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ABSTRACT 
A finite element method involving collocation method with 

quintic B-splines as basis functions has been developed to 

solve tenth order boundary value problems. The fifth order, 

sixth order, seventh order, eighth order, ninth order and tenth 

order derivatives for the dependent variable are approximated 

by the central differences of fourth order derivatives. The 

basis functions are redefined into a new set of basis functions 

which in number match with the number of selected 

collocated points in the space variable domain. The proposed 

method is tested on several linear and non-linear boundary 

value problems. The solution of a non-linear boundary value 

problem has been obtained as the limit of a sequence of 

solutions of linear boundary value problems generated by 

quasilinearization technique. Numerical results obtained by 

the present method are in good agreement with the exact 

solutions available in the literature. 

Keywords 

Collocation Method; Quintic B-spline; Basis Function; Tenth 

Order Boundary Value Problem; Absolute Error. 

1. INTRODUCTION 
The higher order boundary value problems are known to arise 

in hydrodynamic, hydro magnetic stability and applied 

sciences. It is well known that when a layer of fluid is heated 

from below and is subject to the action of rotation, instability 

may set in as ordinary convection which may be modelled by 

a tenth-order boundary value problem. In addition, 

ultrasonically assisted development of resists feature on 

semiconductor substrate is a popular development technique, 

but is difficult to understand. During this development process 

the developer i.e. 1:3 Methyl isobutyl Ketene and Isopropyl 

alcohol is heated because of ultrasonic agitation. During 

heating an infinite horizontal layer of fluid and then 

subjecting to the action of rotation, instability sets in. When 

this instability sets as an ordinary convection and a uniform 

magnetic field is also applied across the fluid in the same 

direction as gravity, then the problem is modelled by a tenth-

order boundary value problem [1]. 

In this paper, we developed a collocation method with quintic 

B-splines as basis functions for getting the numerical solution 

of a general linear tenth order boundary value problem 

a0(x)y(10)(x) + a1(x)y(9)(x) + a2(x)y(8)(x) + a3(x)y(7)(x) + 

a4(x)y(6)(x) + a5(x)y(5)(x) + a6(x)y(4)(x) + a7(x)yʹʹʹ(x) + 

a8(x)yʹʹ(x) + a9(x)yʹ(x) + a10(x)y(x) = b(x),    c<x<d           (1) 

subject to the boundary conditions  

 y(c) = A0,          y(d) = B0, 

 yʹ(c) = A1,         yʹ(d) = B1, 

 yʹʹ(c) = A2,        yʹʹ(d) = B2,                 (2)                                                                                                      

 yʹʹʹ(c) = A3,       yʹʹʹ(d) = B3, 

 y(4)(c) = A4,       y
(4)(d) = B4 

where A0, B0, A1, B1, A2, B2, A3, B3, A4, B4 are finite real 

constants and a0(x), a1(x), a2(x), a3(x), a4(x), a5(x), a6(x), a7(x), 

a8(x), a9(x), a10(x) and b(x) are all continuous functions 

defined on the interval [c, d]. 

The existence and uniqueness of the solution for these types 

of problems have been discussed in Agarwal [2]. The 

boundary value problems of higher order have been 

investigated because of both their mathematical importance 

and their potential for applications in hydro dynamic and 

hydro magnetic stability. Over the years, there are several 

authors who worked on these types of boundary value 

problems by using different methods. For example, Twizell et. 

al.[3] developed numerical methods for eighth, tenth and 

twelfth-order eigen value problems arising in thermal 

instability. Siddiqi and Twizell [4] presented the solution of 

tenth-order boundary value problem using tenth degree spline. 

