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ABSTRACT
This paper presents two optimal fusion techniques using reliability
and separability measures for a multibiometric system, employing
fingerprints and voice. In the first method, reliabilities of fingerprint
and voice modalities are measured and the integration weights are
computed as the ratio of these two reliabilities. The computed reli-
ability ratio is then optimized against the recognition accuracy. The
optimizing parameter is estimated in the training/validating phase.
Latter is a multi-normalization based fusion scheme, where the sep-
arability measures are used as the integration weights to improve
the performance of the biometric system. The inter/intra class sepa-
rability measures and the d-prime separability measures, under var-
ious noise conditions are estimated in the training/validation stage.
Performance of the proposed methods are compared with that of
the baseline techniques using score level fusion. Experimental stud-
ies show that, the proposed methods improve global recognition
rate and reduce the False Acceptance Rate (FAR) and False Re-
jection Rate (FRR) over the baseline systems. The advantage of
the proposed biometric techniques is that they can be easily inte-
grated into any multibiometric system with score level fusion and
find extremely useful in applications especially with less number
of available training samples.
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1. INTRODUCTION
Data variations are considered as one of the main problems in
multimodal fusion. In this paper, the focus is on improving the
score level fusion of fingerprint and voice biometrics, under
varying noise conditions [2]. Even though the recognition
accuracy of the voice biometric is high in clean conditions, its
weakness is mainly due to their inability to cope robustly with
audio corruptions. Audio corruptions can arise from various
sources such as environmental noises or voice interference,
reverberation effects or transmission channel distortion etc.
Voice features show large intra-class differences, inter-class
similarities and may vary with environmental and physiological
factors as well as time [10]. When a biometric measure obtained
from one modality is corrupted by noise, the evidence presented
by a comparatively reliable trait is used for the more accurate de-
termination of identity. Noisy Biometric may not be successfully
matched with the respective stored template in the database, re-
sulting in genuine user being incorrectly rejected or an impostor
accepted as a genuine [20]. A reliability ratio based integration
weight optimization scheme is proposed here to determine the
optimal weight factor for the complementary modalities, under

different noise conditions. As the feature vector varies with
the amount of noise, the quality of score level fusion heavily
depends on the reliability of the unimodal sources. Reliability
measure gives the degree of trust in the recognition result drawn
from individual subsystems [12]. The performance of biometric
fusion can be improved if we could use the score-based relia-
bility measures to find the best integration weight. Determining
proper weights for the individual modalities is crucial for robust
recognition as it determines the contribution of each modality
towards the final decision. At high SNR (Signal to Noise Ratio),
the voice matcher outperforms the fingerprint matcher and the
final decision heavily relies on the score values of the voice
matcher. When the voice biometric is contaminated by noise,
the fingerprint matcher outperforms the voice matcher. In this
case, the score values of the fingerprint matcher contribute more
to the final decision. Therefore, it is crucial to estimate the best
weight factor dynamically, to combine both the modalities for
better performance, otherwise the system will show attenuating
fusion [17]. Estimation of reliability measures and the fusion
strategy are detailed in section 4. We estimated the optimizing
parameter in the training/validation stage using Leave-One-Out
Cross Validation technique (LOOCV). The optimal weight
estimated in the training/validation stage is subsequently used
in the fusion module for testing with the unknown input samples.

