
International Journal of Computer Applications (0975 – 8887) 

Volume 51– No.19, August 2012 

5 

Component based Software Development- New Era with 

new Innovation in Software Development 

 
Lata Nautiyal 

Assistant Professor 
Graphic Era University, 

Dehradun, India 

 

Umesh Kumar Tiwari 
Assistant Professor 

Graphic Era University, 
Dehradun, India 

Sushil Chandra  Dimri 
& 

Shshidhar G. Koolagudi 
Professor 

Graphic Era University, 
Dehradun, India 

 

 

ABSTRACT 
 

Traditional software development technology could not catch 

up with the speed of the many existing and proposed 

techniques for software development, it seems clear that 

component-based software development (CBSD) will be at 

the vanguard of new approaches to the production of software 

systems and holds the guarantee of substantially enhancing 

the software production and maintenance process. But the 

fundamental problem with CBSD is the Selection and 

Customization of components to meet the requirements of the 

proposed software. In this paper we are proposing a Selection 

and Customization Framework for CBSD. In CBSE, selection 

and composition of components require their interface without 

showing their idiosyncrasies. This methodology is very 

similar to the concepts of Object Oriented methods, but the 

Object Oriented approaches focus on inheritance rather than 

reusability. We have categorized and prioritized components 

according to their participation in the software development. 

General Terms 

Development, Object Oriented Methods, Reuse 

Keywords 

CBSD, Selection, Customization, Framework, Traditional 

Software Engineering, Component Model  

1. INTRODUCTION 
As we know that today software plays a vital role. In this age 

of information and technology it’s not only a product, but it 

creates markets for the new products. It is a product as well as 

a vehicle to deliver those products. Today it’s not only branch 

of computer science but is the generator of new and 

innovative fields. Now, amendment is a clasp of software 

tribe. As shown in Fig 1, we are witnessing a historical 

encounter of change of environment and change of software 

technology. 

Widespread use of the personal computers and the Internet 

make computers commodity supplies and created new market 

and users. This requires substantial change to software 

industry. New users, most of them are consumers; require to 

considerably reducing the price and/or cost of software in 

order to match the ever-decreasing hardware price. Demands 

to new applications such as electronic commerce and 

groupware are high. However, traditional methodologies have 

not achieved such drastic gain of the productivity and quality 

yet. We are requested to fundamentally re-think the way of 

software development. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: New Era of Software Development. 

Since early 1990’s, Component-Based Software Engineering 

(CBSE) have emerged [1] [2]. 

At the early time, CBSE emphasized on the End-User 

Computing such as composing applications on the PCs. 

However, the use of COTS (Commercial Off-The-Shelf 

Components) software promoted the CBSE in the 

development business applications [2].  

Furthermore, quick evolution of the Internet technology such 

as Web and Java-based technologies even open up new 

possibilities of CBSE such as network distribution of 

Distributed 

Computing 

 

Security 

Tools 

 

Cloud 

Computing 

Artificial  

Intelligence 

Mobile  

Computing 

 

New Era of 

Software 

Development 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 51– No.19, August 2012 

6 

components, and the reuse and interoperation of components 

over the Internet. Now, a few set of technologies have been 

widely deployed and are still evolving. They include 

ActiveX/DCOM from Microsoft CORBA [6] from OMG and 

JavaBeans SUN Microsystems [8]. 

2. COMPONENT BASED SOFTWARE 

ENGINEERING 
 

2.1  What is Software Component? 

A component is any part of in which something is already 

made. 

