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ABSTRACT 

The electrical deregulated market increases the need for 

short-term load forecast algorithms in order to assists 

electrical utilities in activities such as planning , operating 

and controlling electric energy systems. Methodologies 

based on regression methods have been widely used with 

satisfactory results. However, this type of approach has some 

shortcomings. This paper proposes a short- term load 

forecast methodology based on Artificial Intelligence 

techniques. The work presented in this paper makes use of 

local linear wavelet neural networks (LLWNN) to find the 

electric load for a given period, with a certain confidence 

level. 

General Terms 

 Electric load, Forecast, Gradient descent. Local Linear 

Wavelet Neural Network (LLWNN). 

Keywords 

 Wavelet neural network (WNN), artificial neural network 

(ANN), artificial intelligence (AI), Weekly mean absolute 

percentage error (WMAPE). 

 

1. INTRODUCTION 
Electric load forecasting is used by power companies to 

anticipate the amount of power needed to supply the 

demand. In the last few years, various techniques for the 

STLF have been proposed and applied to power systems. 

Conventional methods based on time series analysis exploit 

the inherent relationship between the present hour load, 

weather variables and the past hour load. Auto regressive 

(AR) and moving average (MA) and mixed Auto regressive 

moving average (ARMA) models [1] are prominent in the 

time series approach. The main disadvantage is that these 

models require complex modeling techniques and heavy 

computational effort to produce reasonably accurate results 

[2]. Basically, most of statistical methods are based on linear 

analysis. Since the electric load is non linear function of its 

input features, the behavior of electric load signal can not 

completely be captured by the statistical methods. So 

statistical methods are not adaptive to rapid load variations. 

Another difficulty lies in estimating and adjusting the model 

parameters, which are estimated from historical data that 

may not reveal short term load   pattern change [3].            

       The emergence of artificial intelligence (AI)        

techniques has led to their application in STLF as expert 

system type models. These methods are discrete and logical 

in nature. By simply learning the historical samples, these 

methods can map the input-output relations and then can be 

used for the prediction. 

 

Among the AI techniques available, different models of NNs 

due to flexibility in data modeling have received great deal 

of attention by the researchers in the area of STLF.  

.Many type of NN models which are characterized by 

their topology and learning rules have been successfully used 

for STLF problems [4]-[14]. A comprehensive review of the 

literature on the application of NNs to the load forecasting 

can be found in [9]. 

Another useful technique for STLF, proposed in the 

recent years is wavelet based NN method. In this method 

wavelet is merged with NN and termed as wavelet neural 

network (WNN). The WNN has been emerged as a powerful 

new type of ANN. But the major drawback of the WNN is 

that for higher dimensional problems many hidden layer 

units are needed. Curse of dimensionality is an unsolved 

problem in WNN theory which brings some difficulties in 

applying the WNN to high dimensional problem. So the 

applications of WNN are usually limited to problems of 

small input    dimensions. The main reason is that they are 

composed of regularly dilated and translated wavelets. The 

number of wavelets in the WNN drastically increases with 

the dimension. 

In order to take the advantages of local capacity of the 

wavelet basic function while not having too many hidden 

units, the architecture of LLWNN has been used in this 

paper for STLF. To the best of the authors’ knowledge, a 

Local Linear Wavelet Neural Network (LLWNN) has not yet 

been tested for electric load forecasting. In this paper an 

LLWNN model which smoothly maps the input-output space 

by adapting the shape of wavelet basis function of hidden 

layer neurons according to training data set is examined for 

electric load prediction of the Ontario electricity market. The 

proposed model does not require external 

decomposer/composer. So risk of loosing high frequency 

components of electric load signal is averted. It is found that 

prediction of electric load based on LLWNN model gives 

better performance because of its favorable property of 

modeling the non-stationary high frequency signals such as 

electric load. 

The rest of the paper is organized as follows: Section 2 

describes main characteristics of the electric load series. 