A weighting strategy, combining the separability measures from
the feature space and the match score space is also proposed in
this paper. In a biometric system the smaller the overlap between
the impostor scores and the genuine scores, the better the recog-
nition rate. As the amount of noise increases, the overlap be-
tween the genuine and the impostor score distribution will also
increase. Thus the class separability and the score separability
measures from the feature space and the matching score space
respectively at different noise conditions give an indication of
the quality of the biometric samples and the matcher. An ef-
ficient preprocessing on the raw vector of scores using multi-
normalization (different score normalization techniques for the
complementary modalities) is employed to improve the robust-
ness and efficiency of the bimodal system under various noise
conditions. The central idea behind score normalization is to re-
duce the data variations that are reflected in the matching scores
[8]. The inter/intra class separability measures from the feature
space and the d-prime separability measures from the match
score space are estimated in the training/validating phase using
LOOCV technique. The proposed fusion strategies are promis-
ing and it gives robust and improved recognition accuracy even
at low SNR conditions.
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2. RELATED WORK
Jain et al. in 1999 introduced a multimodal biometric system that
integrates face, fingerprints and voice [9]. Kar-Ann Toh in 2003
proposed a generalized reduced multivariate polynomial model
for combining fingerprint and speaker verification decisions [23].
Wang et al. in 2004 combined fingerprint and voiceprint bio-
metrics [26]. Lewis et al. in 2004 shed some light on audio-
visual speech recognition systems using dispersion measures as
the integration weights [13]. Toh et al. in 2005 combined fin-
gerprint and speaker verification decisions in the match score
level using functional link network [24]. Poh et al. in 2005 pro-
posed a margin derived confidence measure while fusing two
system opinions [16]. Jain et al. in 2005 examined the effect of
different score normalization techniques on the performance of
multimodal biometric system [8]. Kryszczuk et al. in 2007 pro-
posed a method of performing multimodal fusion using face and
speech data combining signal quality measures and reliability es-
timates [11]. Sarkar et al. in 2008 fused fingerprint, face, voice
and gait [21]. Bendris et al. in 2009 introduced quality measures
in audio-visual identity verification [5]. Alsaade et al. in 2009
showed that score normalization and quality-based fusion im-
proves the accuracy of multimodal biometrics [3]. Optimal inte-
gration weight estimation using least squares technique was re-
ported in [23]. Reliability based optimal integration weight esti-
mation for audio-visual decision fusion was reported in [17, 18].
We were motivated by [8, 10, 17] to develop a bimodal system,
with fingerprint and voice biometrics, that is more robust to en-
vironmental and sensor noise. The focus here is to determine the
best integration weight β using reliability and separability mea-
sures. The proposed integration weight proves to be simpler and
gives robust and improved recognition accuracy at varying noise
conditions. To the best of our knowledge, the proposed score
level fusion of fingerprints and voice using reliability and sep-
arability measures has not been attempted until now.

3. INDIVIDUAL CLASSIFIERS
3.1 Fingerprint Classifier
We considered the minutiae-based fingerprint matching using
ridge counting, as this approach is more robust against finger-
print distortions [27]. Given two sets of minutiae from the tem-
plate (T) and the input fingerprint (I) images, the matching al-
gorithm compares the minutiae points in the two images and re-
turns a degree of similarity [15]. Each minutiae is represented as
a triplet m = {x, y, θ} that indicates the x, y minutiae location
coordinates and the minutiae angle θ. A minutiae mi in T and a
minutiae m

′
j in I are considered matching, if the spatial distance

(sd) between them is lesser than a given tolerance r0 and the di-
rection difference (dd) between them is lesser than an angular
tolerance θ0 [15].

sd(m
′
j ,mi) =

√
(x
′
j − xi)2 + (y

′
j − yi)2 ≤ r0 (1)

dd(m
′
j ,mi) = min(|θ′j − θi|, 3600 − |θ′j − θi|) ≤ θ0 (2)

Elastic matching algorithm is used to perform matching between
the two fingerprints [27]. Match score formula for the reference
and the test print is given by [28],

Matchingscore =
100Npair

max {M,N}
(3)

where Npair is the number of matched minutiae, M is the num-
ber of minutiae in the template set, andN is the number of minu-
tiae in the test set. Maximum similarity criterion is used for fin-
gerprint pattern classification.

3.2 Voice Classifier
Short-time spectral analysis is used to characterize the quasi-
stationary voice samples. To represent the voice samples in a
parametric way, we considered the MFCC representation as they
were proved to be efficient and compact [19]. The number of mel
cepstrum coefficients, is chosen as 16 (here). Gaussian mixture
model (GMM) is considered here for representing the acous-
tic feature vectors. The complete Gaussian mixture model is
parametrized by the mean vectors, covariance and the mixture
weights. These parameters are collectively represented by [19],

λ = {ai, µi,Σi} , i = 1.....,M (4)

So, by using the MFCC feature vectors and the statistical GMM,
each enrolled speaker is uniquely represented by a specific λ.
In the training stage itself, each enrolled speakers in g, where
bfg = {ĝ1, ĝ2, ..., ĝG} is represented by a unique GMM

′
s (λ

′
s).