In our context this ‘something’ means system. In software 

engineering, this would allow a software system to have as 

components assembly language instructions, sub-routines, 

procedures, tasks, modules, objects, classes, software 

packages, processes, sub-systems, etc. The widely accepted 

goal of component-based development is to build and 

maintain software systems by using existing software 

components, e.g. [3], [4], [6], and [7]. They must interact with 

each other in system architecture. Interaction between these 

independent components, to achieve their goal is based on 

some properties: 

1. Specified services, 

2. Fully explicit context dependencies, 

3. Interactive interfaces, 

4. Independent deployment, 

5. Communication protocols. 

Component Characteristics  

 Standardized – Follows a standard component 

model  

 Independent – Usable without Adaptors  

 Compos able – External interactions use public 

interface  

 Deployable – Stand-alone entity  

 Documented – Full Documentation 

2.2  CBSE Vs.  Traditional Engineering 

Traditional Software Reuse and CBSE 

Although object-oriented technologies have promoted 

software reuse, there is a big gap between the whole systems 

and classes. To fill the gap, many interesting ideas have 

emerged in object-oriented software reuse for last several 

years. They include software architecture [4], design patterns 

[5], and frameworks [9].  

CBSE has been broadly used in software development, as it 

enhances reusability and flexibility, and reduces the costs and 

risks involved in systems development [10], [11], [12]. 

CBSE takes different approaches from the conventional 

software reuse in the following manner. 

i.) On the Demand:  

Component should be available and we must be able to scale 

the system with other components and/or frameworks so that 

component can be composed at any time without compilation. 

ii.) Interface-Implementation Abstraction:  

Idiosyncrasies of implementation details must not be shown 

during providing interface. Implementation and Interface must 

out of reach from one another so that interface can be 

composed without knowing their implementation. 

iii.) Predefined Frame work:  

Components are designed on a pre-defined frame work so that 

they can interoperate with other components and/or 

frameworks. 

iv.) Standardization:  

Component interface should be standardized so that they can 

be manufactured by multiple vendors and widely reused 

across the corporations. This will increase competition and 

availability of components in the market. 

v.) Distribution through Market:  

Components can be acquired and improved though 

competition market, and provide incentives to the vendors. 

The CBSE generally embodies the following fundamental 

software development principles: 

 CBSE is a reuse-based approach to define and implement 

loosely coupled components into systems.  

 During the CBSE process, the processes of requirements 

engineering and system design are interleaved.  

 Truly applying CBSE is not easy. One has to think about 

potential risks and carefully to plan ahead 

 

 

3. COMPONENT BASED SOFTWARE 

DEVELOPMENT 
 

The nature of CBSE suggests that the model of component-

based software development should be different from the 

traditional development model. Table 1 summarizes major 

characteristics of traditional software development and 

component-based software development, which are briefly 

discussed in the following sections. 



International Journal of Computer Applications (0975 – 8887) 

Volume 51– No.19, August 2012 

7 

Table 1. Comparison of Traditional VS CBSE 

Characteristics Traditional 

Software 

Engineering 

Component Based 

Software Engineering 

(CBSE) 

Architecture Huge Modular 

Components Implementation & 

White-Box 

Interface & Black-Box 

Process Big-bang & 

Waterfall 

Evolutional &Concurrent 

Methodology Build from 

Scratch 

Composition from COTs 

and Others 

Organization Big Industries Specialized: Component 

Vendor, Broker, & 

Integrator 

Emphasis is on Process 

identification, 

Domain Specific 

people 

Domain Specific 

Component 

identification 

Deliverables Sequential, 

Incremental or 

Evolutionary 

Working core 

Foundation 

basis 

Inheritance of 

Properties and 

Abstraction 

Reusability and 

Abstraction 

Risk Factor People, Resource 

availability 

Component availability, 

Composition Framework 

 

3.1 Architecture 

CBSE emphasizes modular architecture so that we can 

partially develop a system and incrementally enhance the 

functions by adding and/or replacing components. To make 

such design possible, we need a sound foundation of software 

systems, that is, software architecture. Most component-based 

systems assume underlying software architecture such as 

MFC (Microsoft Foundation Class) and CORBA. They are 

provided in the form of frameworks. Frameworks are 

workable reference to the underlying software architecture. 