Siddiqi and Akram [5] developed the solution of tenth-order 

boundary value problems using non-polynomial spline 

technique. Siddiqi and Akram [6] presented the solution of 

tenth-order boundary value problem by using eleventh degree 

spline. Erturk and Momani [7] applied differential transform 

method to construct the numerical solutions for linear and 

nonlinear tenth-order boundary value problems with two-point 

boundary conditions. Variational iteration technique was used 

by Siddiqi, Ghazala Ikram and Sabahat Zaheer [8] for the 

solution of tenth order boundary value problems. Homotopy 

Perturbation Method was used by Barari et. al.[9] for solving 

tenth order boundary value problems. Further, Scott and Watts 

[10] developed a numerical method for the solution of linear 

boundary value problems using a combination of 

superposition and orthonormalization. Scott and Watts [11] 

described several computer codes that were developed using 

the superposition and orthonormalization technique and 

invariant imbedding. Watson and Scott [12] proved that 

Chow-Yorke algorithm was globally convergent for a class of 

spline collocation approximations to non-linear two point 
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boundary value problems. Solution of linear and nonlinear 

boundary value problems of tenth and twelfth-order was 

implemented by Wazwaz [13] using adomian decomposition 

method. Numerical methods for special nonlinear boundary 

value problems of order 2m are developed by Djidjeli et. 

al.[14]. 

The above studies are concerned to solve tenth order 

boundary value problems by using tenth or eleventh order B-

splines. In this paper, quintic B-splines as basis functions have 

been used to solve the boundary value problems of the type 

(1)-(2). 

In section 2 of this paper, the justification for using the 

collocation method has been mentioned. In section 3, the 

definition of quintic B-splines has been described. In section 

4, description of the collocation method with quintic B-splines 

as basis functions has been presented and in section 5, 

solution procedure to find the nodal parameters is presented. 

In section 6, numerical examples of both linear and non-linear 

boundary value problems are presented. The solution of a 

nonlinear boundary value problem has been obtained as the 

limit of a sequence of solutions of linear boundary value 

problems generated by quasilinearization technique [15]. 

Finally, the last section is dealt with conclusions of the paper. 

2. JUSTIFICATION FOR USING 

COLLOCATION METHOD 
In finite element method (FEM) the approximate solution can 

be written as a linear combination of basis functions which 

constitute a basis for the approximation space under 

consideration. FEM involves variational methods such as 

Ritz’s approach, Galerkin’s  approach, least squares method 

and collocation method etc. The collocation method seeks an 

approximate solution by requiring the residual of the 

differential equation to be identically zero at N selected points 

in the given space variable domain where N is the number of 

basis functions in the basis [16]. That means, to get an 

accurate solution by the collocation method, one needs a set 

of basis functions which in number match with the number of 

collocation points selected in the given space variable domain. 

Further, the collocation method is the easiest to implement 

among the variational methods of FEM. When a differential 

equation is approximated by mth order B-splines, it yields 

(m+1)th order accurate results [17]. Hence this motivated us to 

solve a tenth order boundary value problem of type (1)-(2) by 

collocation method with quintic B-splines as basis functions. 

3. DEFINITION OF QUINTIC B-SPLINES 

The cubic B-splines are defined in [18, 19].  In a similar 

analogue, the existence of the quintic spline interpolate s(x) to 

a function in a closed interval [c, d] for spaced knots (need not 

be evenly spaced) c = x0 < x1 < x2 < … < xn-1 < xn = d is 

established by constructing it. The construction of s(x) is done 

with the help of the quintic B-splines. Introduce ten additional 

knots x-5, x-4, x-3, x-2, x-1, xn+1, xn+2, xn+3, xn+4 and xn+5 such 

that   

x-5 < x-4 < x-3 < x-2 < x-1 < x0  

and xn < xn+1 < xn+2 < xn+3 < xn+4 < xn+5. 

Now the quintic B-splines  Bi(x)'s  are defined by 
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It can be shown that the set {B-2(x), B-1(x), B0(x), …, Bn(x), 

Bn+1(x), Bn+2(x)} forms a basis for the space )(5 S  of fifth 

degree polynomial splines. The quintic B-splines are the 

unique non-zero splines of smallest compact support with 

knots at 

x-5 < x-4 < x-3 < x-2 < x-1 < x0 < … < xn < xn+1 < xn+2 < xn+3 < 

xn+4 < xn+5. 