In the testing stage, the features from the unknown speaker
′
s ut-

terances are compared with statistical models of the voices of
speakers known to the system. The Bayes rule suggests to allo-
cate the test samples to the class ĝk, having the highest posterior
probability, that is [19],

ĝk = arg max
1≤k≤G

p (X|λk) (5)

where p (X|λk) is the a posteriori probability for a given obser-
vation sequence. In this case, maximum likelihood classifier is
used.

4. OPTIMAL FUSION USING RELIABILITY
MEASURES

One of the popular approaches among various integration weight
computation schemes is the reliability ratio based method. Reli-
ability estimation has shown to be an efficient and accurate way
for reducing the classification errors in both unimodal and mul-
timodal systems [11]. Reliability measure can be used as an aux-
iliary quality information for the score level fusion. In this ap-
proach, the integration weight is determined from the relative re-
liability of the two modalities. The reliability parameters of each
modality are captured from the matching score matrix. When the
voice samples does not contain any noise, there are large differ-
ences in the matching score values. As the voice samples be-
come noisy, these differences tend to become small. Considering
this observation, the reliability of a modality is defined in several
ways as mentioned in [13]. The modalities reliability parameters
are estimated based upon the variances of the matching scores.
The usual measure is to calculate the variance around the best
or the least score rather than the mean or median. The reliability
ratio can be calculated as follows [12, 17].

γ =
SV

SV + SF

(6)

where SV and SF are the reliability measures of the voice and
fingerprint modality, respectively. This can be obtained from the
respective matching score matrices using

Sm =
1

N

N∑
n=1

(smn −min(smn ))2 (7)

where ‘N’ is the number of test samples considered from all the
classes and ’m’ stands for the reliability of either fingerprint(F)
or voice (V) modality. This quantity measures the dispersion of
the score values to the least score rather than the mean. Even
though the integration weight using equation 6 can improve noise
robustness under certain noise conditions, it is not always the
optimal. Hence, a modified integration weight β given by equa-
tion 8 is employed to obtain better performance under low SNR
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Table 1. Training/ Validation Accuracy of Individual Classifiers
Modality Voice Fingerprints

SNR in dB Set.No. -10 -5 0 5 10 15 20 Clean
Val.1 9.3478 16.087 33.9130 50.6522 65.6522 87.1738 94.5652 95.6522
Val.2 4.3478 6.7391 25.8696 44.7826 70.2174 86.5217 96.5218 91.3043
Val.3 6.7391 20.0000 27.6087 42.1739 66.9565 84.5652 99.1304 91.3043

Accuracy Val.4 8.2609 12.8261 18.4783 33.9130 58.0435 87.8260 100.0000 86.9565
Val.5 7.8261 20.2174 21.9565 30.2174 59.3478 76.0869 95.2174 60.8696
Val.6 4.3478 4.5652 23.9131 51.5217 81.0870 95.2174 100.0000 86.9565
Val.7 9.7825 13.2609 16.3044 45.6522 74.7826 95.4348 98.2609 95.6522

Average 7.2360 13.3851 24.0062 42.7019 68.0124 87.5465 97.6708 86.9565

Table 2. Optimal Integration Weights estimated using LOOCV
No SNR Baseline System Proposed reliability based method

in dB GS β GA β γ GS xopt GA xopt PSO xopt GS β GA β PSO β

1 20 0.7071 0.8087 0.7421 0.8174 0.9612 0.9664 0.6066 0.7133 0.7172
2 15 0.6928 0.7387 0.7086 0.7446 0.9410 0.9800 0.5276 0.6668 0.6944
3 10 0.6500 0.6605 0.7035 0.7444 0.8722 0.9868 0.5237 0.6136 0.6942
4 5 0.1255 0.1255 0.6875 0.600 0.7796 0.8662 0.4125 0.5360 0.5955
5 0 0.0000 0.0000 0.6720 0.4165 0.2674 0.2722 0.2799 0.1797 0.1829
6 -5 0.0000 0.0000 0.6518 0.0677 0.1915 0.0500 0.0441 0.1248 0.0326
7 -10 0.0000 0.0000 0.6365 0.0528 0.1568 0.0148 0.0336 0.0998 0.0094

conditions [17].