3.2  Process 

CBSE makes software development and delivery is 

evolutional. Since some parts of a system can be acquired 

from the component vendors and/or be outsourced to other 

organizations, some parts of software process can be done 

concurrently. 

 

Architecture of Software Process 

To make software reuse happen, software process should be 

reuse-oriented so that designers can reuse artifacts at different 

levels of abstraction along with software process. Fig. 2 

illustrates an example of CBSE process. 

CBSE process consists of two processes; component 

development and component integration. Since these two 

processes can be done by different organizations, these two 

processes can be concurrent. 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Traditional CBSE approach 

Unlike traditional process, CBSE process needs a new process 

for component acquisition. 

4. PROPOSED METHODOLOGY 

Fig. 3 illustrates an overview of development methodologies 

of CBSE. As illustrated, methodologies need to deal with 

component selection from repository, component 

development, integration, regression and component 

composition. 

A component-based software system can be obtained as a 

result of the composition of some components with defined 

interfaces [13], [14]. 

In CBSE, selection and composition of components require 

their interface without showing their idiosyncrasies. This 

methodology is very similar to the concepts of Object 

Oriented methods, but the Object Oriented approaches focus 

on inheritance rather than reusability.  

Composition of components needs a defined and common 

behavior (based on their application domain) of multiple 

components. That is, CBSE methodologies emphasize on 

Interface-Implementation Abstraction and Application-

Component 1 

Component 2 

Component n 

Software 

systems 

Select 

Assemble 

Commercial Off-the-shelf (COTS) 

components 

Component 

Repository 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 51– No.19, August 2012 

8 

Domain- oriented design such as Catalysis [4] and 

connection-oriented programming [1]. 

Component Identification and Design: Based on the 

Application domain and Requirements we must identify 

suitable and application specific components. The component 

identification consists of: Component Selection, Component 

Prioritization, and Component Customization. 

Component Selection: As per the application domain and 

gathered requirements, Components must be selected from the 

Component warehouse repository. This selection may include 

the Exact Components availability, Extensible/Modifiable 

Components Availability, Non-Available Components.   

1. Exact Components Availability:  

These are the components which fulfill our up to the mark 

requirements. They may be used as it is, without any 

modification. It may be possible that more than one 

component from more than providers are available. According 

to our application domain and proper market research we can 

select these components. 

2. Extensible/Modifiable Components Availability:  

These components are same as the class inheritance in Object 

Oriented Software’s; where we do not have to start from the 

scratch instead we can acquire an available component and 

make modifications or extension as per our requirement. 

3. Non-Available Components:  

It may be possible that we have to develop some components 

from the scratch. Those components which are not available 

in the repository will come in this category.        

Component Prioritization: Only component selection is not 

the sole criteria to identify the components. After component 

identification we can prioritize the components according to 

the applications requirement and user needs. Component 

prioritization may help when we want to deliver our software 

in increments. We can prioritize our requirements and then to 

deliver most basic functional software, we prioritize our 

components. Component prioritization may include: 

Components Fulfilling Basic Requirements, Most Available 

Components, and Frame Work Components.    

1. Components Fulfilling Basic Requirements:  

We can prioritize components according to our requirements. 

We can select those components which will help in delivery 

of first increment of the software. These components are 

selected after the prioritization of requirements first. The most 

basic requirements are delivered first, and then next increment 

requirements are delivered and so on. According to these 

requirement priorities we can prioritize our components. 

 

2. Most Available Components:  

Second prioritization criteria may be the availability of the 

components in our repository. We can deliver our software 

based on the easily available components, to quick delivery of 

the software. It will help in faster integration and rapid 

development of the software. After Integrating and delivering 

available components we can go for modifiable components 

and then development of new components. 

3. Frame Work Based Components:  

Next criteria may be based on the prioritization of 

components which are fulfilling our Frame Work structure of 

the software. It may include either selection of available 

component or development of new components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Proposed CBSE Methodology 

Component Customization: Component customization is the 

process of addressing the issues related to the selection and 

deployment of optimum components. We cannot integrate too 

much components, since they will ultimately increase the 

integration complexity of the software. Component selection 

must be based on some criteria, standards and norms. 