4. DESCRIPTION OF THE METHOD 

To  solve  the  boundary  value  problem  (1)-(2)  by the 

collocation method  with quintic B- splines  as  basis  

functions, we  define  the approximation  for  y(x)  as 

)x(B)x(y
2

2

j





n

j

j                 (3) 

where αjʹs are nodal parameters to be determined. In the 

present method, the internal mesh points x3, x4, …, xn-3  are 

selected as the collocation points. In collocation method, the 

number of basis functions in the approximation should match 

with the number of collocation points[16]. Here the number of 

basis functions in the approximation (3) is n+5, where as the 

number of selected collocation points is n-5. So, there is a 

need to redefine the basis functions  into a new set of basis 

functions which in number match with the number of selected 

collocation points. The procedure for redefining the basis 

functions is as follows: 

Using the quintic B-splines described in section 3 and the 

Dirichlet boundary conditions of (2), we get the approximate 

solution at the boundary points as 

00

2
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Eliminating α-2 and αn+2 from the equations (3), (4) and (5), 

we get the approximation for y(x) as   

)x(P)x(wy(x) j

1

1

1 





n

j

j  

where            

)x(B
)x(B

B
)x(B

)x(B

A
)x(w 2n

n2n

0

2-

02-

0

1 



  

and 



International Journal of Computer Applications (0975 – 8887) 

Volume 51– No.15, August 2012 

9 

.

1.nn,1,-n2,-nj,)x(B
)x(B

)x(B
)x(B

3-n3,4,..., j,)x(B

1,0,1,2-j,)x(B
)x(B

)x(B
)x(B

)x(P

2n

n2n

nj

j

j

2-

02-

0j

j

j



























for

for

for

Using the Neumann boundary conditions of (2) to the 

approximation y(x) in (6), we get 

yʹ(c) = yʹ(x0) = w1ʹ(x0) + α-1P-1ʹ(x0) + α0P0ʹ(x0) + α1P1ʹ(x0) + 

α2P2ʹ(x0) = A1                                                                        (7) 

yʹ(d) = yʹ(xn) = w1ʹ(xn)+αn-2Pn-2ʹ(xn)+ αn-1Pn-1ʹ(xn)+αnPnʹ(xn) + 

αn+1Pn+1ʹ(xn)= B1.                                                                  (8) 

Now, eliminating α-1 and αn+1 from the equations (6), (7) and 

(8), we get the approximation for y(x) as  

)x(Q)x(wy(x) j
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Using the boundary conditions yʹʹ(c) = A2 and yʹʹ(d) = B2 of 

(2) to the approximate solution y(x) in (9), we get 

yʹʹ(c) = yʹʹ(x0) = w2ʹʹ(x0) +α0Q0ʹʹ(x0) +α1Q1ʹʹ(x0) +α2Q2ʹʹ(x0) 

         = A2                                                                            (10) 

yʹʹ(d) = yʹʹ(xn) = w2ʹʹ(xn)+αn-2Qn-2ʹʹ(xn) +αn-1Qn-1ʹʹ(xn) 

      +αnQnʹʹ(xn) = B2.                                                           (11) 

Now, eliminating α0 and αn from the equations (9), (10) and 

(11), we get the approximation for y(x) as 
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Now, using the boundary conditions yʹʹʹ(c) = A3 and yʹʹʹ(d) = 

B3 of (2) to the approximate solution y(x) in (12), we get 

yʹʹʹ(c) = yʹʹʹ(x0) =w3ʹʹʹ(x0) + α1R1ʹʹʹ(x0) + α2R2ʹʹʹ (x0)  

           = A3                                                                          (13) 

yʹʹʹ(d) = yʹʹʹ(xn) =w3ʹʹʹ(xn) + αn-2Rn-2ʹʹʹ(xn) + αn-1Rn-1ʹʹʹ(xn) 