Architecture of LLWNN is described in section 3. Training 

of LLWNN model by standard BP gradient descent 

algorithm is described in section 4. Section 5 describes the 

statistical measures used to evaluate the forecasting 

performance. Section 6 presents results and discussions on 

electric load forecast of Ontario electricity market. Finally, 

section 7. provides concluding remarks.  
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2. LOAD-DATA ANALYSIS 
To develop an appropriate model for load forecasting, we 

examine the main characteristics of the hourly load series in 

this Section. To illustrate the forecasting procedure the 

electric load for the Ontario electricity market from 1st April 

2009 to 31st December, 2009 is used for prediction. 

According to the data samples for each hour of the day and 

each day of the month, it is clear that the load dynamics have 

multiple seasonal patterns, corresponding to a daily and 

weekly periodicity, respectively, and are also influenced by a 

calendar effect, i.e. weekends and holidays. 

It can be observed that the load series presents multiple 

periodicities and hence, the past load demand could affect 

and imply the future load demand. If load at hour h (dh) is to 

be forecasted, the load information of previous hours    up to     

“m”            hours               i.e. mhhh ddd  .....,2,1  should 

be taken as a part of the input of short term load forecasting 

(STLF) model. The auto co-relation function (ACF) can be 

used to identify the degree of association between data in the 

load series separated by different time lags i.e. previous load. 

The historical hourly data of 7 days prior to the day whose 

load to be predicted have been considered to build the 

forecasting model. Hence the total data points are equal to 7 

x 24 = 168. Since the proposed model uses price data 7 

hours ago to predict the price ,hd 168-7=161 input vectors 

are used to develop the forecast model. 

 

3. ARCHITECTURE OF LLWNN 

 
The LLWNN model for the hourly Ontario electric load is 

developed to forecast for three time periods. The first period 

comprises two consequent weeks from April 24 to May 7, 

2009. The second period contains two weeks from August 25 

to September 7, 2009 and the last period includes two weeks, 

starting on October 9 and ending on October 22, 2009. The 

historical hourly load data to construct LLWNN model 

which would be employed to forecast the load data of test 

week are shown in table 1. 

                         TABLE 1 

Hourly load data for forecasting model construction and 

testing 

Seasons Historical hourly 

load data 

Test weeks 

Summer April 24-30,2009 May 1-7,2009 

Rainy August25-

31,2009 

Sept. 1-7,2009 

Winter Oct. 9-15,2009 Oct. 16-22,2009 

 

The structure of LLWNN model is shown in Fig. 1. It 

comprises of input layer, hidden layer and linear output 

layer. The input data in input layer of the network are 

directly transmitted into the wavelet layer. As the hidden 

layer neurons make use of wavelets as activation functions, 

these neurons are usually called ‘wavelons’. . In stead of 

using multi layered neural networks and its several variants, 

a LLWNN is used for forecasting the next day and next week 

electric load in a deregulated environment. 

   . In the proposed model, one hour ahead load forecasting 

using seven hours before load data and twenty four hours 

ahead forecasting using seven days i.e. 168 hours before load 

data have been used. 

 

According to wavelet transformation theory, wavelets in the 

following form is a family of  functions, generated from one 

single function ψ(x) by the operation of dilation and 

translation ψ(x), which is localized in both time space and 

the frequency space , is called a mother wavelet 
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The parameters ia  and ib  are the scale and translation 

parameters, respectively. According to the previous 

researches, the two parameters can either be predetermined 

based on wavelet transformation theory or be determined by 

a training algorithm. 

In the standard form of wavelet neural network, the output of 
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 The above wavelet neural network is a kind of basis 

function neural network in the sense of that the wavelet 

consists of the basis function. An intrinsic feature of the 

basis function networks is the localized activation of the 

hidden layer units, so that the connection weights associated 

with the units can be viewed as locally accurate piecewise 

constant models whose validity for a given input is indicated 

by the activation functions. Compared to the multilayer 

perceptron neural network, this local capacity provides some 

advantages such as the learning efficiency and the structure 

transparency. However, the problem of basis function 

networks is also led by it. Due to the crudeness of the local 

approximation, a large number of basis function units have 

to be employed to approximate a given system. A 

shortcoming of the wavelet neural network is that for higher 

dimensional problems many hidden layer units are needed. 

In order to take advantage of the local capacity of the 

wavelet basis functions while not having too many hidden 

units, LLWNN has been used as an alternative neural 

network. 

