )} { ( ) } / ( )
n n

i i i iE L k p p k k t p k    I .    

From the previous expression, we have 

                       

2 2 2

1

1

{ ( )} {1 }
n

iE L p 0 .              (52) 

First, let us  analyze the case λt1 = … =  λti = … =   λtn = k. The 

necessary and sufficient condition to have E{L1

2(kI)}< 

E{L1

2(0)} is that there always exists a k>0  such that 

dE{L1

2(kI)}/dk<0: 
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2 3 2 3
1 1

{ ( )}
2 2 0
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i i

dE L k p t p
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dk p k p k
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 

I
.  (53) 

Since   σ2 is a constant, dE{L1

2(kI)}/dk will receive more 

contribution of the term involving the entry ti  with the largest 

absolute value tmax=|ti|max. Therefore,  

             

2 2 22 2 2
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( )( )
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( ) ( )

n
ji i

i j

p ktp kt

p k p k
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 
  

which results in ktmax
2- σ2<0 or similarly k<σ2/ tmax

2. By 

inspection, it is easy to verify that  γ1(Λt)  is monotonically 

decreasing with Λt , which means that γ1(0)  is always greater 

than  γ1(Λt)  provided ti >0, i = 1,…,n. For γ2(Λt), one can 

observe that the term (P2+Λt)
-1 when viewed as a matrix 

whose entries  are polynomials, will have terms with 

denominators greater or (in the worst case) equal to their 

numerator. The result of adding γ1(Λt) and γ2(Λt)  will be 

always smaller than γ1(0) +γ2(0)=σ2 { / }
n

2

i

i 1

1 p


 .   Now, let us 

look at the case t=diag{t1,…,ti,…,tn}. Similarly to what 

was done for the case t1=…=ti=…=tn=k, we have that  
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Λ
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By inspecting Equation (51), we conclude that dE{L1

2(Λt)}/dλti 

< 0 when λti= σ2/ti
2. If at least one  ti is such that ti >k= 

σ2/tmax
2, then inspection of Equation (53) leads to 

E{L1

2(Λt)}<E{L1

2(kI)}.The previous theorems and corollaries 

show that   E{L1

2(Λt)} has a minimum.  

 

4. EXPERIMENTS 
In this section, we present several experimental results that 

illustrate the effectiveness of the proposed approach and 

compare it to the Wiener filter (LS) estimate [7, 13] and the 

case ΛRLS=λI. The algorithms were tested on a synthetic QCIF 

sequence (144×176, 8-bit). Two consecutive frames of this 

synthetic sequence are shown in Figure 1. In this sequence, 

there is a moving object in a moving background. It was 

created using the following auto-regressive model:  

f(m,n) = 0.333[f(m,n-1) + f(m-1,n) + f(m-1,n-1)] + n(m,n). 

For the background, n  is a Gaussian random variable with 

mean 1 = 50 and variance 1
2 = 49. The rectangle was 

generated with 2 = 100 and variance 2
2= 25. 

 

 

 

Fig 2: Motion error obtained for the Wiener filter top), 

ΛRLS=λI  (middle) and Λ=diag {λ1,…, λi, …, λN} (bottom) 

for the noiseless version of the "Synthetic" sequence. 

 

It has been shown (that   Ordinary Cross Validation (OCV) in 

some cases does not provide good estimates of  consult [2, 

4, 8] for more details).   A modified method called 

Generalized Cross Validation (GCV) function gives more 

satisfactory results (see, for example, [2, 3, 4, 8]) and it is 

given by 

2

2

2

( )1
( )

1
{ ( )}
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N

Tr
N









 
 

 

I A

I A

, 

where A(Λ)= G[GTG+Λ]GT.  