           = B3.                                                                         (14) 

Now, eliminating α1 and αn-1 from the equations (12), (13) and 

(14), we get the approximation for y(x) as  
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Now, using the boundary conditions y(4)(c) = A4 and y(4)(d) = 

B4 of (2) to the approximate solution y(x) in (15), we get 

y(4)(c) = y(4)(x0)= w4
 (4)(x0)+α2S2

(4)(x0)=A4                          (16)                                                                         

y(4)(d) = y(4)(xn)= w4
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(4)(xn)=B4.                    (17)                                                                        

Now, eliminating α2 and αn-2 from the equations (15), (16) and 

(17), we get the approximation for y(x) as                                           
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 3,...,4,3    ),(
~

njxB j
  and they are in number match with 

the number of selected collocated points. Since the 
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Using (19) and (20) in (21) and after rearranging the terms, 

we get the system of equations which were written in the 

matrix form as 

  Aα = B               (22)                                                                          

where 

         A = [aij];                (23) 
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   B = [bi];                   (24)                                                                                    
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for i =  3,4,…,n-3 

and         α = [α3, α4,…, αn-3]
T. 

  5. SOLUTION PROCEDURE TO FIND 

THE NODAL PARAMETERS  

The basis function )(
~

xBi  is defined only in the interval [xi-3, 

xi+3] and outside of this interval it is zero. Also at the end 

points of the interval [xi-3, xi+3] the basis function )(
~

xB i  

vanishes. Therefore, )(
~

xB i  is having non-vanishing values at 

the mesh points xi-2, xi-1, xi, xi+1, xi+2 and zero at the other mesh 

points. The first four derivatives of  )(
~

xBi  also have the same 

nature at the mesh points as in the case of )(
~

xBi . Using these 

facts, we can say that the matrix A defined in (23) is an eleven 

diagonal band matrix. Therefore, the system of equations (22) 

is an eleven diagonal band system in αi
's. The nodal 

parameters αi
's can be obtained by using band matrix solution 

package. We have used the FORTRAN-90 programming to 

solve the boundary value problem (1)-(2) by the proposed 

method. 

6. NUMERICAL EXAMPLES 

To demonstrate the applicability of the proposed method for 

solving the tenth order boundary value problems of type (1)-

(2), we considered seven examples of which four are linear 

and three are non linear boundary value problems. Numerical 

results for each problem are presented in tabular forms and 

compared with the exact solutions available in the literature. 

Example 1 Consider the linear boundary value problem 

 y(10) –(x2-2x) y = 10 cos x –(x-1)3sin x,      -1<x<1         (25)                                                    

subject to the boundary conditions  

y(-1) = 2sin 1,                     y(1) = 0, 

y'(-1) = -2cos 1-sin 1,         y'(1) = sin 1, 

y''(-1) = 2cos 1 -2 sin 1,      y''(1) = 2cos 1,                     (26)                                                     

y'''(-1) = 2cos 1 +3 sin 1,     y'''(1) = -3sin 1,   
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y(4)(-1) = -4cos 1+2 sin 1,   y(4)(1) = -4cos 1. 

The exact solution for the above problem is given by  

y(x) =(x-1)sin x. The proposed method is tested on this 

problem where the domain [-1,1] is divided into 11 equal 

subintervals. Numerical results for this problem are shown in 

Table 1. The maximum absolute error obtained by the 

proposed method is 1.047821×10-5. 