β = xopt ×
[

SV

SV + SF

]
(8)

where xopt is the scaling factor which needs to be optimized. In
order to emphasize or deemphasize the scores obtained from the
unimodal systems, the integration weight factor must be adaptive
and optimal. That is, the weights must be very appropriate and
self adapted to the fluctuating inputs. So, we propose linear pro-
gramming and stochastic optimization techniques to obtain the
appropriate integration weights for fusion. The optimal integra-
tion weight was obtained in the training/ validation stage using
LOOCV. The min-max normalized match scores from the two
modalities were combined by the weighted sum rule to produce
the final decision. Given the speaker scores S(sc) and the finger
scores S(fc), the fused scores can be obtained by linearly com-
bining the two scores.

S(fus) = βS(sc) + (1− β)S(fc) (9)

The weighting factor β(0 ≤ β ≤ 1) determines how much each
modality contributes to the final decision. The proposed method
systematically chooses the best scaling factor xopt from a de-
fined domain (0 ≤ xopt ≤ 1) so as to maximize the objective
function (recognition accuracy). The objective function is given
by:

RecognitionAccuracy = −
∑
diag(CMat)∑∑

(CMat)
× 100 (10)

where CMat is the confusion matrix. The performance of the
proposed scheme is compared with that of equal weight bimodal
biometric system and the method proposed by [4]. To show the
effectiveness of the proposed technique, we evaluated the perfor-
mance of the system with a direct search optimization method
like Grid Search (GS) and random search optimization methods
such as Genetic Algorithm (GA) and Particle Swarm Optimiza-
tion (PSO).

5. FUSION USING MULTI-NORMALIZATION
AND SEPARABILITY MEASURES

The global recognition rate of the multibiometric system could
be improved by incorporating the separability measures as inte-
gration weights in the fusion module. Here, we considered in-
ter/intra class distance measure from the feature space and the
d-prime separability measure from the matching score space.
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Fig. 1. System With Equal Weighting (Baseline)
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Fig. 2. GS Based Optimization (Baseline)

5.1 Estimation of Inter/Intra Class Distance
The inter/intra class distance based on Euclidean norms gives an
indication of how well the classes in the feature space can be
discriminated. Here, the basic assumption is that the class de-
pendent distributions are such that the expectation vectors of
different classes are discriminating [25]. Let TS is a labelled
training set with NS feature vectors. The classes ωk are rep-
resented by subsets Nk ⊂ NS , each class having Nk features
(
∑
Nk = NS). Feature vectors in TS without reference to their

classes are denoted by zn. Feature vectors in Tk (i.e. vectors
coming from the class ωk ) are denoted by zk,n. In order to quan-
tify the scattering of feature vectors in the space, we consider the
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Table 3. Recognition Accuracy with Baseline and Reliability based methods
No SNR Individual Classifiers Baseline Systems Proposed Method

in dB Fingerprint Voice Equal Weightage Grid Search Genetic Grid Search Genetic PSO
1 20 95.6522 98.6956 97.8261 100.0000 100.0000 100.0000 100.0000 100.0000
2 15 95.6522 91.4493 97.6812 97.8261 97.8261 100.0000 100.0000 100.0000
3 10 95.6522 69.4203 95.6522 97.2464 97.1015 97.8261 97.8261 98.0507
4 5 95.6522 33.1884 95.6522 95.6522 95.6522 96.8116 96.8116 96.5290
5 0 95.6522 23.1884 85.6522 95.6522 95.6522 93.4783 93.4783 93.2826
6 -5 95.6522 9.1304 68.6956 95.6522 95.6522 93.4783 93.4783 92.2464
7 -10 95.6522 5.6521 57.3913 95.6522 95.6522 93.4783 93.4783 92.0942