If the actual motion from two consecutive frames of the 

synthetic sequence is known, therefore the mean squared error 
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(MSE) and bias in the horizontal and vertical directions can 

evaluated. These metrics are given by 

 

 

Fig 3: Motion error obtained for the Wiener filter top), 

ΛRLS=λI  (middle) and Λ=diag {λ1,…, λi, …, λN} (bottom) 

for the "Synthetic" sequence with SNR =20dB. 
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where S is the entire frame and i=x,y. The average mean-

squared DFD defined as 
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and the  average improvement in motion compensation 

(IMCAVG) in dB  given by 
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Table 1. Results for different implementations, SNR = ∞ 
(noiseless). 

 Wiener λI Λdiagonal  

MSEx 0.1548 0.1534 0.1493 

MSEy 0.0740 0.0751 0.0754 

biasx 0.0610 0.0619 0.0581 

biasy -0.0294 -0.0291 -0.0294 

IMCAVG 19.46 19.62 19.89 

DFDAVG
2 4.16 4.05 3.76 

 

Table 2. Results for different implementations, SNR 

=20dB. 

 Wiener λI Λdiagonal 

MSEx 0.2563 0.2544 0.2437 

MSEy 0.1273 0.1270 0.1257 

biasx 0.0908 0.0889       0.0881 

biasy -0.0560 -0.0565  -0.0561 

IMCAVG 14.74 14.83      15.15       

DFDAVG
2 12.24 12.02  11.16           

 

Figure 2 shows the error frames estimated by subtracting the 

true frame 2 from predicted ones. The resulting motion vector 

estimates were obtained via the Wiener filter (LS), ΛRLS=λI   

and Λ=diag {λ1,…, λi, …, λN} without noise. Table 1 

illustrates the values for the MSE’s, biases, IMCAVG (dB) and 

DFDAVG
2  for the estimated optical flow in this case. Likewise, 

Figure 3 and Table 2 present results when SNR = 20dB. 

5. CONCLUSIONS 

In general, finding a numerical solution for an ill-posed 

problem involves regularization. A better-conditioned one 

subsequently approximates the original problem. Some 

distances or divergences metrics are often used as measures of 

closeness between problems.  In this paper, the consequences 

of regularization upon the quality of the RLS estimators have 

been analyzed in order to bridge the gap between the simplest 

form of regularization λQTQ=λIN=ΛRLS - where λ>0 is a scalar 

regularization parameter and Q is a regularization operator – 

and a solution Λ= λQTQ=diag {λ1,…, λi, …, λN} in terms of 

the analysis of the goodness of the solution. Equation (20) 

relates a diagonal Λ  to Λt
 
 via a unitary transformation. It is 

important to point out that our analysis is valid for the case 

when Λt
 
 belongs to the subspace of matrices that can be 

diagonalized by the same basis. 
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This work applies the proposed regularization method using a 

matrix Λ to the optical flow estimation problem. Indeed, 

experiments showed that the MSE, and biases were smaller for  

Λ=diag {λ1,…, λi, …, λN}. The quality of the estimates of the 

motion vectors can be seen from the values of IMCAVG  and 

DFDAVG
2. 

The bias-variance tradeoff must be taken into consideration 

for RLS estimates. Nevertheless, the proposed linear model 

brings in biases from two sources: the risk/penalty function 

(the Euclidean norm amplifies errors due to outliers, 

especially when near a decision limit), and regularization.  A 

way of decreasing biases is to increase variance, but it may 

introduce overfitting. It was confirmed by experiments that 

the expected value of the errors and biases were lowered when 

a regularization matrix Λ was used.  

The analysis done so far did not evaluate the effects of 

preconditioning and scaling on the RLS estimate. The 

application of variational methods such as total variation 

minimization is more difficult, given that it is not easy to 

determine straightforward and useful preconditioners for the 

problem.  

A video sequence may have various non-informative and 

spurious features that can obliterate the understanding of its 

main features. The model studied, can benefit from techniques 

such as cross validation to find the optimal hyperparameters. 

Depending on the problem nature and model assumptions,   

small singular values can be discarded in order to reduce the 

dimensionality of the system to be solved. This procedure is 

called Truncated SVD (TSVD) [12, 17, 18].   
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