Table 1. Numerical results for Example 1 

x Exact Solution 
Absolute error 

 by the proposed method 

-0.8 1.291241 2.622604E-06 

-0.6 9.034280E-01 5.960464E-08 

-0.4 5.451856E-01 4.589558E-06 

-0.2 2.384032E-01 8.985400E-06 

0.0 0.0000000000 1.047821E-05 

0.2 -1.589355E-01 7.331371E-06 

0.4 -2.336510E-01 1.743436E-06 

0.6 -2.258570E-01 1.341105E-06 

0.8 -1.434712E-01          1.624227E-06 
 

Example 2 Consider the linear boundary value problem 

 y(10) +5 y = 10 cos x + 4(x-1)sin x,      0<x<1                (27)                                                          

subject to the boundary conditions  

y(0) = 0,                     y(1) = 0, 

y' (0) = -1,                  y'(1) = sin 1, 

y''(0) = 2,                    y''(1) = 2cos 1,                 (28)                                                              

y'''(0) = 1,                    y'''(1) = -3sin 1,   

y(4)(0) = -4,                   y(4)(1) = -4cos 1.                                                            

The exact solution for the above problem is given by y(x) =(x-

1)sin x. The proposed method is tested on this problem where 

the domain [0,1] is divided into 11 equal subintervals. 

Numerical results for this problem are shown in Table 2. The 

maximum absolute error obtained by the proposed method is 

7.942319×10-6. 

Table 2. Numerical results for Example 2 

x Exact Solution 
Absolute error 

 by the proposed method 

0.1 -8.985008E-02 1.907349E-06 

0.2 -1.589355E-01 6.705523E-07 

0.3 -2.068641E-01 3.293157E-06 

0.4 -2.336510E-01 5.915761E-06 

0.5 -2.397128E-01 7.450581E-06 

0.6 -2.258570E-01 7.942319E-06 

0.7 -1.932653E-01 5.394220E-06 

0.8 -1.434712E-01 2.756715E-06 

0.9 -7.833266E-02          1.020730E-06 

 

Example 3 Consider the linear boundary value problem 

 y(10) + y = -10(2x sin x-9cos x),      -1<x<1              (29)                                                               

subject to the boundary conditions  

y(-1) = 0,                             y(1) = 0, 

y'(-1) = -2cos 1,                   y'(1) = 2cos 1, 

y''(-1) = 2cos 1 -4 sin 1,       y''(1) = 2cos 1 -4 sin 1,         (30)                                        

y'''(-1) = 6cos 1 + 6 sin 1,     y'''(1) = -6cos 1 -6 sin 1,   

y(4)(-1) = -12cos 1+ 8 sin 1,   y(4)(1) = -12cos1+8 sin 1.                                    

The exact solution for the above problem is given by y(x) 

=(x2-1)cos x. The proposed method is tested on this problem 

where the domain [-1,1] is divided into 11 equal subintervals. 

Numerical results for this problem are shown in Table 3. The 

maximum absolute error obtained by the proposed method is 

7.688999×10-5. 

Table 3. Numerical results for Example 3 

x Exact Solution 
Absolute error 

 by the proposed method 

-0.8 -2.508144E-01 7.122755E-06 

-0.6 -5.282148E-01 1.859665E-05 

-0.4 -7.736912E-01 4.291534E-05 

-0.2 -9.408639E-01 6.842613E-05 

0.0 -1.000000 7.688999E-05 

0.2 -9.408639E-01 6.031990E-05 

0.4 -7.736912E-01 3.105402E-05 

0.6 -5.282148E-01 8.761883E-06 

0.8 -2.508144E-01          1.192093E-07 
 

Example 4 Consider the linear boundary value problem 

  y(10) – y'' = -8ex,                   0<x<1             (31) 

 subject to the boundary conditions 

 y(0) = 1,                       y(1) = 0, 

 y'(0) = 0,                       y'(1) = -e, 

 y''(0) = -1,                     y''(1) = -2e,            (32)                                                                

 y'''(0) = -2,                    y'''(1) = -3e,   

 y(4)(0) = -3,                    y(4)(1) = -4e.                                                                                                                        

The exact solution for the above problem is given by y(x) = 

(1-x)ex. The proposed method is tested on this problem where 

the domain [0,1] is divided into 11 equal subintervals. 

Numerical results for this problem are shown in Table 4. The 

maximum absolute error obtained by the proposed method is 

1.430511×10-5. 