Table 4. Combining the Weight Factors from the Feature and Score space
No. SNR in dB d′F d′V W1 ρF ρV W2 (W1 +W2)/2 W1 ×W2 Adaptive weight
1 20 0.8823 2.1176 0.7059 0.0166 0.0314 0.6358 0.6799 0.4615 0.6799
2 15 0.8823 1.8633 0.6786 0.0166 0.0305 0.6479 0.6633 0.4397 0.6633
3 10 0.8823 1.5593 0.6386 0.0166 0.0263 0.6128 0.6257 0.3913 0.6257
4 5 0.8823 1.2692 0.5899 0.0166 0.0252 0.6033 0.5966 0.3559 0.5966
5 0 0.8823 0.9403 0.5159 0.0166 0.0159 0.4886 0.5023 0.2521 0.2521
6 -5 0.8823 0.6222 0.4136 0.0166 0.0079 0.3236 0.3686 0.1338 0.1338
7 -10 0.8823 0.2503 0.2210 0.0166 0.0038 0.1855 0.2033 0.0410 0.0410

  1     2     5     10    20    40    60    80    90    95    98    99  
  1   

  2   

  5   

  10  

  20  

  40  

  60  

  80  

  90  

  95  

  98  

  99  

False Accept Rate (in %) →

F
a

ls
e

 R
e

je
c
ti
o

n
 R

a
te

 (
in

 %
) 
→

 

 

Fusion with 20 db SNR

Fusion with 15 db SNR

Fusion with 10 db SNR

Fusion with 5 db SNR

Fusion with 0 db SNR

Fusion with −5 db SNR

Fusion with −10 db SNR

Fig. 3. GA Based Optimization (Baseline)

scatter matrices. Scatter matrices gives some information about
the dispersion of the feature vectors around their mean. The sam-
ple mean of class ωk is given by

µ̂k =
1

Sk

Sk∑
n=1

zk,n (11)

The sample mean of the entire training set is given by

µ̂ =
1

SN

SN∑
n=1

zn (12)

Matrix that describes the scattering of vectors from class ωk is

Sk =
1

Nk

Nk∑
n=1

(zk,n − µ̂k) (zk,n − µ̂k)T (13)

Sk provides information about the average distance of the scat-
tering for class ωk. Let Sw and Sb are the within class scatter
matrix and between class scatter matrix respectively. Sw gives
the average scattering within the classes. In order to obtain Sw,
we find the scattering of all the classes and take the average.

Sw =
1

NS

K∑
k=1

NkSk (14)

Sb gives the scattering of the class dependent sample means
around the overall average.

Sb =
1

NS

K∑
k=1

Nk (µ̂k − µ̂) (µ̂k − µ̂)T (15)
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Fig. 4. Reliability Based GS (Proposed)

The performance measure well suited to express the separability
of classes is the ratio between interclass and intraclass distance
[25]. That is,

JINTER

JINTRA

=
trace(Sb)

trace(Sw)
(16)

JINTER denotes the fluctuations of the conditional expectations
around the overall expectation, i.e. the fluctuations of the signal,
while JINTRA measures the fluctuations due to noise. Hence
JINTER
JINTRA

can be considered as ‘signal-to-noise-ratio’ [25]. This
measure is estimated from the feature space of both the finger-
prints and voice modalities. The separability measures thus ob-
tained in the training stage are used as the integration weights for
fusion in the testing stage.