 

 The difference of a local linear wavelet neural network 

(LLWNN) with conventional wavelet neural network 

(WNN) is that the connection weights between the hidden 

layer and output layer of conventional WNN are replaced by 

a local linear model. The output of LLWNN is given by 
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where x = 
2 2 2

1 2 ................... nd d d    

Instead of the straight forward weight wi (piecewise constant 

model), a linear model 

niniii xwxwwv  ..........110 is introduced. 

The activities of the linear models iv (i=1,2,--------n) are 

determined by the associated  locally active wavelet 

functions ψi(x) (i= 1,2,-------,n), thus iv  is only locally 

significant .Non-linear wavelet basis functions (named 

wavelets) are localized in both time space and  frequency 

space.  

 

Fig.1 – General structure of a local linear wavelet neural 

network. 

                 

 

 

4. TRAINING 

 

A neural learning algorithm to get all the unknown 

parameters of network i.e. translation and dilation 

coefficients, weights may be used for supervised training of 

an LLWNN. Since the function computed by the LLWNN 

model is differentiable with respect all the mentioned 

unknown parameters, a standard back propagation (BP) 

gradient descent training algorithm can be used  for updating 

weights, dilation, translation parameters which are randomly 

initialized at beginning. The trained LLWNN would be used 

to predict the hourly load for the next day. 

It is possible to over fit the training data if the training 

session is not stopped at the right point. The unset of the 

over fitting can be detected through cross validation in which 

the available data set are divided in to training, validation 

and testing subsets. The training set is used to compute the 

gradients and update all the unknown parameters of the 

networks. The error on the validation set is monitored during 

the training session. In this work, the standard BP gradient 

algorithm has been adopted. Training is based on 

minimization of the cost   function  (E), given as: 
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Where‘d’ is the desired load                                                        

Gradient descent method for updating the parameters: 
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5. ACCURACY MEASURES 

Mean absolute percentage error (MAPE) is used to assess 

prediction accuracy of the developed models in the paper. 

 The absolute error (AE) is defined as  

                               

1
 

2
 

m
 


 

y 

nn xwxww 111110 ....
 

. 

nmnmm xwxww  ....110  
. 

1x
 

2x
 

nx



 

International Journal of Computer Applications (0975 – 8887) 

Volume 51– No.13, August 2012 

41 

                          
,

,

, f t

t

a t

da t d
AE

d


            (15) 

The daily mean absolute error (DMAE) can become 

computed as follows. 

DMAE = 


24

124

1

t

tAE            (16) 

   The daily mean absolute percentage error 

(DMAPE) =  


24

124

100

t

tAE                (17) 

The weekly mean absolute error  

(WMAE) = 

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1168

1

t

tAE              (18) 

And, 

The weekly mean absolute percentage error 

              (WMAPE) = 

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100

t

tAE                (1 9) 

 

 

6. RESULTS & ANALYSIS  

 

The historical data of Ontario System load from May 

2009to December 2009 was used for testing the proposed 

LLWNN model. The forecasted load obtained with proposed 

model during summer test week is shown in Fig.2 along with 

actual load and the corresponding error is shown in Fig. 3. 

 

. The forecasted load obtained with proposed Model 

during rainy test week is shown in Fig.4 along with actual 

load and the corresponding error is shown in Fig. 5. 

. The forecasted price obtained with proposed Model 

during winter test week is shown in Fig.6 along with actual 

load and the corresponding error is shown in Fig. 7. 

It can be seen from figures that the predicated electricity 

load of the test weeks are quite close to the actual one. The 

weekly MAPEs of the generated forecasts, using the models 

developed in this paper for the three seasons under study, are 

presented in Table 2.  

For comparison purposes, the weekly MAPEs of the 

generated forecast, using linear regression method (PM1), 

non linear regression method (PM2), nonparametric 

regression model (PM3), partial least square regression 

model (PM4), [15] are also presented in table 2. 

                    

TABLE 2Comparison between statistical tools and 

proposed model for DMAPE of a typical week in the 

different seasons of the year 2009.  