Component Customization may consist of:  

1. Identifying components providing Same Functions,  

2. Merging components providing Related Features, 

3. Removal of Ambiguous Featured Components, 

4. Removal of Extraneous Interactions among components. 

 Selection 
Prioritization 

Customization 

Selection 
Prioritization 

Customization 

Selection 
Prioritization 

Customization 

 

New  

Components 

Modifiable 

Components 

Available 

Components 

Time 



International Journal of Computer Applications (0975 – 8887) 

Volume 51– No.19, August 2012 

9 

 

5.  CONCLUSION 
 

With CBSE, we can change the way of software 

development.  Software development should be with 

modular process, modular architecture and specialized 

association so that we can accumulate our technology and 

expertise. 

CBSE can be a fundamental technology for software 

development so that it requires re-thinking o f  a variety of 

aspects of software development. Besides technical issues, 

non technical issues such as commerce of components and 

management issues are also important. 

To make our dreams come true, new technology and 

professional will be desirable. 

ACKNOWLEDGMENT 

We would wish to thank Dr. R.C. Joshi, Honorable Chancellor 

Gaphic Era University, for his valuable support and guidance. 

Also a great Thanks for our President Honorable Professor 

Kamal Ghanshala, for providing such a research oriented 

platform for us. 

 

REFERENCES 

[1] C. Szyperski, Component Software, Addison-Wesley, 

1998. 

[2]  M. Aoyama, Componentware: Building Applications 

with Software Components, J. of IPSJ, Vol. 37, No. 1, 

Jan. 1996, pp. 71-79 (In Japanese). 

[3]   Lata Nautiyal, Umesh Kumar Tiwari, Sushil Chandra 

Dimri, Shivani Bahuguna, Elite: A New Component-

Based Software Development Model, International 

Journal of Computer Technology & Applications, Vol 3, 

Issue 1, Jan 2012, pp 119-124 

[4]  D. F. D’Souza and A. C. Wills, Objects, Components and 

Frameworks with UML: The Catalysis Approach, 

Addison Wesley, 1998  

[5]  M. E. Fayad and D. C. Schmidt (ed.), Object-Oriented 

Application Frameworks, CACM, Vol. 40, No. 10, Oct. 

1997. 

 [6].   Ning, A Component-Based Software Development 

Model, Proc. COMPSAC ’96, Aug. 1996, pp. 389-394. 

[7]  A. Thomas, Enterprise JavaBeans: Server Component 

Model for Java, White Paper, Dec. 1997, 

http://www.javasoft.com/products/ejb/ 

[8]  I. Sommerville. Software Engineering (6th Edition). 

Addison-Wesley, 2001. 

[9]  M. Vidger. The Evolution, Maintenance and 

Management of Component Based Systems. Boston: 

Addison-Wesley, 2001. [12] 

[10] Vitharana, P., Zahedi, F.M., Jain, H, “Design Retrieval 

and Assembly in Component-Based Software 

Development”, Communications of the ACM, 46 (11), 

pp. 97-102. 

[11] Basili, V.R., Boehm, B. (2001), “COTS-Based Systems 

Top 10 List”, IEEE Computer, 34 (5), pp.91-93. 

[12] Jianguo Chen et.al, “Complexity Metrics for Component-

based Software Systems”, International Journal of 

Digital Content Technology and its Applications, 5 (3), 

pp. 235-244, 2011. 

[13] Shepperd M, “A critique of cyclomatic complexity as software 

metric”, Software Engineering Journal, March 1988. 

[14] Capretz, L.F, “Y: A New Component-Based Software Life 

Cycle Model”, Journal of Computer Science, 1 (1), pp. 76-82. 

 

 

 

 

 

 

 