5.2 Score Normalization
Score normalization is essentially a transformation technique,
that effectively normalizes for any unwanted peculiarities in-
volved in the raw similarity computations. Various score nor-
malization techniques were proposed in the literature [1, 8, 22].
For a good normalization scheme, the estimates of the location
and scale parameters of the matching score distribution must be
robust and efficient. All the normalization techniques are not
equally suited for the different match score distributions. Here
we use cohort and tanh normalization techniques for the finger-
print and voice similarity scores, to enhance the efficiency and
the robustness of the system, under varying noise conditions.
Tanh (TH) normalization is one of the robust and efficient nor-
malization methods. This normalization method transforms the
genuine scores to a distribution with a mean of 0.5 and standard
deviation of approximately α. This transformation maps the raw
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Table 5. Recognition Accuracy with Separability Measures
No. SNR Accuracy of Classifiers SMIW MNSMIW

in dB Fingerprint Voice Average Product Adaptive Average Product Adaptive
1 20 95.6522 98.6956 100.0000 97.8261 100.0000 100.0000 100.0000 100.0000
2 15 95.6522 91.4493 97.8261 95.6522 97.8261 100.0000 100.0000 100.0000
3 10 95.6522 69.4203 96.5217 95.6522 96.5217 100.0000 100.0000 100.0000
4 5 95.6522 33.1884 95.2174 95.6522 95.6522 100.0000 100.0000 100.0000
5 0 95.6522 23.1884 85.9420 93.4783 93.4783 100.0000 100.0000 100.0000
6 -5 95.6522 9.1304 82.1739 93.4783 93.4783 100.0000 100.0000 100.0000
7 -10 95.6522 5.6521 87.5362 92.3188 92.3188 100.0000 100.0000 100.0000
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Fig. 5. Reliability Based GA (Proposed)
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Fig. 6. Reliability Based PSO (Proposed)
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Fig. 7. Density Plot: Equal Weighting (Baseline)

scores to a range (0,1). Given a set of matching scores s = {si},
i = 1,2,...,n, the normalized score s

′
i is obtained by,

s
′
i =

1

2

[
tanh

(
α

(si −mean (s))

std (s)

)]
(17)
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Fig. 8. Density Plot: Reliability GA (Proposed)
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In Cohort (C) normalization method a given query/test-sample is
compared with the claimed as well as the cohort (neighbours) of
the claimed identity[1]. Let s (x, λ) is the similarity score of the
query with the claimed identity, s

(
x, λ̄
)

is the similarity score
of the query with the cohort, where x is the query template, λ
is the claimant class and λ̄ represents the background class (U-
λ), where U represents the universal set. The normalized scores
c(x, λ) can be calculated by,

c (x, λ) =
s (x, λ)

s
(
x, λ̄
) (18)

Assuming the cohort to a size of k, s
(
x, λ̄
)

can be determined
using the max-rule [1].

s
(
x, λ̄
)

= max
{
s
(
x, λ1

)
, s
(
x, λ2

)
, ......s

(
x, λk

)}
(19)

s (x, λ1) , s (x, λ2) , ......s
(
x, λk

)
is the set of similarity score

of the query with the cohort λj’s for the enrolled identity λ. j =
1,2.....k.
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Fig. 10. Density Plot: MNSMIW (Proposed)

5.3 Estimation of d-prime Separability Measure
The d-prime separability measures gives the ratio of separation
to spread (Separation/spread) of the genuine and the impos-
tor score distributions. Separation gives the indication that how
much mean of the distributions are separated and the spread
gives an indication of the overlap. d-prime gives a measure how
well the non-match score probability density and the match score
probability density are separated. the d′ is defined as [6],

d
′
=

µm − µn√
(σ2

m + σ2
n)

(20)

where µm = mean of genuine scores; σ2
m = variance of genuine

scores; µn = mean of impostor scores; σ2
n = variance of impostor

scores. A higher d-prime indicates that the Genuine scores can
be more readily detected. Thus, the discriminability of a class
depends both on the separation and the spread of the Genuine
and impostor score distribution curves.

5.4 Fusion Using Separability Measures
We combined the separability measures from the feature space
and the score level phase using sum rule and product rule. Let
ρF and ρV denote the inter/intra class distance measures ob-
tained from the fingerprint and voice modality respectively. d′F
and d′V denote the d-prime separability measures obtained from
preprocessed similarity scores of fingerprints and voice modality
respectively. The results are shown in Table 4 and it is evident
from the table that the separability measure decreases with the
increase in noise. Following parameters are defined to obtain the
fused scores and Table 3.2 depicts their numerical values.