 

Days in 

different 

seasons 

PM 1 PM 2 PM 3 PM 4 LLWNN 

1-7 

May, 09 

8.2 8.3 8.0 7.9 7.2897 

1-7 

Sept.,09 

6.4 6.6 6.9 6.6 6.7831 

16-22 

Oct.,09 

9.8 9.6 10.4 10.3 6.0191 

 

 

Accuracy of LLWNN model is better than the other 

models in 1st and 3rd time periods. Overall, accuracy of 

LLWNN model is also better than the other models. 

The best results were achieved for 3rd time period.  

Figures 2, 4, 6 and table 3 give the comparison result of the 

output of the dynamic system and output of the LLWNN and 

the identification error. The relative errors for the training 

data set and test data set of 3rd time period taking d_data as 

input vectors in  proposed model by using gradient descent 

algorithm as learning algorithm, where d_data=(load data-

minimum load)/(maximum load-minimum load) for a given 

period are represented in table 3. These results in uneven 

accuracy distribution throughout the week that reflects 

reality. Thus the results of proposed model show significant 

improvement in the electric load forecasting process. 

TABLE -3 

 Results obtained by proposed model for 1st 24 hours of a 

day of 1st and 3rd time periods. 

 

For 1st period test data set       For 3rd period test data set        

Predicted 

hourly load 

taking 

d_data as 

input vector 

Hourly  

Error   

Predicted 

hourly load 

taking 

d_data as 

input vector  

Hourly   

Error  

    0.4376 

    0.4676 

    0.4420 

    0.4543 

    0.4509 

    0.4111 

    0.4268 

    0.4150 

    0.4319 

    0.4670 

    0.4403 

    0.4168 

    0.4439 

    0.4820 

    0.4339 

    0.2973 

    0.2422 

    0.1935 

    0.1688 

    0.1567 

    0.1558 

    0.1785 

    0.2288 

    0.3366 

 

-0.0063 

-0.0286 

0.0055 

0.0008 

-0.0101 

0.0274 

0.0045 

0.0240 

0.0314 

-0.0029 

0.0062 

0.0303 

0.0289 

- 0.0164 

-0.0542 

-0.0071 

-0.0203 

-0.0042 

0.0049 

0.0050 

0.0012 

0.0027 

0.0504 

0.0638 

 

    0.4701 

    0.4780 

    0.5177 

    0.5242 

    0.5417 

    0.5533 

    0.4846 

    0.4121 

    0.3949 

    0.2431 

    0.2211 

    0.2195 

    0.1739 

    0.1778 

    0.2027 

    0.2667 

    0.3833 

    0.5158 

    0.4964 

    0.4970 

    0.5049 

    0.4852 

    0.4657 

    0.4684 

0.0217 

0.0355 

0.0149 

0.0287 

0.0271 

-0.0144 

- 0.0076 

-0.0092 

- 0.0440 

0.0012 

0.0002 

-0.0222 

0.0160 

0.0160 

0.0323 

0.0691 

0.0780 

-0.0177 

0.0088 

0.0072 

-0.0068 

0.0025 

0.0178 

0.0057 

 

 

7. CONCLUSION 

In this paper, electric load forecasting by using a local linear 

wavelet neural net work (LLWNN) model is used. The 

characteristic of the network is that the straight forward 

weight is replaced by a local linear model and thereby it 

needs only smaller wavelets for a given problem than the 

common wavelet neural networks. Hence the proposed 

model requires simple modeling technique and light 

computational effort to produce reasonably accurate result. 

Since the proposed model is discrete and logical in nature, 

by simple learning the historical samples, this method can 

map the input-output relations and then can be used for the 

prediction.   The highest   forecast accuracy is attained by 
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LLWNN model since both smooth global sharp local 

variation of electric load signal can be effectively 

represented by the wavelet basis activation function for 

hidden layer neuron without any decomposer/composer. This 

method averts the risk of loosing the high frequency 

components of electric load signals. 
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       F         Fig.2 Dynamic system output and model output  

for su         summer test data set 
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                                Fig.3. Hourly error for summer test data set. 
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Fig.4. Dynamic system output and model output for      
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Rainy test data set 
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Fig-5 Hourly error for Rainy test data set 
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Fig-6   Dynamic system output and model 

output for winter test data set 
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Fig-7 Hourly error for winter test data set  0 100 200 300 400 500 600 700 800
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