Table 4. Numerical results for Example 4 

x Exact Solution 
Absolute error 

 by the proposed method 

0.1 9.946538E-01 8.821487E-06 

0.2 9.771222E-01 8.642673E-06 

0.3 9.449012E-01 2.920628E-06 

0.4 8.950948E-01 5.960464E-07 

0.5 8.243606E-01 6.735325E-06 

0.6 7.288475E-01 1.430511E-05 

0.7 6.041259E-01 1.269579E-05 

0.8 4.451082E-01 8.136034E-06 

0.9 2.459602E-01 3.486872E-06 

 

Example 5 Consider the nonlinear boundary value problem 

 y(10 )  = e-xy2(x),                  0<x<1            (33)                                                                

subject to the boundary conditions 

y(0) = 1,                       y(1) = e, 

y'(0) = 1,                      y'(1) = e, 

y''(0) = 1,                      y''(1) = e,               (34)                                                                   
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y'''(0) = 1,                     y'''(1) = e,   

y(4)(0) = 1,                    y(4)(1) =e.                                                                                                                               

The exact solution for the above problem is given by y(x) = 

ex. This nonlinear boundary value problem is converted into a 

sequence of linear boundary value problems generated by 

quasilinearization technique [15] as 

 y(n+1)
(10)+[-2e-xy(n)]y(n+1) = -e-x y(n)

2,   for n = 0,1,2...        (35)                                            

subject to the boundary conditions 

 y(n+1)(0) = 1,                       y(n+1)(1) = e, 

 y(n+1)'(0) = 1,                      y(n+1)'(1) = e, 

 y(n+1)''(0) = 1,                     y(n+1)''(1) = e,              (36)                                                         

 y(n+1)'''(0) = 1,                     y(n+1)'''(1) = e,   

 y(n+1)
(4)(0) = 1,                     y(n+1)

(4)(1) =e.                                                                                                                          

Here y(n+1) is the (n+1)th approximation for y. The domain [0, 

1] is divided into 11 equal subintervals and the proposed 

method is applied to the sequence of problems (35). 

Numerical results for this problem are presented in Table 5. 

The maximum absolute error obtained by the proposed 

method is 6.794930 × 10-5. 

Table 5. Numerical results for Example 5 

x Exact Solution 
Absolute error 

 by the proposed method 

0.1 1.105171 1.251698E-05 

0.2 1.221403 8.702278E-06 

0.3 1.349859 2.145767E-06 

0.4 1.491825 1.132488E-05 

0.5 1.648721 3.969669E-05 

0.6 1.822119 5.400181E-05 

0.7 2.013753 6.794930E-05 

0.8 2.225541 4.887581E-05 

0.9 2.459603 2.002716E-05 
 

Example 6 Consider the nonlinear boundary value problem 

 y(10 )-y''' = 2ex  y2,                  0<x<1           (37)                                                            

subject to the boundary conditions 

 y(0) = 1,                        y(1) = 1/e, 

 y'(0) = -1,                      y'(1) = -1/ e, 

 y''(0) = 1,                       y''(1) = 1/e,           (38)                                                                 

 y'''(0) = -1,                     y'''(1) = -1/e,   

 y(4)(0) = 1,                      y(4)(1) =1/e. 

The exact solution for the above problem is given by  

y(x) = e-x. This nonlinear boundary value problem is 

converted into a sequence of linear boundary value problems 

generated by quasilinearization technique [15] as 

y(n+1)
(10)-y(n+1)''' + [-4exy(n)]y(n+1) = -2ex y(n)

2,  for n = 0,1,2... 

                                                    (39) 

subject to the boundary conditions 

y(n+1)(0) = 1,                        y(n+1)(1) =1/ e, 

y(n+1)'(0) = -1,                      y(n+1)'(1) = -1/e, 

y(n+1)''(0) = 1,                       y(n+1)''(1) = 1/e,             (40)                                                      

y(n+1)'''(0) = -1,                     y(n+1)'''(1) = -1/e,   

y(n+1)
(4)(0) = 1,                      y(n+1)

(4)(1) =1/e.                                                                                                                      

Here y(n+1) is the (n+1)th approximation for y. The domain [0, 

1] is divided into 11 equal subintervals and the proposed 

method is applied to the sequence of problems (39). 