ρ =
ρV

ρF + ρV
(Feature space) (21)

d′ =
d′V

d′F + d′V
(Score space) (22)

β =
1

2

ρV
ρF + ρV

+
1

2

d′V
d′F + d′V

(Average) (23)

β =

(
ρV

ρF + ρV

)
×
(

d′V
d′F + d′V

)
(Product) (24)

We performed an adaptive score level fusion using the separabil-
ity measures. It is experimentally found that for normal condi-
tions the weighted average of the separability measures 1

2
ρ+ 1

2
d′

provides optimal weighting (improves the recognition accuracy)
while for the extreme noise conditions the product of the separa-
bility measures ρd′ improves the recognition accuracy. In order
to derive the advantages of combining the separability measures
using sum and product rule, under normal and extreme condi-
tion, we use an adaptive approach for the score level fusion. Un-
der normal noise conditions from 20 dB SNR to 5 dB SNR we

combined the separability measures using sum rule and for ad-
verse conditions from 0 dB SNR to -10 dB SNR the separability
measures are combined using the product rule. This strategy can
improve the overall recognition accuracy as well as the robust-
ness of the system. The results are shown in Table 5.

6. SIMULATION RESULTS AND DISCUSSIONS
Finger images from the FVC2002 fingerprint database [14] and
voice samples from ELSDSR database [7] have been employed
for the experimentation. We took nine samples per person from
the fingerprint and the speaker database. Out of these nine sam-
ples from each biometric, seven samples were used for training
the individual classifiers and two samples were used for test-
ing. As the fingerprint biometric is more robust, the performance
of the system under varying noise conditions was not consid-
ered. The performance of the weak, voice biometric system un-
der varying noise conditions was investigated by artificially de-
grading the test samples with additive white Gaussian noise. The
output of the two classifiers were consolidated into a single vec-
tor of scores using the sum rule of fusion.

6.1 Fusion With Baseline Systems
6.1.1 Fusion with equal weights. In this case a constant value
of β = 0.5 was assigned as an integration weight at all SNR lev-
els as discussed in [4]. This technique will not favour one modal-
ity over another. More over the combined recognition accuracy
may not be maximum always. The training accuracy of the base-
line system is shown in Table 3. Further insight could be obtained
from Fig. 1 and Fig. 7.

6.1.2 Fusion With Optimal Integration Weight Without Relia-
bility Information. We compared the proposed reliability based
integration weight optimization technique with a non-reliability
based integration weight estimation scheme as discussed in [4].
The overall testing accuracy of the non-reliability based inte-
gration weight estimation scheme is presented in Table 3. This
method shows improved accuracy than any of the unimodal sys-
tems in the normal operating conditions and maintained the ac-
curacy of the better unimodal ones for all the extreme noise con-
ditions. Further insight could be obtained form the DET plots
(Fig. 2 and Fig. 3). The disadvantage of the method is at the
extreme noise conditions the fusion module contributed zero
weighting to the voice modality. In these conditions, the over-
all performance depends solely on the fingerprint matcher.

6.2 Fusion With The Proposed Methods
6.2.1 Fusion with reliability based optimal integration weight.
From the training/validation stage (using LOOCV), we obtained
optimal integration weights (β

′
s) for different noise conditions

from -10dB to 20 dB. We have applied one dimensional Grid
Search method and the stochastic optimization techniques; GA
and PSO for optimizing the relaiability-based integration weight.
The overall validation accuracy of the individual classifiers for
various SNR conditions is shown in the Table 1. The relative re-
liability ratio estimates of the two modalities and the reliability-
based optimal integration weight β estimated for the various
SNR conditions are shown in the Table 2. The β values thus es-
timated during the training/validation stage is used for testing.
The overall testing accuracy of the proposed method is depicted
in Table 3. Even though the recognition accuracy of the proposed
method shows attenuation at very extreme noise conditions (0db,
-5db and -10db), the proposed method shows better performance
in terms of recognition accuracy, FAR and FRR, than the base-
line systems. This is evident from the Table 3, respective DET
plots (Fig. 4, Fig. 5 and Fig. 6) and from the score density plots
(Fig. 8). Experimental evaluations reveals that the classification
errors show a more pronounced reduction when we use the qual-

