
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.15, August 2012

19

An Efficient Framework to Derive Transaction Slicing

with Performance Forecast for Enterprise Modernization

Ravikumar Ramadoss
Technology Architect

Infosys
Bangalore, India

Pushpa T

Department of Computer
Applications

Alagappa University
Tamilnadu, India

N.M.Elango
Phd, Professor & Head,
Department of Computer

Applications
RMK Engineering College

Chennai, India

ABSTRACT

During legacy application to Enterprise Modernization, where

the Web logs are not available and deriving Transaction

slicing for the ‘n’ number of applications to forecast the

Performance is extremely difficult. This involves proper well

defined process flows to derive the characteristics of

heterogeneous applications. The performance forecast devised

has to be approved and stamped by key stakeholders during

the Non Functional requirements (NFR) sign off phase itself

in any Enterprise Modernization [1]. This Paper emphasizes

on the process flows to derive Transaction slicing with

performance forecast for Enterprise Modernization.

General Terms

Transaction Slicing, Performance Forecast, Enterprise

Modernization.

Keywords

Enterprise Modernization, Transaction Characteristics, NFR.

1. INTRODUCTION
Lots of Traditional applications are getting modernized to

Enterprise applications. The key is to derive the performance

forecast of the target modernized applications. As this forecast

will be showcased to the key stakeholders during the

enterprise modernization phase, the key characteristics of

performance will act as the deciding factor. As majority of the

applications have Transaction logs to derive the

characteristics, the Transaction slicing can be derived using

the available data points within the Traditional applications

[2].

The purpose of this Transaction slicing is to categorize the

transactions and forecast the performance of each transaction

sliced. Based on the characteristics and forecast, the further

Enterprise modernization can concentrate on how to

effectively bring out the best results within the application by

not losing its focus of key Nonfunctional requirements (NFR).

The objective of this paper is to provide an overview approach

for Transaction slicing and an approach for the Performance

forecast. This paper is organized as follows: Section 2 gives

an overview of Transaction slicing. In section 3 gives a

proposed framework for Transaction slicing and to derive

performance forecast. In section 4 approaches and the API for

transaction log parser are described. Section 5 and Section 6

consists of experimental analysis and Transaction slicing

report analysis.

2. Transaction Slicing
Transaction slicing is the process of categorizing the

transaction with simple, medium, complex and very complex

category based on the characteristics. These characteristics are

application specific like number of database hits, number of

rules, and number of interfaces (externals). The primary

source of information is the transaction logs and also from the

business and technical SME, who preserves the existing

business knowledge. The high level logical steps involved in

Transaction Slicing are shown in below fig 1.

2.1 Preprocessing Phase
In this phase preserving of existing business knowledge will

be utilized and key characteristics of the existing application

are captured and stored in the master Meta data in the

repository.

2.2 Pattern Discovery
In this phase pattern matching will be applied on the

Transaction logs, and the characteristics are retrieved and

stored in the desired repositories. The transaction log is the

textual file where the existing application enters a record

whenever transaction happens. Pattern and parsing the logs

can help understanding the key attributes of the transactions.

2.3 Analysis and Forecast
In this phase the characteristics are analyzed and the key

transactions are sliced against the SLA numbers and finally

the report gets viewed using the bar chart.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.15, August 2012

20

Fig 1: High Level Logical Steps Involved in Transaction Slicing

3. PROPOSED ARCHITECTURE

FRAMEWORK FOR TRANSACTION

SLICING
The high level proposed architecture is explained in the below

fig 2. and the components involved in creating the Transaction

Slicing are explained in the following sections.

3.1 Preserving Existing Business
In this component preserving of existing business knowledge

will be utilized and key characteristics of the existing

application are captured and stored in the master Meta data in

the repository. The technical and business SME has huge

amount of knowledge about how the existing application is

interacting with in and also with other interfaces. This

information is very vital in terms of coming up with high level

Meta data structure.

Interaction with Technical, business SME: In this phase,

interaction will happen between the modernizing technical

team and the existing team.

3.2 Transaction log parser
In this component parsing of the transactional log happens

and stores the Meta data with High level characteristics. The

process needs to be repeated for ‘n’ number of application

transaction logs available to identify the key application level

characteristics and store the same into the repository. Efficient

open source parsers will be used to filter out the logs.

3.3 Pattern Recognizer
This component uses a pattern matching technique that gets

applied on the parsed Transaction logs, and all the matched

patterns are retrieved and stored into the Repository. The

characteristics are retrieved and stored in the desired

repositories. The transaction log is the textual file where the

existing application enters a record whenever transaction

happens. Pattern identification and parsing the logs can help

understanding the key attributes of the transactions.