Numerical results for this problem are presented in Table 6. 

The maximum absolute error obtained by the proposed 

method is 1.782179 × 10-5. 

          Table 6. Numerical results for Example 6 

x Exact Solution 
Absolute error 

 by the proposed method 

0.1 9.048374E-01 4.827976E-06 

0.2 8.187308E-01 2.443790E-06 

0.3 7.408182E-01 1.472235E-05 

0.4 6.703200E-01 1.782179E-05 

0.5 6.065307E-01 1.233816E-05 

0.6 5.488116E-01 4.768372E-06 

0.7 4.965853E-01 4.589558E-06 

0.8 4.493290E-01 5.722046E-06 

0.9 4.065697E-01 2.235174E-06 

       
Example 7 Consider the nonlinear boundary value problem 

 
4

14175)10( y (x + y + 1)11,           0<x<1            (41)                                              

subject to the boundary conditions 

 y(0) = 0,                           y(1) = 0, 

 y'(0) = -1/2,                      y'(1) = 1, 

 y''(0) = 1/2,                       y''(1) = 4,             (42)                                                               

 y'''(0) = 3/4,                      y'''(1) = 12,   

 y(4)(0) = 3/2,                      y(4)(1) = 48.                                                                                                                            

The exact solution for the above problem is given by 

.1
2

2
)( 


 x

x
xy  This nonlinear boundary value 

problem is converted into a sequence of linear boundary value 

problems generated by quasilinearization technique [15] as 
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 nnn yyxy

    

 ,101)1(
4

14175
)(

10

)( nn yxyx 
          

    for n = 0,1,2...            (43)                                                                                                                        

subject to the boundary conditions 

 y(n+1)(0) = 0,                          y(n+1)(1) = 0, 

 y(n+1)'(0) = -1/2,                     y(n+1)'(1) = 1, 

 y(n+1)''(0) = 1/2,                      y(n+1)''(1) = 4,         (44)                                                       

 y (n+1)'''(0) = 3/4,                     y(n+1)'''(1) = 12,   

 y(n+1)
(4)(0) = 3/2,                     y(n+1)

(4)(1) = 48.                                                                                                                   

 

Here y(n+1) is the (n+1)th approximation for y. The domain [0, 

1] is divided into 11 equal subintervals and the proposed 

method is applied to the sequence of problems (43). 

Numerical results for this problem are presented in Table 7. 

The maximum absolute error obtained by the proposed 

method is 6.940961 × 10-5. 
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Table 7. Numerical results for Example 7 

x Exact Solution 
Absolute error 

 by the proposed method 

0.1 -4.736842E-02 1.322478E-06 

0.2 -8.888889E-02 4.231930E-06 

0.3 -1.235294E-01 1.676381E-05 

0.4 -1.500000E-01 4.245341E-05 

0.5 -1.666667E-01 6.663799E-05 

0.6 -1.714286E-01 6.940961E-05 

0.7 -1.615385E-01 4.750490E-05 

0.8 -1.333333E-01 1.643598E-05 

0.9 -8.181816E-02 2.607703E-07 
 

7. CONCLUSIONS 

In this paper, we have developed a collocation method with 

quintic B-splines as basis functions to solve tenth order 

boundary value problems. Here we have taken internal mesh 

points x3, x4, …, xn-3 as the selected collocation points. The 

quintic B-spline basis set has been redefined into a new set of 

basis functions which in number match with the number of 

selected collocation points. The proposed method is applied to 

solve several number of linear and non-linear problems to test 

the efficiency of the method. The numerical results obtained 

by the proposed method are in good agreement with the exact 

solutions available in the literature. The objective of this paper 

is to present a simple method to solve a tenth order boundary 

value problem and its easiness for implementation. 
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