6



International Journal of Computer Applications (0975 - 8887)
Volume 51 - No. 16, August 2012

ity measure for finding the optimal integration weight. This is
because a higher reliability measure positively correlates with
the chance of making a correct classification decision. The score
density plot in Fig. 8 indicates that the effective overlap between
the genuine and impostor score distributions get considerably re-
duced with the proposed method, making the system more robust
to the fluctuating inputs. So we could demonstrate the advantages
of using unimodal reliability information to find the best integra-
tion weights for score level fusion.

6.2.2 Fusion With Separability Measures as Integration
Weights. The inter/intra class separability measures are derived
from the feature space of the two modalities. The inter/intra class
measures for voice modality (ρV ) at different noise conditions
are obtained by artificially degrading the training samples with
AWGN from 20 dB SNR to -10 dB SNR. The separability mea-
sures thus obtained are used as the integration weights for fu-
sion in the testing stage. The d-prime separability measures for
various noise conditions (20 dB SNR to -10 dB SNR) are ob-
tained from the genuine and impostor scores during the train-
ing/validation stage using LOOCV strategy. Table 4 shows the
d-prime statistic for the finger print (d′F ) and voice (d′V ) biomet-
rics. We combined the separability measures from the feature
space and the matching score space using sum rule, product rule
and an adaptive approach as described in section 5.4. Table 5
shows the recognition accuracy of the method, with Separability
Measures as Integration Weights (SMIW). To improve the global
recognition rate of the multibiometric system, the scores ob-
tained from the degraded modality are pre-processed using score
normalization. Fingerprint similarity scores are preprocessed us-
ing cohort normalization. To perform cohort normalization we
divided the genuine scores with the maximum of the impostor
scores. This transformation, increases the separability between
the genuine and impostor scores, which in turn improves the
overall performance of the biometric system. In order to im-
prove the robustness of the noisy, voice modality the similarity
scores are transformed using tanh normalization technique. We
observed that better performance could be obtained by this multi-
normalization technique. Table 5 shows the recognition accu-
racy of the proposed method. (MNSMIW - Multi-normalization
with Separability Measures as Integration Weights). Separabil-
ity measures combined with sum and product rule shows similar
performance in terms of accuracy, FAR and FRR. Further in-
sight could be obtained from the DET plots (Fig. 1 and Fig. 9)
and the score density plots (Fig. 7 and Fig. 10). The DET plot
of Fig. 9 show that the proposed method considerably reduces
the FAR and FRR and the score density plot of Fig. 10 show
that the overlap between the genuine and the impostor score dis-
tributions reduces with the multi-normalization and separability
measures. Hence, the proposed score level fusion using separa-
bility measures and score preprocessing techniques outperforms
the baseline fusion technique under various noise conditions.

7. CONCLUSION
In the first part of this paper, an optimum reliability ratio
based integration weight optimization scheme for fingerprint and
voice modalities is proposed and implemented. The performance
of the multibiometric system is evaluated under various noise
conditions. By estimating the optimal integration weight using
stochastic optimization strategies and LOOCV techniques, we
could automate the process and make the system more robust
to fluctuating inputs. This method effectively reduces FAR and
hence it will be highly suitable for applications like sharing net-
worked computer resources, granting access to nuclear facilities,
performing remote financial transactions or boarding a commer-
cial flight. One drawback of this method is that it gives attenu-
ating fusion under extreme noise conditions. A new weighting
strategy is proposed in the second part of this paper by com-

bining the separability measures from the feature space and the
match score space. An efficient preprocessing on the raw vec-
tor of scores using multi-normalization is employed, to improve
the performance of the system. The proposed method is robust
and could successfully eliminate the attenuating fusion even at
low SNR conditions while reducing the FRR considerably. As
the FRR is low, this method can be very effectively implemented
in a multibiometric system for forensic applications like criminal
investigation, parenthood determination etc.
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