3.4 Infrastructure component
This component is used for all the infrastructure related

utilities like logging, security, auditing etc… and these will be

applied in all the key components in the system. This is very

important component as it provides all the value added

services which are needed in other key component

development of this Transaction slicing.

3.5 Performance forecaster
In this component, the parsed information from the

Transaction logs are mapped against to the Key characteristics

and then the performance forecast will be derived by the

Technical SME team. Some amount of manual interpretation

is needed in terms of review. Most of the forecasted data is

automatically generated in the previous phases.

3.6 Report view
In this component, the stored details are retrieved from the

database and get displayed in two views.

a) Graphical View: In this view, the retrieved data will be

transformed into user friendly charts for various key

transactions with in the system. This shows the stakeholders

on how many transactions available and how the SLA will be

on the modernized applications. It uses most of the

components from the Infrastructure components phase.

b) Grid View: In this view, all the key elements of the

transactional characteristics are retrieved and stored. It also

uses most of the components from the Infrastructure

components phase

3.7 Authentication
In this component, the details are only viewed by the

authorized persons, who can view the respective authorized

details. This component uses the enterprise sso, to build the

plug and play authentication component into the system

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.15, August 2012

21

Fig 2: Transaction Slicing High Level Architecture

4. PROPOSED Work

4.1 Transaction Log Parser
Several Transaction logs generated over a period of time

contains various key transaction characteristics. This pattern

recognized data will be derived from multiple source files

which gets stored in a distributed way. These are captured and

moved to the centralized repository before the parsing starts.

 Parser technique is applied to read through the different

Transaction logs and the retrieved information is passed on to

the Pattern recognizer for further processing.

The Implementation of the component is done in Java and this

component is built using the SAX Parser and Stream

interfaces available in Java [3]. As this log files are huge in

size, the parser is built in such a way that it can parse GB of

log files in less than 2 seconds. Proactive performance

engineering [4] has been applied on this component to ensure

this component meets the required performance standards.

A portion of the transaction log file used for the

experimentation has been shown in the following fig 3.

Fig 3: Sample Transaction Log file

4.2 API DETAILS FOR TRANSACTION

SLICING
The API and its interactions are explained in terms of class

diagram and the same has been shown in the following fig 4.

These APIs are used in the process of Transaction Slicing to

devise the required characteristics

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.15, August 2012

22

Fig 4: Transaction Slicing Class Diagram

4.3 HIGH LEVEL LOGICAL DETAILS

FOR TRANSACTION SLICING

FRAMEWORK
The following is the high level logical details for Transaction

slicing

Table 1. Logical Details for Transaction Slicing.

Input: Transaction Log file

1. Trigger fetchPatterns API

2. Use the Connection Util to establish the connection

to the Database

3. Read the Master Patterns from Database

4. Iterate around the Patterns and Store it in the Pattern

Value Object

5. Close the Connection channel and return

6. Call parseLog API

7. Read the Transaction Logs one by one

8. Parse the Logs using TransactionSlicingParser

utility

9. Utilize PatternRecognizer utility for the same

10. Filter the parsed logs based on the Patterns already

stored in Step 4

11. Assemble and Aggregate the TransactionSlicing

Value Object

12. Store the TransactionSlicingVO details on to the

Database

13. Read Business Characteristics (Master data) from

Performance Forecast table

14. Apply the Business Rules on the parsed logs

15. Persist the Business Rules filtered logs on to the

Database

16. Iterate around the number of log files and repeat the

same 6

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.15, August 2012

23

17. Retrieve the Transaction slicing information from

Database

18. Use Jasper Reports to print the retrieved records

Graph View

19. Use normal Tag libraries to print the retrieved

records in Grid ViewStore the Transaction Slicing

details on to the Database

Output: Transaction Slicing Details with independent

application specific characteristics

5. Experimental Results
The transaction log file used for this work got generated from

3 different legacy applications. The user arrival pattern is for

50 concurrent users using all three applications or one

application to perform their transactions.

 After the Transaction log has been parsed completely, the

results are shown through the snapshots as shown in figure 5.

Figure 5 shows the results of the Transaction log parser. In

this figure we can see that the different application key

transaction characteristics are parsed by applying the pattern.

The transactional slicing and its characteristics derived out are

shown through the snapshots as shown in figure 6.

Figure 6 shows the results of the categorization and the key

characteristics like number of database calls, number of

business rules, and number of interface calls.BR represents

Business Rules, DC represents database calls and EI

represents Interfaces (external).

Fig 5: Results of Transaction Log Parser

Fig 6: Results of transactions categorization and its characteristics

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.15, August 2012

24

6. TRANSACTION SLICING REPORT

ANALYSIS
The above results show that the proposed methodology can be

used to retrieve the Transaction key characteristics by using

the Transaction logs and also more importantly the important

application specific characteristics can be retrieved and

showcased to the stakeholders for Signoff.

The high level characteristics which got captured during the

transaction slicing by applying the business characteristics as

shown in above fig 6.This clearly indicates by using the

transaction slicing framework in Enterprise modernization

considerable amount of Effort can be saved

The number of applications and the effort comparison by not

using and using framework is shown in Table 1 and the

graphical representation on the Effort saving in person hours

in shown in Fig 7

The Expected percentile for meeting SLA’s are represented by

means of a graphical representation using bar chart as shown

in figure 7

The different seconds of SLA has been sliced for simple,

medium, complex and very complex transactions. The

minimum predicted response time for Transaction is <=1 and

the maximum predicted response time for Transaction is >=15

The result clearly indicates the amount of effort is directly

proportional to the number of applications involved. If the

complexity of the application is high and no Subject matter

expert (SME) support is available, it will even increase the

complexity to Slice the transaction and provide any forecast

data points to the key stakeholders. Usage of this framework

will not only reduce the effort involved, but also enables the

key stake holders to gain confidence in Enterprise

modernization.

The effort benchmark has been captured before and after the

Transaction slicing and the key milestones are closely

watched to do the comparison. Considerable effort gets saved

when Framework is utilized.

Table 1. Comparison in Effort Saving Before and After

Using Transaction Slicing Framework

Framework

usage

No of

Applicati

ons used

Effort in

Person Hours

Effort

Saving in %

Without

framework
5 860

49%
With

framework
5 425

Fig 7: Effort saving before and after usage of Transaction

slicing Framework

Fig 5: Results of Transaction Log Parser

7. CONCLUSION
Lots of legacy applications are getting transformed as

Enterprise modernized applications and the key aspect is to

understand the characteristics of the existing application.

When it gets modernized how much is the expected percentile

for meeting SLA needs to be derived out to gain the

confidence of the key stakeholders. The results shown are

evaluated by the existing application SME team, and they

found that the results are satisfactory and there are number of

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.15, August 2012

25

transactions where the SME itself not aware of as these

applications are maintained for more than 6 years, and this

Transaction slicing is helpful in bringing out the unknown

important characteristics during Enterprise modernization.

The existing framework is not SOA compliant and in future

implementations this framework can be refactored to SOA

standards and can be further made available as SAAS

component for any organization or individuals to do efficient

Transaction slicing. In the existing framework the master

patterns defined in database is not extendable in nature. In

future implementation this can be extendable by a Rich user

interface where user can define the patters and it can be

captured and persist into the database to enable user

friendliness to efficiently slice the Transactions.

8. REFERENCES
[1] A Maturity Model for Application Performance

Management Process Evolution. http://java.sys-

con.com/node/1884172

[2] CrHa99 “Web Application Tuning, “ Pat Crain and Craig

Hanson, Proceedings of the 1999 Computer

Measurement Group, Reno, Nevada, pp. 206-271, 1999

[3] LogDistiller log files merge sort tool,

http://logdistiller.sourceforge.net/

[4] Performance Engineering and Enhancement.

http://www.infosys.com/infosys-

labs/publications/Documents/SETLabs-briefings-

performance-engineering.pdf

[5] Build Better Applications from the start

http://www.compuware.com/application-performance-

management/dynatrace-development-team.html

[6] Patterns & practices Performance Testing Guidance for

Web Applications. http://perftestingguide.codeplex.com

[7] The Business case for Software Performance

Engineering.

http://www.tarrani.net/mike/docs/BizCase4SWPerforma

nceEng.

[8] Software, Performance, or engineering?

http://dl.acm.org/citation.cfm?id=584407

[9] Open source Java Reporting library.

http://jasperforge.org/projects/jasperreports

[10] Proactive performance tuning for Enterprise Java

developers.

http://toadworld.com/Portals/0/ToadTechPapers/Proactiv

ePerfTuningJProbeSQLOptimizer-US.pdf HMMT99

“ETE: A Customizable Approach to Measuring End-to-

End Response Times and Their Components in

Distributed Systems,” Joseph L. Hellerstein, Mark

Maccabee, W.Nathaniel Mills, and John J. Turek,

International Conference on Distributed Computing

Systems, 1999.

